Logic-Based Benders Decomposition

John Hooker Carnegie Mellon University

Benders Day Workshop Eindhoven University May 2024

- One of the **best known** and **most successful** strategies for solving hard optimization problems.
 - Decomposes the problem without sacrificing optimality.

- One of the **best known** and **most successful** strategies for solving hard optimization problems.
 - Decomposes the problem without sacrificing optimality.
 - Master problem contains complicating variables.
 - Problem simplifies to an easier subproblem when these variables are fixed.
 - Subproblem often decouples into smaller problems.
 - Key idea: Benders cuts provide feedback to master problem.

Subproblem

Based on Google Scholar

Based on Google Scholar

- Classical Benders decomposition has a limitation.
 - The subproblem must be a linear programming problem.

Geoffrion 1972

- Or a continuous nonlinear programming problem.
- The linear programming dual provides the Benders cuts.

- Classical Benders decomposition has a limitation.
 - The subproblem must be a linear programming problem.

Geoffrion 1972

- Or a continuous nonlinear programming problem.
- The linear programming dual provides the Benders cuts.
- But the **underlying idea** is **more general** than it may appear.
 - This opens the door to many new applications.

- The key idea:
 - The subproblem dual multipliers encode a proof of optimality.
 - By proving a **bound** on the optimal value.
 - What kind of bound can be obtained using the same proof if the master problem solution changes?
 - The **Benders cut** answers this question.

- The key idea:
 - The subproblem dual multipliers encode a proof of optimality.
 - By proving a **bound** on the optimal value.
 - What kind of bound can be obtained using the same proof if the master problem solution changes?
 - The **Benders cut** answers this question.
- To exploit this idea:
 - Replace the LP dual with an inference dual whose solution is a proof that logically deduces a bound.
 - A logic-based Benders cut is derived from this proof.

• Result: Logic-based Benders decomposition (LBBD)

- The subproblems can, in principle, be **any kind** of optimization problem.
 - Since the Benders cuts are obtained from an inference dual.
- Speedup over state of the art can be several orders of magnitude.

• Result: Logic-based Benders decomposition (LBBD)

- The subproblems can, in principle, be **any kind** of optimization problem.
 - Since the Benders cuts are obtained from an inference dual.
- Speedup over state of the art can be several orders of magnitude.
- The Benders cuts must often be specifically designed for a class of problems.
 - An inconvenience, but also an advantage.
 - It allows one to exploit **special structure** in the problem

Classical Benders Method

Solve the problem

 $\min f(\boldsymbol{x}) + \boldsymbol{c}\boldsymbol{y}$ $\boldsymbol{g}(\boldsymbol{x}) + A\boldsymbol{y} \ge \boldsymbol{b}$

• Subproblem must be an LP.

• Benders cuts are based on classical duality.

Repeat until the master problem and subproblem have the same 12 optimal value.

Logic-based Benders Method

Repeat until the master problem and subproblem have the same optimal value.

 $oldsymbol{y}\in S$

Inference dual

$$\max z \\ (\boldsymbol{y} \in S) \stackrel{P}{\Rightarrow} (z \le f(\boldsymbol{x})) \\ P \in \mathcal{P}$$

General optimization problem

 $\min f(\boldsymbol{y}) \\ \boldsymbol{y} \in S$

Inference dual

 $\max z \\ (\boldsymbol{y} \in S) \stackrel{P}{\Rightarrow} (z \le f(\boldsymbol{x})) \\ P \in \mathcal{P}$

LP problem

 $\begin{array}{l} \min \ \boldsymbol{cy} \\ A\boldsymbol{y} \geq \boldsymbol{b} \\ \boldsymbol{y} \geq \boldsymbol{0} \end{array}$

Its inference dual

 $\max z \\ \begin{pmatrix} A \boldsymbol{y} \ge \boldsymbol{b} \\ \boldsymbol{y} \ge \boldsymbol{0} \end{pmatrix} \Rightarrow (\boldsymbol{c} \boldsymbol{y} \ge z)$

General optimization problem

 $\min f(\boldsymbol{y})$ $\boldsymbol{y} \in S$

Inference dual

$$\max z \\ (\boldsymbol{y} \in S) \stackrel{P}{\Rightarrow} (z \le f(\boldsymbol{x})) \\ P \in \mathcal{P}$$

LP problem

 $\begin{array}{l} \min \ \boldsymbol{cy} \\ A\boldsymbol{y} \geq \boldsymbol{b} \\ \boldsymbol{y} \geq \boldsymbol{0} \end{array}$

Its inference dual

 $\max z \\ \begin{pmatrix} A \boldsymbol{y} \ge \boldsymbol{b} \\ \boldsymbol{y} \ge \boldsymbol{0} \end{pmatrix} \Rightarrow (\boldsymbol{c} \boldsymbol{y} \ge z)$

Applying Farkas Lemma $\max z$ $\begin{pmatrix} z \leq ub \\ uA \leq c \end{pmatrix}$ for some $u \geq 0$

16

General optimization problem

 $\min f(\boldsymbol{y})$ $\boldsymbol{y} \in S$

Inference dual

 $\max z \\ (\boldsymbol{y} \in S) \stackrel{P}{\Rightarrow} (z \le f(\boldsymbol{x})) \\ P \in \mathcal{P}$

LP problem

min cy	written		
$Aoldsymbol{y} \geq oldsymbol{b}$	$\max z$		
$oldsymbol{y} \geq oldsymbol{0}$	$z \leq oldsymbol{ub}$		

This can be

 $uA \leq c$

 $oldsymbol{u} \geq oldsymbol{0}$

Its inference dual

 $\max z \\ \begin{pmatrix} A \boldsymbol{y} \ge \boldsymbol{b} \\ \boldsymbol{y} \ge \boldsymbol{0} \end{pmatrix} \Rightarrow (\boldsymbol{c} \boldsymbol{y} \ge z)$

ApplyingFarkas Lemmamax z $\begin{pmatrix} z \leq ub \\ uA \leq c \end{pmatrix}$ for some $u \geq 0$

17

General
optimization
problem

min $f(\boldsymbol{y})$ $\boldsymbol{y} \in S$

Inference dual

$$\max z \\ (\boldsymbol{y} \in S) \stackrel{P}{\Rightarrow} (z \le f(\boldsymbol{x})) \\ P \in \mathcal{P}$$

LP problem

min cy	written		
$Aoldsymbol{y} \geq oldsymbol{b}$	$\max z$		
$oldsymbol{y} \geq oldsymbol{0}$	$z \leq oldsymbol{ub}$		

Its inference dual

 $oldsymbol{u} \geq oldsymbol{0}$ $\max z$ $\begin{pmatrix} A \boldsymbol{y} \ge \boldsymbol{b} \\ \boldsymbol{y} \ge \boldsymbol{0} \end{pmatrix} \Rightarrow (\boldsymbol{c} \boldsymbol{y} \ge z) \quad \text{Remove } \boldsymbol{z} \text{ to get}$ LP dual

Applying $\max ub$ Farkas Lemma $\boldsymbol{u}A \leq \boldsymbol{c}$ $\max z$ $oldsymbol{u} \geq oldsymbol{0}$ $\begin{pmatrix} z \leq ub \\ uA < c \end{pmatrix}$ for some $u \geq 0$

This can be

 $uA \leq c$

18

Inference Duality

Using various logical inference methods

Type of dual	Inference method	Complete (strong dual)?
Linear programming	Nonnegative linear combination + domination (linear inequalities)	Yes
Lagrangian	Same as LP dual (nonlinear or integer inequalities)	No
Surrogate	Nonnegative linear combination + material implication	No
Subadditive	Chvatal-Gomory cuts	Yes
Branching	Branch and bound	Yes

Branch and check

- Solve master problem only once
 - **Branch** on master problem variables
 - Invoke subproblem at feasible nodes
 - Add Benders cut at node, and continue branching.
 JH 2000, Thorsteinsson 2001

Branch and check

- Solve master problem only once
 - **Branch** on master problem variables
 - Invoke subproblem at feasible nodes
 - Add Benders cut at node, and continue branching.

JH 2000, Thorsteinsson 2001

- Very different from branch and cut
 - Cuts are **not valid** for the problem solved by branching---only for the **subproblem**.
 - Cuts contain variables that have already been fixed by branching
 - Rather than variables not yet fixed
 - Cuts derived using a different type of reasoning. ²¹

A Bit of History

•	Classical Benders decomposition	Benders (1962)
•	"Generalized" BD (for continuous nonlinear inequalities)	Geoffrion (1972)
•	Connection between LP duality and logic (unit resolution proof)	Jeroslow & Wang (1990)
•	Logic circuit verification – First clear application of LBBD (in retrospect)	JH and Yan (1995)
•	General statement of LBBD and branch & check	JH (2000)
•	Computational testing of LBBD	Jain and Grossmann (2001)
•	Computational testing of branch & check	Thorsteinsson (2001)
•	Further development and testing	JH and Ottosson (2003)
•	Combinatorial Benders cuts (branch and check applied to MILP)	Codato and Fischetti (2006)

Example: Machine Scheduling

- Assign tasks to machines.
- Then schedule tasks assigned to each machine.
 - Subject to time windows.
 - Scheduling problem **decouples** into a separate problem for each machine.
- Objective is to minimize makespan.

Example: Machine Scheduling

- Assign tasks in master, schedule in subproblem.
 - Combine mixed integer programming and constraint programming

Benders cut.

Nogood Cuts

- Logic-based Benders cuts (optimality cuts)
 - Simplest cut is a strengthened nogood cut

$$z \ge z_i^* - M \sum_{j \in J_i} (1 - x_{ij})$$

- where $x_{ii} = 1$ when task *j* assigned to machine *i*
- -M = large number
- J_i is a reduced set of tasks that result in optimal makespan z_i^* when assigned to machine *i*.
- Various algorithms reduce J_i by repeatedly re-solving subproblem.

Nogood Cuts

• Strengthening methods for nogood cuts

Method	Yields irreducible cut?
Greedy	No
Deletion filter	Yes
Heuristic binary search	No
Depth-first binary search	Yes
Quick Xplain	Yes
Binary search Quick Xplain	Yes

Analytical Cuts

- Analytical cuts for machine scheduling
 - Stronger cuts that exploit problem structure:

$$z \ge z_i^* - \sum_{j \in J_i} (1 - x_{ij}) \left(p_{ij} + \max\{0, r_j - r_{\min} - p_{\min}\} \right) - (d_{\max} - d_{\min})$$
$$z \ge z_i^* - \sum_{j \in J_i} (1 - x_{ij}) \left(p_{ij} + \max\{0, r_j - r_{\min} - p_{\min}\} \right) + (d_{\max} - d_{\min}) \right)$$

where

$$z_i^* = \text{current min makespan for resource } i$$

$$r_j = \text{release time, } p_{ij} = \text{processing time, } d_j = \text{deadline}$$

$$r_{\min} = \min_{j \in J_i} \{r_j\}, \ p_{\min} = \min_{j \in J_i} \{p_{ij}\}$$

$$d_{\min} = \min_{j \in J_i} \{d_j\}, \ d_{\max} = \max_{j \in J_i} \{d_j\}$$

Logic-based Cuts

• Types of logic-based cuts

Type of cut	Function
Nogood cut	Excludes most recent master problem solution
Strengthened nogood cut	Excludes a class of solutions based on re-solving subproblem
Analytical cut	Exploits most recent solution and problem structure to exclude a class of solutions
Explanation-based cut	Cut based directly on solution of the inference dual of subproblem
Combinatorial Benders cut	Special case of strengthened nogood cut designed for MILP

Example: Machine Scheduling

LBBD performance profile for 50 problem instances

Stochastic Machine Scheduling

Random processing times

- Represented by multiple scenarios.
- Processing times revealed after machine assignment but before scheduling on each machine.
- Solve subproblem by CP
- Previous state of the art
 - Integer L-shaped method.
 - Classical Benders cuts based on LP relaxation of MILP subproblem.
 - Weak "integer cuts" to ensure convergence.

Stochastic Machine Scheduling

Computation time

10 jobs, 2 machines, processing times drawn from uniform distribution Each time (seconds) is average over 3 instances

Scenarios	Integer L-shaped	Branch & Check
1	127	1
5	839	2
10	2317	3
50	> 3600	17
100	> 3600	37
500	> 3600	279

Elçi and JH (2022)

- Caregiver assignment and routing
 - Focus on regular hospice care
 - Qualifications matched to patient needs
 - Time windows, breaks, etc., observed
 - Weekly schedule
- Rolling time horizon
 - New patients every week.
 - Minimal schedule change for existing patients.
- Efficient staff utilization
 - Maximize number of patients served by given staff level.
 - Optimality important, due to cost of taking on staff.

Master problem

Assign patients to healthcare aides and days of the week

= 1 if patient *j* assigned to aide *I* on day *k*

= 1 if patient j > assigned to aide *i*

= 1 if patient *j* scheduled $\max \sum \delta_j$ all j x_{ij} **Required number** of visits per week all j y_{ijk} all i, j, k $y_{ijk} \leq x_{ij}$ Spacing constraints on visit days Benders cuts Relaxation of subproblem $\delta_j, x_{ij}, y_{ijk} \in \{0, 1\}$

MILP model

Subproblem

Sequence and schedule visits for each healthcare aide *j* separately.

CP model (or use interval variables)

Strengthened nogood cuts

If no feasible schedule for aide *j*, generate a cut requiring that at least one patient be assigned to another aide.

$$\sum_{j\in\bar{P}_{ik}} (1-y_{ijk}) \ge 1$$

Reduced s

Reduced set of patients whose assignment to aide *i* on day *k* creates infeasibility, obtained by re-solving subproblem with fewer aides. This excludes many assignments that cannot be feasible.

Branch and check

Variant of LBBD that generates Benders cuts during branch-andbound solution of master problem. Master problem solved only once.

JH (2000), Thorsteinsson (2001)

Computational results

Data from home hospice care firm.

Heching, JH, Kimura (2019)

Computational results

Heching, JH, Kimura (2019)

Data from Danish home care agency.

			Weighted objective		Cov	ering obje	ective	
Instance	Patients	Crews	MILP	LBBD	B&Ch	MILP	LBBD	B&Ch
hh	30	15	*	3.16	1.41	*	23.3	441
ll1	30	8	*	1.74	0.43	*	108	1.41
112	30	7	2868	1.56	0.32	*	1.38	6.45
113	30	6	1398	2.16	0.30	*	3.07	5.98

*Computation time exceeded one hour.

Example: SAT

- Conflict clauses as logic-based Benders cuts.
 - The **subproblem** is the problem at a node of the DPLL search tree.
 - The inference dual is defined by unit resolution.
 - The **dual solution** is a unit refutation, encoded in a **conflict graph**.

LBBD Applications

- Recent book describes LBBD applications to 147 problem classes, described in 226 publications.
 - Many use domain-specific analytical cuts.

JH (2023)

• Some examples...

- Transportation
 - Vehicle routing and scheduling
 - Traffic diversion
 - Train scheduling
 - Railroad gantry crane scheduling
 - Pipeline scheduling
 - Container ship routing and scheduling
 - Lock scheduling
 - Ride sharing
 - Bicycle sharing
 - Electric bus routing
 - Location and scheduling of charging stations

- Container port management
 - Container stacking and drayage
 - Yard crane scheduling
 - Gantry crane assignment and scheduling
 - Berth allocation
 - Ship loader scheduling

- Production and maintenance:
 - Task assignment and scheduling
 - Machine assignment and scheduling
 - Job/flow shop scheduling
 - Assembly line balancing
 - Work cell assignment and scheduling
 - Employee shift assignment
 - Lot sizing
 - Blast furnace scheduling
 - Mine scheduling
 - Chemical batch scheduling
 - Aircraft maintenance
 - Wind turbine maintenance

- Supply chain logistics
 - Plant location and truck allocation
 - Packing and cutting
 - Distribution center location & vehicle routing
 - Concrete delivery
 - Wheat supply chain
 - Intermodal transport
 - Supply chain reconfiguration

- End user delivery
 - Shelf space allocation in warehouse
 - Order picking in warehouse
 - Robotic pod repositioning
 - Order consolidation
 - Crowdshipping
 - Packing orders into parcels
 - Package delivery with drones

- Telecommunications and computing
 - Allocation of frequency spectrum
 - Local are network design
 - Optical network regenerator locations
 - Network reliability
 - Network upgrade
 - Edge computing
 - Allocation of tasks to processors in multicore computing
 - Information flow for autonomous driving
 - Logic circuit verification

- Medical applications
 - Clinical outpatients scheduling
 - Operating room scheduling
 - Hospital therapist scheduling
 - Home healthcare routing and scheduling
 - Kidney exchange
 - DNA sequence alignment
 - Radiation therapy control
 - Cancer screening
 - Covid test center location
 - Vaccine distribution

- Disaster management
 - Robust disaster preparedness
 - Earthquake infrastructure risk management
 - Search and rescue after earthquake
 - Fortifying service facilities
 - Electric grid restoration
 - Wildfire suppression
 - Pipeline damage monitoring

- Other applications
 - Tournament scheduling
 - Baseball umpire scheduling
 - Course timetabling
 - Call center scheduling
 - Network interdiction
 - Decision tree learning
 - Military flow diversion
 - Energy policy analysis
 - Electricity price equilibration

- Abstract problem classes:
 - SAT, maxSAT, SATMT (conflict clauses)
 - 0-1 programming with subproblem decoupling
 - General optimal control
 - Linear complementarity and quadratic programming
 - Operator counts in automated planning
 - Modular arithmetic
 - Minimal chord completion
 - Piecewise linear regression
 - Robust optimization

LBBD general-purpose software

- Automatic LBBD in MiniZinc
 - Uses SAT-style conflict clauses
- Nutmeg
 - Uses branch and check

ed-lam/**nutmeg**

Nutmeg - a MIP and CP branch-and-check solver

Conclusion

The inherent potential of Benders decomposition continues to unfold after 60 years.

