Planning & Scheduling by Logic-based Benders Decomposition: A Computational Analysis

> André Ciré University of Toronto Elvin Çoban Özyeğin University John Hooker Carnegie Mellon University

> > COPLAS 2015

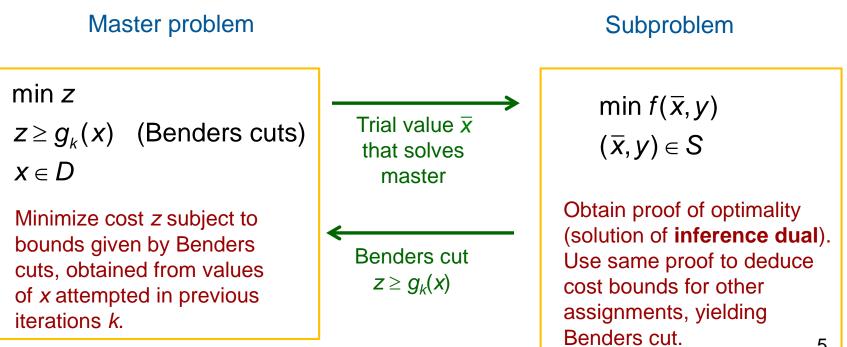
Objective

- Identify factors that explain the efficiency of Logic-based Benders decomposition (LBBD) for planning and scheduling.
 - LBBD has brought orders-of-magnitude improvement over state of the art in several problem domains.
 - Factors that explain this success have not been studied systematically.

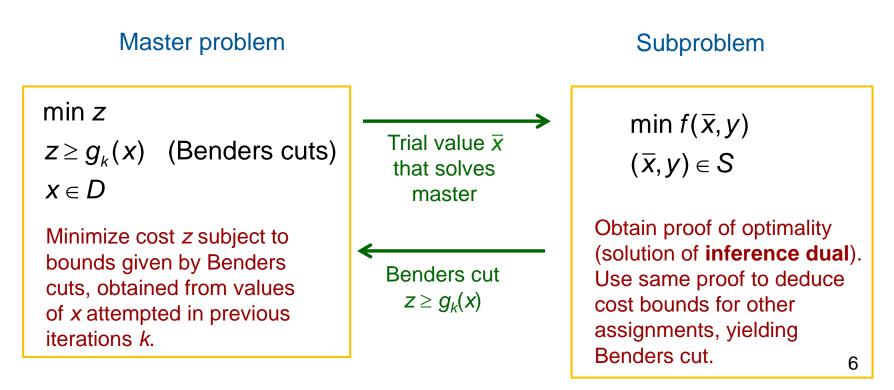
Test Problem

• As a test case, we use a simple **resource assignment and scheduling** problem.

- Assign tasks to resources.


- Schedule tasks assigned to each resource.
 - Tasks may run concurrently, subject to limit on total rate of resource consumption (cumulative scheduling).

What Is Logic-Based Benders?


- Logic-based Benders decomposition is a generalization of classical Benders decomposition.
 - Subproblem is an arbitrary optimization problem.
 - need not have linear or inequality model.
 - JH (1995), JH and Yan (1995), JH and Ottosson (2003).
 - Solves a problem of the form

min f(x, y) $(x, y) \in S$ $x \in D$

- Decompose problem into master and subproblem.
 - Subproblem is obtained by fixing x to solution value in master problem.

- Iterate until master problem value equals best subproblem value so far.
 - This yields optimal solution.

• Fundamental concept: inference duality

Primal problem: optimization

 $\min f(x)$ $x \in S$

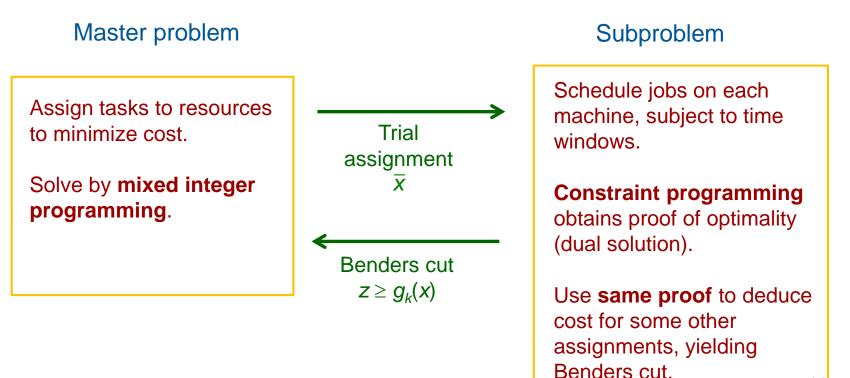
Find **best** feasible solution by searching over **values of x**. Dual problem: Inference

max v

$$x \in S \stackrel{P}{\Rightarrow} f(x) \geq v$$

 $P \in \mathcal{P}$

Find a proof of optimal value v^* by searching over **proofs** *P*.


- Popular optimization duals are **special cases** of the inference dual.
 - Result from different choices of inference method.
 - For example....
 - Linear programming dual (gives classical Benders cuts)
 - Lagrangean dual
 - Surrogate dual
 - Subadditive dual

- Substantial speedup for many applications.
 - Several orders of magnitude relative to state of the art.

- Substantial speedup for many applications.
 - Several orders of magnitude relative to state of the art.
- Some applications:
 - Circuit verification
 - Chemical batch processing (BASF, etc.)
 - Steel production scheduling
 - Auto assembly line management (Peugeot-Citroën)
 - Automated guided vehicles in flexible manufacturing
 - Allocation and scheduling of multicore processors (IBM, Toshiba, Sony)
 - Facility location-allocation
 - Stochastic facility location and fleet management
 - Capacity and distance-constrained plant location

- Some applications...
 - Transportation network design
 - Traffic diversion around blocked routes
 - Worker assignment in a queuing environment
 - Single- and multiple-machine allocation and scheduling
 - Permutation flow shop scheduling with time lags
 - Resource-constrained scheduling
 - Wireless local area network design
 - Service restoration in a network
 - Optimal control of dynamical systems
 - Sports scheduling

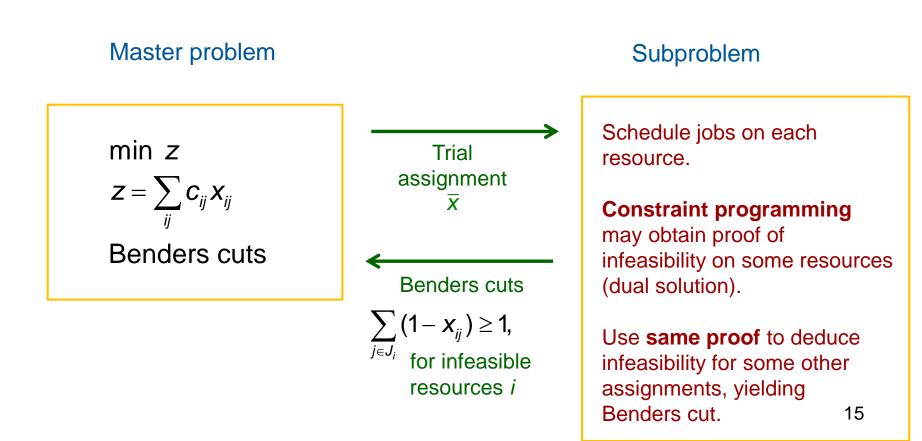
- Assign tasks in master, schedule in subproblem.
 - Combine mixed integer programming and constraint programming

- Objective function
 - Cost is based on task assignment only.

cost = $\sum_{ij} c_{ij} x_{ij}$, $x_{ij} = 1$ if task *j* assigned to resource *i*

- So cost appears only in the **master problem**.
- Scheduling subproblem is a feasibility problem.

- Objective function
 - Cost is based on task assignment only.


cost = $\sum_{ij} c_{ij} x_{ij}$, $x_{ij} = 1$ if task *j* assigned to resource *i*

- So cost appears only in the **master problem**.
- Scheduling subproblem is a feasibility problem.
- Benders cuts

- They have the form
$$\sum_{j \in J_i} (1 - x_{ij}) \ge 1$$
, all *i*

- where J_i is a set of tasks that create infeasibility when assigned to resource *i*.

• Resulting Benders decomposition:

- Problem: We don't **have access** to infeasibility proof in CP solver.
 - So begin with simple **nogood cut** $\sum_{j \in J_i} (1 x_{ij}) \ge 1$, all *i* where J_i contains all tasks assigned resource *i*.
 - Then **strengthen cut** by heuristically removing tasks from J_i until schedule on resource *i* becomes feasible.

Problem Instances

- Used in several previous studies.
 - Randomly generated near phase transition.
 - Schedule *n* tasks on *m* resources.
 - -5 instances for each (*m*,*n*) pair.

Problem Instances

- "c" instances
 - 10-32 tasks on 2-4 resources.
 - Designed to be **hard** for LBBD.
 - Resources differ by factor of *m* in processing speed.
 - Results in many tasks assigned to fastest resource, creating a computational bottleneck.

Problem Instances

- "c" instances
 - 10-32 tasks on 2-4 resources.
 - Designed to be **hard** for LBBD.
 - Resources differ by factor of *m* in processing speed.
 - Results in many tasks assigned to fastest resource, creating a computational bottleneck.
- "e" instances
 - 10-50 tasks on 2-10 resources.
 - Perhaps more realistic.
 - Resources differ by factor of 2 in processing speed.

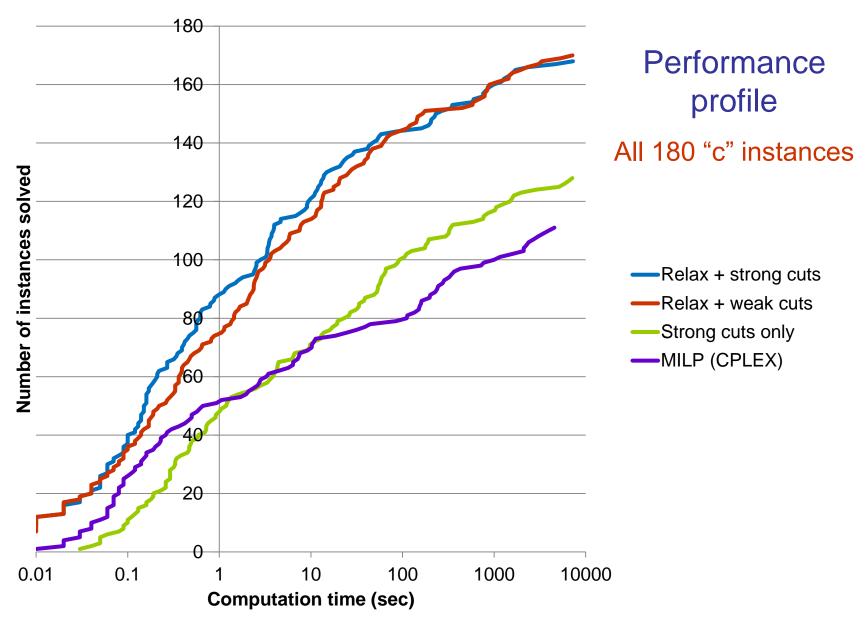
Experimental Design

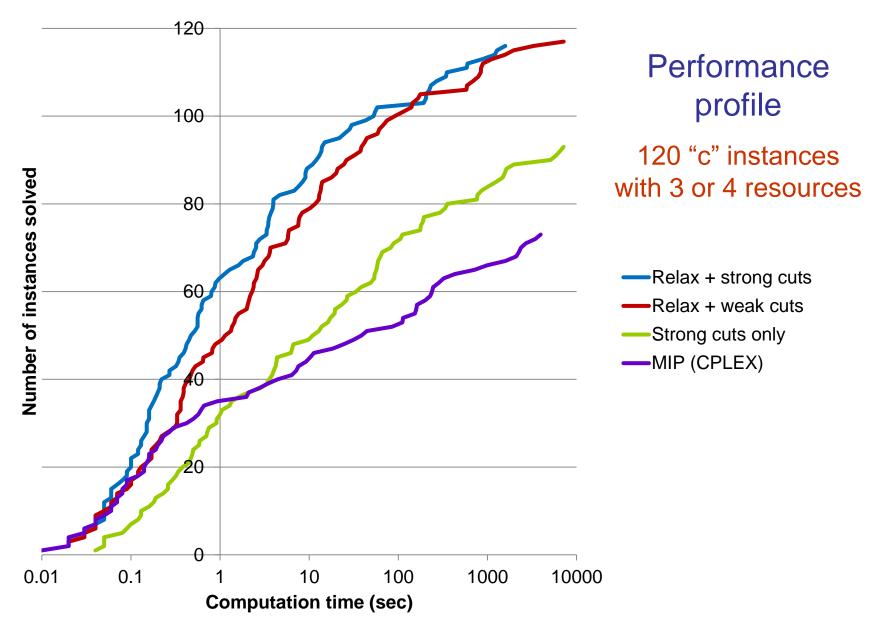
- Solve with LBBD
 - Using "**strong**" Benders cuts only
 - Strengthened nogood cuts.
 - Using "weak" cuts with subproblem relaxation in master.
 - Simple nogood cuts.
 - Relaxation: limit total "energy consumption" to energy available within span of time windows.
 - Energy = duration x resource consumption rate.
 - Using "strong" cuts with relaxation.
- Solve with mixed integer programming (MIP)
 - Using state-of-the-art commercial solver.
 - And best known MIP model.

Experimental Design

- Solvers
 - CPLEX 12.4.01 for master problem.
 - IBM CP Optimizer 12.4.01 for subproblem.
 - Extended filtering, DFS search
 - Default variable and value selection.
 - CPLEX 12.4.01 for pure MIP solution.
 - No comparison with pure CP solver
 - Previous experience shows it to be much slower than MIP.

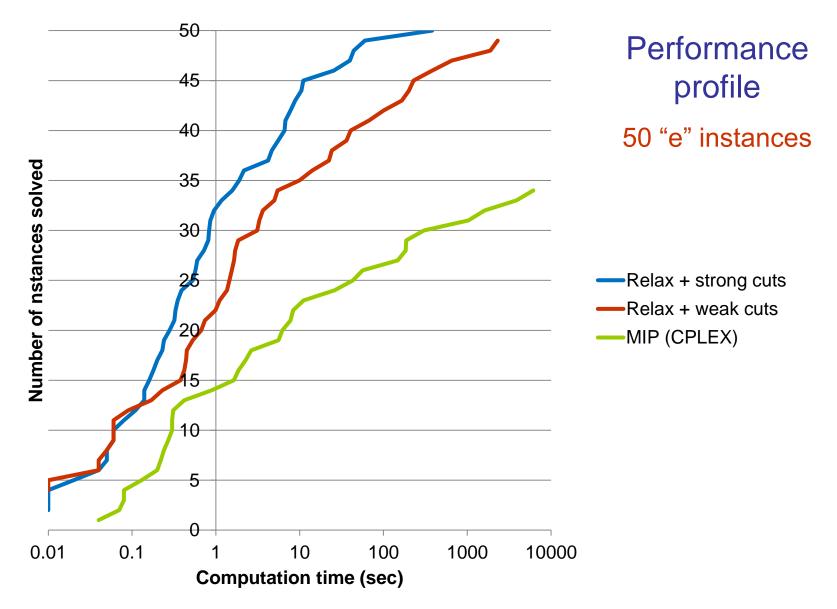
"c" instances, 2 resources


Si	Size MIP			D: strong	LBBD: relax + weak cuts		LBBD: relax		
		(C)	PLEX)	cu	ts only	+ w	eak cuts	+ str	ong cuts
m	n	Solved	l Sec	Solved	d Sec	Solve	d Sec	Solve	d Sec
2	10	5	0.1	5	0.2	5	0.1	5	0.1
	12	5	0.2	5	0.2	5	0.1	5	0.0
	14	5	0.1	5	0.4	5	0.1	5	0.0
	16	5	28	5	2.0	5	0.2	5	0.3
	18	5	388	5	19	5	0.5	5	0.7
	20	4	1899	5	120	5	2.0	5	8.0
	22	3	3844+	4	1852+	5	617	5	955
	24	2	4346+	1	6341+	4	1495+	4	1936+
	26	1	6362+	0	-	5	327	4	1642+
	28	2	4384+	0	-	5	1004	5	1133
	30	0	-	0	-	2	5391+	2	5761+
	32	1	5813+	0	-	2	4325+	2	4325+


"c" instances, 3 resources

Size	MIP (CPLEX)	LBBD: strong cuts only	LBBD: relax + weak cuts	LBBD: relax + strong cuts	
m n	Solved Sec	Solved Sec	Solved Sec	Solved Sec	
3 10	5 0.0	5 0.2	5 0.1	5 0.1	
12	5 0.1	5 0.4	5 0.5	5 0.1	
14	5 0.3	5 1.2	5 0.3	5 0.2	
16	5 13	5 5.6	5 2.7	5 0.8	
18	5 548	5 22	5 7.8	5 1.4	
20	4 1712+	5 30	5 1.2	5 0.5	
22	3 3674+	5 59	5 7.5	5 2.6	
24	2 4411+	4 1739+	5 15	5 5.7	
26	0 -	4 3510+	5 191	5 98	
28	2 5238+	2 6645+	5 270	5 209	
30	0 -	0 -	4 2354+	4 1856+	
32	0 -	0 -	2 4667+	2 4751+	

"c" instances, 4 resources


Si			/IP		D: strong		D: relax		D: relax
		(CP	LEX)	cu	ts only	+ we	ak cuts	+ stro	ng cuts
m	n	Solved	Sec	Solve	d Sec	Solved	Sec	Solved	Sec
4	10	5	0.0	5	0.1	5	0.0	5	0.0
	12	5	0.1	5	0.2	5	0.1	5	0.1
	14	5	0.3	5	0.6	5	1.0	5	0.3
	16	5	1.0	5	0.6	5	0.4	5	0.1
	18	5	36	5	4.0	5	1.7	5	0.4
	20	5	523	5	11	5	1.1	5	0.3
	22	5	811	5	75	5	8.2	5	1.1
	24	1 (6292+	5	122	5	23	5	9.1
	26	0	-	3	3369+	5	19	5	7.4
	28	1 :	5762+	3	4623+	5	36	5	11
	30	0	-	2	4841+	5	430	5	61
	32	0	-	0	-	5	680	5	478

"e" instances

S	Size		MIP	LBB	D: relax	LBBD: relax		
		(CI	PLEX)	+ W	eak cuts	+ strong cuts		
m	n	Solved	l Sec	Solved	d Sec	Solved	Sec	
2	10	5	0.1	5	0.1	5	0.1	
2	12	5	0.3	5	0.3	5	0.1	
3	15	5	0.9	5	0.4	5	0.2	
4	20	5	46	5	14	5	1.9	
5	25	5	73	5	1.0	5	0.7	
6	30	5	543	5	1.3	5	0.4	
7	35	2	5122+	5	36	5	2.7	
8	40	1	7246+	4	1527+	5	80	
9	45	0	-	5	1050	5	35	
10	50	1	6983+	5	45	5	5.4	

Observations

- LBBD is orders of magnitude faster than MIP.
 - Less dramatic for "c" instances with 2 resources.
 - Almost all complexity is in the subproblem.
- Relaxation is most important success factor.
- Strength of cut is important for larger instances.
 - Especially for "e" instances.

Further Analysis

- Number of Benders iterations
- Breakdown of computation time
 - Master problem vs. subproblem

Relaxation reduces number of iterations and therefore difficulty of master problem.

"c" instances, 2 resources

		Stro	Strong cuts only			Relax	+ weal	k cuts	Relax + strong cuts		
		Iters	Master	Subpr	I	ters M	aster	Subpr	Iters	Master	Subpr
\underline{m}	n		sec	sec			sec	sec		sec	sec
2	10	18	0.1	0.1		9.8	0.1	0.0	4.8	0.0	0.0
	12	13	0.1	0.1		5.0	0.0	0.0	3.4	0.0	0.0
	14	19	0.1	0.3		1.8	0.0	0.0	1.8	0.0	0.0
	16	41	0.5	1.5		2.0	0.0	0.2	2.0	0.0	0.3
	18	149	5.7	14		2.4	0.0	0.5	2.4	0.0	0.7
	20	107	3.5	117		3.6	0.0	2.0	2.8	0.0	8.0
	22	340+	70+	1782+		4.6	0.0	617	4.4	0.0	955
	24	327+	67+	6263+		2.0+	0.0+	1495+	1.8+	· 0.0+	1936+
	26	_	-	-		1.8	0.0	327	1.6+	· 0.0+	1642+
	28	-	-	-		2.0	0.0	1004	1.8	0.0	1133
	30	_	-	-		4.2+	0.0+	5391+	1.0+	· 1452+	4309+
	32	-	-	-		1.2+	0.0+	4325+	1.0+	0.0+	4325+

Relaxation reduces number of iterations and therefore difficulty of master problem.

"c" instances, 3 resources

		Stro	Strong cuts only			k + weal	k cuts	Relax + strong cuts		
		Iters	Master	Subpr	Iters N	Aaster	Subpr	Iters	Master	Subpr
\underline{m}	n		sec	sec		sec	sec		sec	sec
3	10	13	0.0	0.1	9.8	0.1	0.0	4.4	0.0	0.0
	12	23	0.2	0.2	14	0.4	0.0	6.4	0.1	0.1
	14	42	0.7	0.5	13	0.2	0.1	6.8	0.1	0.1
	16	86	4.0	1.5	40	2.5	0.2	17	0.5	0.3
	18	183	19	3.0	61	7.3	0.5	23	1.0	0.5
	20	226	23	6.4	21	0.8	0.4	8.2	0.1	0.4
	22	340	49	10	49	2.9	4.6	16	0.4	2.3
	24	1222+	1689+	50+	55	12	3.5	22	1.6	4.1
	26	1854+	2723+	786+	130	33	158	22	0.6	97
	28	2113+	3283+	3363+	15	0.2	270	8.0	0.1	209
	30	_	-	-	80+	9.2+	2344+	21+	1.1+	1855+
	32	-	-	-	143+	64+	4602+	23+	1.7+	4750+

Relaxation reduces number of iterations and therefore difficulty of master problem.

"c" instances, 4 resources

	Stro	ong cuts	only	Relay	k + weal	cuts	Relax + strong cuts		
	Iters	Master	Subpr	Iters N	Aaster	Subpr	Iters	Master	Subpr
m n		sec	sec		sec	sec		sec	sec
4 10	6.8	0.0	0.1	4.6	0.0	0.0	3.0	0.0	0.0
12	12	0.1	0.1	6.2	0.1	0.0	4.4	0.0	0.0
14	26	0.3	0.3	22	0.9	0.1	9.0	0.2	0.1
16	27	0.2	0.3	12	0.3	0.1	5.6	0.1	0.1
18	74	3.0	1.0	32	1.5	0.1	15	0.3	0.2
20	130	9.0	2.3	26	1.0	0.2	11	0.1	0.2
22	334	69	6.6	51	7.6	0.6	15	0.7	0.5
24	407	104	18	96	20	3.1	37	3.4	5.6
26	1351+	3315+	54+	83	11	7.5	32	2.0	5.4
28	2042+	4091+	532+	27	1.7	34	12	0.5	11
30	1408+	4665+	175+	117	395	35	41	41	20
32	-	-	-	60	6.3	673	14	0.4	478

Severe imbalance of master and subproblem time, resulting in poorer performance for LBBD.

"c" instances, 2 resources

		Strong cuts only			Relax	+ weal	k cuts	Relax + strong cuts		
		Iters	Master	Subpr	Iters Ma	aster	Subpr	Iters	Master	Subpr
\overline{m}	n		sec	sec		sec	sec		sec	sec
2	10	18	0.1	0.1	9.8	0.1	0.0	4.8	0.0	0.0
	12	13	0.1	0.1	5.0	0.0	0.0	3.4	0.0	0.0
	14	19	0.1	0.3	1.8	0.0	0.0	1.8	0.0	0.0
	16	41	0.5	1.5	2.0	0.0	0.2	2.0	0.0	0.3
	18	149	5.7	14	2.4	0.0	0.5	2.4	0.0	0.7
	20	107	3.5	117	3.6	0.0	2.0	2.8	0.0	8.0
	22	340+	70+	1782+	4.6	0.0	617	4.4	0.0	955
	24	327+	67+	6263+	2.0+	0.0+	1495+	1.8+	0.0+	1936+
	26	-	-	-	1.8	0.0	327	1.6+	0.0+	1642+
	28	-	-	-	2.0	0.0	1004	1.8	0.0	1133
	30	-	-	-	4.2+	0.0+	5391+	1.0+	1452+	4309+
	32	-	-	-	1.2+	0.0+	4325+	1.0+	0.0+	4325+

Subproblem blows up when more than 10 tasks per resource on average

"c" instances, 2 resources

	Stro	Strong cuts only			x + weal	k cuts	Relax + strong cuts			
	Iters	Master	Subpr	Iters N	A aster	Subpr	Iters	Master	Subpr	
m n		sec	sec		sec	sec		sec	sec	
2 10	18	0.1	0.1	9.8	0.1	0.0	4.8	0.0	0.0	-
12	13	0.1	0.1	5.0	0.0	0.0	3.4	0.0	0.0	
14	19	0.1	0.3	1.8	0.0	0.0	1.8	0.0	0.0	
16	41	0.5	1.5	2.0	0.0	0.2	2.0	0.0	0.3	
18	149	5.7	14	2.4	0.0	0.5	2.4	0.0	0.7	
20	107	3.5	117	3.6	0.0	2.0	2.8	0.0	8.0	
22	340+	70+	1782+	4.6	0.0	617	4.4	0.0	955	
24	327+	67+	6263+	2.0+	0.0+	1495+	1.8+	0.0+	1936+	
26	-	-	-	1.8	0.0	327	1.6+	0.0+	1642+	
28	-	-	-	2.0	0.0	1004	1.8	0.0	1133	
30	-	-	-	4.2+	0.0+	5391+	1.0+	1452+	4309+	
32	-	-	-	1.2+	0.0+	4325+	1.0+	0.0+	4325+	

Subproblem blows up when more than 10 tasks per resource on average

"c" instances, 3 resources

		Strong cuts only			Rela	ax + weak	c cuts	Relax + strong cuts			
		Iters	Master	Subpr	Iters	Master	Subpr	Iters	Master	Subpr	
\underline{m}	n		sec	sec		sec	sec		sec	sec	_
3	10	13	0.0	0.1	9.8	3 0.1	0.0	4.4	0.0	0.0	-
	12	23	0.2	0.2	14	0.4	0.0	6.4	0.1	0.1	
	14	42	0.7	0.5	13	0.2	0.1	6.8	0.1	0.1	
	16	86	4.0	1.5	40	2.5	0.2	17	0.5	0.3	
	18	183	19	3.0	61	7.3	0.5	23	1.0	0.5	
	20	226	23	6.4	21	0.8	0.4	8.2	0.1	0.4	
	22	340	49	10	49	2.9	4.6	16	0.4	2.3	
	24	1222+	1689+	50+	55	12	3.5	22	1.6	4.1	
	26	1854+	2723+	786+	130	33	158	22	0.6	97	
	28	2113+	3283+	3363+	15	0.2	270	8.0	0.1	209	
	30	_	-	-	80+	9.2+	2344+	21+	1.1+	1855+	
	32	-	-	-	143+	64+	4602+	23+	1.7+	4750+	_

Balance between master and subproblem results in superior performance

"e" instances

		Rel	ax + weal	k cuts	Rela	x + stron	ig cuts
		Iters	Master	Subpr	Iters I	Master	Subpr
m	n		sec	sec		sec	sec
2	10	9.4	0.1	0.0	5.2	0.0	0.0
2	12	13	0.3	0.0	4.4	0.0	0.0
3	15	14	0.4	0.0	5.6	0.1	0.1
4	20	55	14	0.0	16	1.7	0.3
5	25	19	0.4	0.0	8.6	0.1	0.6
5	30	26	1.1	0.0	8.8	0.2	0.2
7	35	76	34	0.0	19	2.0	0.7
8	40	107+	1525+	0.0+	31	78	2.1
9	45	132	1048	0.0	39	33	2.2
10	50	39	43	0.0	18	3.6	1.7

Mild imbalance results in somewhat worse performance

"e" instances

		Rel	ax + weal	cuts	Rela	ax + stron	ig cuts
		Iters	Master	Subpr	Iters	Master	Subpr
m	n		sec	sec		sec	sec
2	10	9.4	0.1	0.0	5.2	0.0	0.0
2	12	13	0.3	0.0	4.4	0.0	0.0
3	15	14	0.4	0.0	5.6	0.1	0.1
4	20	55	14	0.0	16	1.7	0.3
5	25	19	0.4	0.0	8.6	0.1	0.6
5	30	26	1.1	0.0	8.8	0.2	0.2
7	35	76	34	0.0	19	2.0	0.7
8	40	107+	1525+	0.0+	31	78	2.1
9	45	132	1048	0.0	39	33	2.2
10	50	39	43	0.0	18	3.6	1.7

- Superiority to MIP, CP
 - LBBD remains orders of magnitude faster than MIP.
 - For this problem class.
 - Despite huge improvements in MIP.
 - Even greater advantage over CP.

- Superiority to MIP, CP
 - LBBD remains orders of magnitude faster than MIP.
 - For this problem class.
 - Despite huge improvements in MIP.
 - Even greater advantage over CP.
- Importance of master/subproblem balance
 - LBBD is most effective when master and subproblem share substantial portions of combinatorial complexity.
 - ...and consume roughly equal time.

- Superiority to MIP, CP
 - LBBD remains orders of magnitude faster than MIP.
 - For this problem class.
 - Despite huge improvements in MIP.
 - Even greater advantage over CP.
- Importance of master/subproblem balance
 - LBBD is most effective when master and subproblem share substantial portions of combinatorial complexity.
 - ...and consume roughly equal time.
- Failure in subproblem
 - LBBD most often fails when subproblem blows up due to assignment of too many tasks to a resource.

- Subproblem relaxation
 - Most important success factor for LBBD is inclusion of a subproblem relaxation in the master.

- Subproblem relaxation
 - Most important success factor for LBBD is inclusion of a subproblem relaxation in the master.
- Strong Benders cuts
 - Stronger Benders cuts can help significantly when master and subproblem are **properly balanced** in difficulty.

- Tighter subproblem relaxations
 - Design tighter subproblem relaxations for the master
 - ...using subproblem variables, whose values are discarded after master is solved

- Tighter subproblem relaxations
 - Design tighter subproblem relaxations for the master
 - ...using subproblem variables, whose values are discarded after master is solved
- Failure-directed search in subproblem
 - Recently introduced in ILOG CP optimizer.

- Tighter subproblem relaxations
 - Design tighter subproblem relaxations for the master
 - using subproblem variables, whose values are discarded after master is solved
- Failure-directed search in subproblem
 - Recently introduced in ILOG CP optimizer.
- Subproblem decomposition
 - Solve subproblem with LBBD when it grows too large.

- Tighter subproblem relaxations
 - Design tighter subproblem relaxations for the master
 - using subproblem variables, whose values are discarded after master is solved
- Failure-directed search in subproblem
 - Recently introduced in ILOG CP optimizer.
- Subproblem decomposition
 - Solve subproblem with LBBD when it grows too large.
- More dual information
 - Use subproblem solver that reveals proof of optimality, perhaps resulting in stronger Benders cuts.