
Planning & Scheduling by

Logic-based Benders Decomposition:

A Computational Analysis

André Ciré
University of Toronto

Elvin Çoban
Özyeğin University

John Hooker
Carnegie Mellon University

COPLAS 2015

Objective

• Identify factors that explain the efficiency of

Logic-based Benders decomposition (LBBD) for

planning and scheduling.

– LBBD has brought orders-of-magnitude improvement

over state of the art in several problem domains.

– Factors that explain this success have not been studied

systematically.

2

Test Problem

• As a test case, we use a simple resource

assignment and scheduling problem.

– Assign tasks to resources.

– Schedule tasks assigned to each resource.

– Tasks may run concurrently, subject to limit on total rate of

resource consumption (cumulative scheduling).

3

What Is Logic-Based Benders?

• Logic-based Benders decomposition is a

generalization of classical Benders decomposition.

– Subproblem is an arbitrary optimization problem.

– need not have linear or inequality model.

– JH (1995), JH and Yan (1995), JH and Ottosson (2003).

– Solves a problem of the form

4

min (,)

(,)

f x y

x y S

x D





Logic-Based Benders

• Decompose problem into master and subproblem.

– Subproblem is obtained by fixing x to solution value in

master problem.

min

() (Benders cuts)k

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

5

Logic-Based Benders

• Iterate until master problem value equals best

subproblem value so far.

– This yields optimal solution.

min

() (Benders cuts)k

z

z g x

x D





min (,)

(,)

f x y

x y S

Minimize cost z subject to

bounds given by Benders

cuts, obtained from values

of x attempted in previous

iterations k.

Obtain proof of optimality

(solution of inference dual).

Use same proof to deduce

cost bounds for other

assignments, yielding

Benders cut.

Trial value x

that solves

master

Benders cut

z  gk(x)

Master problem Subproblem

x

6

Logic-Based Benders

• Fundamental concept: inference duality

min ()f x

x S

max

()
P

v

x S f x v

P

  

P
Find best feasible

solution by

searching over

values of x.
Find a proof of optimal value v*

by searching over proofs P.

Primal problem:

optimization

Dual problem:

Inference

7

Logic-Based Benders

• Popular optimization duals are special cases of

the inference dual.

– Result from different choices of inference method.

– For example....

– Linear programming dual (gives classical Benders cuts)

– Lagrangean dual

– Surrogate dual

– Subadditive dual

8

• Substantial speedup for many applications.

− Several orders of magnitude relative to state of the art.

Logic-Based Benders

9

• Substantial speedup for many applications.

− Several orders of magnitude relative to state of the art.

• Some applications:

– Circuit verification

– Chemical batch processing (BASF, etc.)

– Steel production scheduling

– Auto assembly line management (Peugeot-Citroën)

– Automated guided vehicles in flexible manufacturing

– Allocation and scheduling of multicore processors

(IBM, Toshiba, Sony)

– Facility location-allocation

– Stochastic facility location and fleet management

– Capacity and distance-constrained plant location

Logic-Based Benders

10

• Some applications…

– Transportation network design

– Traffic diversion around blocked routes

– Worker assignment in a queuing environment

– Single- and multiple-machine allocation and scheduling

– Permutation flow shop scheduling with time lags

– Resource-constrained scheduling

– Wireless local area network design

– Service restoration in a network

– Optimal control of dynamical systems

– Sports scheduling

Logic-Based Benders

11

• Assign tasks in master, schedule in subproblem.

– Combine mixed integer programming and constraint

programming

Assign tasks to resources

to minimize cost.

Solve by mixed integer

programming.

Schedule jobs on each

machine, subject to time

windows.

Constraint programming

obtains proof of optimality

(dual solution).

Use same proof to deduce

cost for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cut

z  gk(x)

Master problem Subproblem

x

12

Application to Planning & Scheduling

Application to Planning & Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

13

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

Application to Planning & Scheduling

• Objective function

– Cost is based on task assignment only.

– So cost appears only in the master problem.

– Scheduling subproblem is a feasibility problem.

• Benders cuts

– They have the form

– where Ji is a set of tasks that create infeasibility when

assigned to resource i.

14

cost , 1 if task assigned to resource ij ij ij

ij

c x x j i 

(1) 1, all
i

ij

j J

x i


 

• Resulting Benders decomposition:

Schedule jobs on each

resource.

Constraint programming

may obtain proof of

infeasibility on some resources

(dual solution).

Use same proof to deduce

infeasibility for some other

assignments, yielding

Benders cut.

Trial

assignment

Benders cuts

for infeasible

resources i

Master problem Subproblem

x

15

min

Benders cuts

ij ij

ij

z

z c x

(1) 1,
i

ij

j J

x


 

Application to Planning & Scheduling

Application to Planning & Scheduling

• Problem: We don’t have access to infeasibility

proof in CP solver.

– So begin with simple nogood cut

where Ji contains all tasks assigned resource i.

– Then strengthen cut by heuristically removing tasks

from Ji until schedule on resource i becomes feasible.

16

(1) 1, all
i

ij

j J

x i


 

Problem Instances

• Used in several previous studies.

– Randomly generated near phase transition.

– Schedule n tasks on m resources.

– 5 instances for each (m,n) pair.

17

Problem Instances

• “c” instances

– 10-32 tasks on 2-4 resources.

– Designed to be hard for LBBD.

– Resources differ by factor of m in processing speed.

– Results in many tasks assigned to fastest resource, creating a

computational bottleneck.

18

Problem Instances

• “c” instances

– 10-32 tasks on 2-4 resources.

– Designed to be hard for LBBD.

– Resources differ by factor of m in processing speed.

– Results in many tasks assigned to fastest resource, creating a

computational bottleneck.

• “e” instances

– 10-50 tasks on 2-10 resources.

– Perhaps more realistic.

– Resources differ by factor of 2 in processing speed.

19

Experimental Design

• Solve with LBBD

– Using “strong” Benders cuts only

– Strengthened nogood cuts.

– Using “weak” cuts with subproblem relaxation in master.

– Simple nogood cuts.

– Relaxation: limit total “energy consumption” to energy

available within span of time windows.

– Energy = duration x resource consumption rate.

– Using “strong” cuts with relaxation.

• Solve with mixed integer programming (MIP)

– Using state-of-the-art commercial solver.

– And best known MIP model.

20

Experimental Design

• Solvers

– CPLEX 12.4.01 for master problem.

– IBM CP Optimizer 12.4.01 for subproblem.

– Extended filtering, DFS search

– Default variable and value selection.

– CPLEX 12.4.01 for pure MIP solution.

– No comparison with pure CP solver

– Previous experience shows it to be much slower than MIP.

21

“c” instances, 2 resources

22

“c” instances, 3 resources

23

“c” instances, 4 resources

24

0

20

40

60

80

100

120

140

160

180

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

in
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

Strong cuts only

MILP (CPLEX)

Performance

profile

All 180 “c” instances

25

0

20

40

60

80

100

120

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

in
s
ta

n
c
e
s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

Strong cuts only

MIP (CPLEX)

Performance

profile

120 “c” instances

with 3 or 4 resources

26

“e” instances

27

0

5

10

15

20

25

30

35

40

45

50

0.01 0.1 1 10 100 1000 10000

N
u

m
b

e
r

o
f

n
s

ta
n

c
e

s
 s

o
lv

e
d

Computation time (sec)

Relax + strong cuts

Relax + weak cuts

MIP (CPLEX)

Performance

profile

50 “e” instances

28

Observations

• LBBD is orders of magnitude faster than MIP.

– Less dramatic for “c” instances with 2 resources.

– Almost all complexity is in the subproblem.

• Relaxation is most important success factor.

• Strength of cut is important for larger instances.

– Especially for “e” instances.

29

Further Analysis

• Number of Benders iterations

• Breakdown of computation time

– Master problem vs. subproblem

30

“c” instances, 2 resources

31

Relaxation reduces

number of iterations

and therefore difficulty

of master problem.

“c” instances, 3 resources

32

Relaxation reduces

number of iterations

and therefore difficulty

of master problem.

“c” instances, 4 resources

33

Relaxation reduces

number of iterations

and therefore difficulty

of master problem.

“c” instances, 2 resources

34

Severe imbalance of

master and subproblem

time, resulting in poorer

performance for LBBD.

“c” instances, 2 resources

35

Subproblem blows up

when more than

10 tasks per resource

on average

“c” instances, 3 resources

36

Subproblem blows up

when more than

10 tasks per resource

on average

“e” instances

37

Balance between

master and subproblem

results in superior

performance

“e” instances

38

Mild imbalance results

in somewhat worse

performance

Conclusions

• Superiority to MIP, CP

– LBBD remains orders of magnitude faster than MIP.

– For this problem class.

– Despite huge improvements in MIP.

– Even greater advantage over CP.

39

Conclusions

• Superiority to MIP, CP

– LBBD remains orders of magnitude faster than MIP.

– For this problem class.

– Despite huge improvements in MIP.

– Even greater advantage over CP.

• Importance of master/subproblem balance

– LBBD is most effective when master and subproblem

share substantial portions of combinatorial complexity.

– …and consume roughly equal time.

40

Conclusions

• Superiority to MIP, CP

– LBBD remains orders of magnitude faster than MIP.

– For this problem class.

– Despite huge improvements in MIP.

– Even greater advantage over CP.

• Importance of master/subproblem balance

– LBBD is most effective when master and subproblem

share substantial portions of combinatorial complexity.

– …and consume roughly equal time.

• Failure in subproblem

– LBBD most often fails when subproblem blows up

due to assignment of too many tasks to a resource.

41

Conclusions

• Subproblem relaxation

– Most important success factor for LBBD is inclusion of

a subproblem relaxation in the master.

42

Conclusions

• Subproblem relaxation

– Most important success factor for LBBD is inclusion of

a subproblem relaxation in the master.

• Strong Benders cuts

– Stronger Benders cuts can help significantly when master

and subproblem are properly balanced in difficulty.

43

Suggested Solution Strategies

• Tighter subproblem relaxations

– Design tighter subproblem relaxations for the master

– …using subproblem variables, whose values are

discarded after master is solved

44

Suggested Solution Strategies

• Tighter subproblem relaxations

– Design tighter subproblem relaxations for the master

– …using subproblem variables, whose values are

discarded after master is solved

• Failure-directed search in subproblem

– Recently introduced in ILOG CP optimizer.

45

Suggested Solution Strategies

• Tighter subproblem relaxations

– Design tighter subproblem relaxations for the master

– …using subproblem variables, whose values are

discarded after master is solved

• Failure-directed search in subproblem

– Recently introduced in ILOG CP optimizer.

• Subproblem decomposition

– Solve subproblem with LBBD when it grows too large.

46

Suggested Solution Strategies

• Tighter subproblem relaxations

– Design tighter subproblem relaxations for the master

– …using subproblem variables, whose values are

discarded after master is solved

• Failure-directed search in subproblem

– Recently introduced in ILOG CP optimizer.

• Subproblem decomposition

– Solve subproblem with LBBD when it grows too large.

• More dual information

– Use subproblem solver that reveals proof of optimality,

perhaps resulting in stronger Benders cuts.

47

