Planning & Scheduling by
Logic-based Benders Decomposition:
A Computational Analysis

André Ciré
University of Toronto

Elvin Coban
Ozyedin University

John Hooker
Carnegie Mellon University

COPLAS 2015

Objective

|dentify factors that explain the efficiency of
Logic-based Benders decomposition (LBBD) for
planning and scheduling.

— LBBD has brought orders-of-magnitude improvement
over state of the art in several problem domains.

— Factors that explain this success have not been studied
systematically.

Test Problem

« As atest case, we use a simple resource
assignment and scheduling problem.

— Assign tasks to resources.

— Schedule tasks assigned to each resource.

— Tasks may run concurrently, subject to limit on total rate of
resource consumption (cumulative scheduling).

What Is Logic-Based Benders?

 Logic-based Benders decompositionis a
generalization of classical Benders decomposition.

— Subproblem is an arbitrary optimization problem.
— need not have linear or inequality model.
— JH (1995), JH and Yan (1995), JH and Ottosson (2003).

— Solves a problem of the form
minf(x,y)

(x,y)eS
XeD

Logic-Based Benders

 Decompose problem into master and subproblem.
— Subproblem is obtained by fixing x to solution value in

master problem.
Master problem

min z

z>0.(x) (Benders cuts Trial value x
9 (x) () that solves
XeD master

Minimize cost z subject to

>

bounds given by Benders <

cuts, obtained from values
: : Z > gy (x)

of x attempted in previous

iterations k.

Benders cut

Subproblem

minf(X,y)
(X,y)eS

Obtain proof of optimality
(solution of inference dual).
Use same proof to deduce
cost bounds for other
assignments, yielding
Benders cut. 5

Logic-Based Benders

 Iterate until master problem value equals best

subproblem value so far.
— This yields optimal solution.

Master problem

min z

>

z>g,(x) (Benderscuts) ~ 'Malvaluex
that solves

xeD master
Minimize cost z subject to <
bounds given by Benders

) Benders cut
cuts, obtained from values 2> gu(x)
of x attempted in previous = Ok

iterations k.

Subproblem

minf(X,y)
(X,y)eS

Obtain proof of optimality
(solution of inference dual).
Use same proof to deduce
cost bounds for other
assignments, yielding
Benders cut. 6

Logic-Based Benders

 Fundamental concept: inference duality

Primal problem:
optimization

min f (X)
XeS

Find best feasible
solution by
searching over
values of x.

Dual problem:
Inference

max Vv

P
XeS = f(x)>v

Pep

Find a proof of optimal value v*
by searching over proofs P.

Logic-Based Benders

« Popular optimization duals are special cases of
the inference dual.
— Result from different choices of inference method.
— For example....
— Linear programming dual (gives classical Benders cuts)
— Lagrangean dual

— Surrogate dual
— Subadditive dual

Logic-Based Benders

« Substantial speedup for many applications.
— Several orders of magnitude relative to state of the art.

Logic-Based Benders

« Substantial speedup for many applications.

— Several orders of magnitude relative to state of the art.

« Some applications:
— Circuit verification
— Chemical batch processing (BASF, etc.)
— Steel production scheduling
— Auto assembly line management (Peugeot-Citroén)
— Automated guided vehicles in flexible manufacturing

— Allocation and scheduling of multicore processors
(IBM, Toshiba, Sony)

— Facility location-allocation
— Stochastic facility location and fleet management
— Capacity and distance-constrained plant location

10

Logic-Based Benders

« Some applications...

Transportation network design

Traffic diversion around blocked routes

Worker assignment in a queuing environment

Single- and multiple-machine allocation and scheduling
Permutation flow shop scheduling with time lags
Resource-constrained scheduling

Wireless local area network design

Service restoration in a network

Optimal control of dynamical systems

Sports scheduling

11

Application to Planning & Scheduling

Assign tasks in master, schedule in subproblem.

— Combine mixed integer programming and constraint

programming

Master problem

Assign tasks to resources

to minimize cost. Trial
assignment
Solve by mixed integer X

programming.
<€

Benders cut
Z > gy(x)

Subproblem

Schedule jobs on each
machine, subject to time
windows.

Constraint programming
obtains proof of optimality
(dual solution).

Use same proof to deduce
cost for some other
assignments, yielding

Benders cut. 12

Application to Planning & Scheduling

* ODbjective function
— Cost is based on task assignment only.

cost =Zcijxij, X; =1 if task] assigned to resource |
i

— So cost appears only in the master problem.
— Scheduling subproblem is a feasibility problem.

13

Application to Planning & Scheduling

* ODbjective function
— Cost is based on task assignment only.

cost =Zc.jxij, X; =1 if task] assigned to resource |
i

— So cost appears only in the master problem.
— Scheduling subproblem is a feasibility problem.

* Benders cuts
— They have the form Z(l— X;)>1 alli
j€d;
— where J; is a set of tasks that create infeasibility when
assigned to resource i.

14

Application to Planning & Scheduling

« Resulting Benders decomposition:

Master problem

min z
7 = Zcijxij
i

Benders cuts

Trial
assignment
X

<€

Benders cuts

Z (1_ Xij) >1,
I<% for infeasible
resources i

Subproblem

Schedule jobs on each
resource.

Constraint programming
may obtain proof of
infeasibility on some resources
(dual solution).

Use same proof to deduce
infeasibility for some other
assignments, yielding
Benders cut. 15

Application to Planning & Scheduling

* Problem: We don’t have access to infeasibility
proof in CP solver.

— So begin with simple nogood cut Z(l— X;)>1 alli

jed;
where J; contains all tasks assigned resource i.

— Then strengthen cut by heuristically removing tasks
from J; until schedule on resource i becomes feasible.

16

Problem Instances

« Used in several previous studies.

— Randomly generated near phase transition.

— Schedule n tasks on m resources.
— 5 instances for each (m,n) pair.

17

Problem Instances

“c” instances

— 10-32 tasks on 2-4 resources.

— Designed to be hard for LBBD.
— Resources differ by factor of m in processing speed.

— Results in many tasks assigned to fastest resource, creating a
computational bottleneck.

18

Problem Instances

“c” instances

— 10-32 tasks on 2-4 resources.

— Designed to be hard for LBBD.
— Resources differ by factor of m in processing speed.

— Results in many tasks assigned to fastest resource, creating a
computational bottleneck.

“e” instances
— 10-50 tasks on 2-10 resources.
— Perhaps more realistic.

— Resources differ by factor of 2 in processing speed.

19

Experimental Design

 Solve with LBBD

— Using “strong” Benders cuts only
— Strengthened nogood cuts.

— Using “weak” cuts with subproblem relaxation in master.

— Simple nogood cuts.

— Relaxation: limit total “energy consumption” to energy
available within span of time windows.

— Energy = duration x resource consumption rate.
— Using “strong” cuts with relaxation.

« Solve with mixed integer programming (MIP)

— Using state-of-the-art commercial solver.
— And best known MIP model.

20

Experimental Design

Solvers
— CPLEX 12.4.01 for master problem.

— IBM CP Optimizer 12.4.01 for subproblem.
— Extended filtering, DFS search
— Default variable and value selection.

— CPLEX 12.4.01 for pure MIP solution.
— No comparison with pure CP solver

— Previous experience shows it to be much slower than MIP.,

21

“c” instances, 2 resources

Size MIP LBBD: strong | LBBD: relax | LBBD: relax
(CPLEX) cuts only + weak cuts + strong cuts
m n |[Solved Sec [Solved Sec |Solved Sec |Solved Sec
2 10 5 0.1 5 0.2 5 0.1 5 0.1
12 5 0.2 5 0.2 5 0.1 5 0.0
14 5 0.1 5 0.4 5 0.1 5 0.0
16 5 28 5 2.0 5 0.2 5 0.3
18 5 388 5 19 5 0.5 5 0.7
20 4 1899 5 120 5 2.0 S 8.0

22 3 3844+ 4 1852+ 5 617 5 955
24 2 4346+ 1 6341+ 4 1495+ 4 1936+
26 1 6362+ 0 - 5 327 4 1642+

28 2 4384+ 0 - 5 1004 5 1133
30 0 - 0 - 2 5391+ 2 5761+
32 1 5813+ 0 - 2 4325+ 2 4325+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

22

“c” instances, 3 resources

Size MIP LBBD: strong | LBBD: relax | LBBD: relax
(CPLEX) cuts only + weak cuts + strong cuts
m n |[Solved Sec |Solved Sec |Solved Sec |Solved Sec
3 10 5 0.0 5 0.2 5 0.1 5 0.1
12 5 0.1 5 0.4 5 0.5 5 0.1
14 5 0.3 5 1.2 5 0.3 5 0.2
16 5 13 5 3.6 5 2.7 5 0.8
18 5 548 5 22 5 7.8 5 1.4
20 4 1712+ 5 30 5 1.2 5 0.5
22 3 3674+ 5 39 5 7.5 5 2.6
24 2 4411+ 4 1739+ 5 135 5 5.7

26 0 - 4 3510+ 5 191 5 98

28 2 5238+ 2 6645+ 5 270 S5 209
30 0 - 0 - 4 2354+ 4 1856+
32 0 - 0 - 2 4667+ 2 4751+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

23

“c” instances, 4 resources

Size MIP LBBD: strong | LBBD: relax | LBBD: relax
(CPLEX) cuts only + weak cuts + strong cuts
m n |[Solved Sec [Solved Sec |Solved Sec |Solved Sec
4 10 5 0.0 5 0.1 5 0.0 5 0.0
12 5 0.1 5 0.2 5 0.1 5 0.1
14 5 0.3 5 0.6 5 1.0 5 0.3
16 S 1.0 S 0.6 S 0.4 5 0.1
18 5 36 5 4.0 5 1.7 5 0.4
20 5 523 5 11 5 1.1 5 0.3
22 5 811 5 75 5 8.2 5 1.1
24 1 6292+ 5 122 5 23 5 9.1
26 0 - 3 3369+ 5 19 5 7.4
28 1 5762+ 3 4623+ 5 36 5 11
30 0 - 2 4841+ 5 430 5 61
32 0 - 0 - 5 680 5 478
+ Computation terminated after 7200 sec for instances not

solved to optimality.

24

=
(0]
D

Performance

[HE
(e»]

profile

|..\
N
(@p)

All 180 “c” instances

[HEY
N
D

e
«»)
@b)

—Relax + strong cuts
-—=Relax + weak cuts

Q

Number of instances solved

/ -==Strong cuts only
=MILP (CPLEX)

1 10 100 1000 10000
Computation time (sec)

25

|

Performance
00 profile

[

120 “c” instances
with 3 or 4 resources

/ / —Relax + strong cuts
/ —Relax + weak cuts
Strong cuts only

—MIP (CPLEX)

@
(o}

Number of instances solved
(@))
D D

N
D

0.01 0.1 1 10 100 1000 10000
Computation time (sec)

a)
\Y)

26

“@” instances

Size MIP LBBD: relax LBBD: relax
(CPLEX) + weak cuts + strong cuts
m n |[Solved Sec [Solved Sec |Solved Sec
2 10 5 0.1 5 0.1 5 0.1
2 12 5 0.3 5 0.3 5 0.1
3 15 5 0.9 5 0.4 5 0.2
4 20 5 46 5 14 5 1.9
5 25 5 73 5 1.0 5 0.7
6 30 5 543 5 1.3 5 0.4
7 35 2 5122+ 5 36 5 2.7
8 40 1 7246+ 4 1527+ 5 80
9 45 0 - 5 1050 5 35
10 50 1 6983+ 5 45 5 54

+ Computation terminated after 7200 sec for instances not

solved to optimality.

Number of nstances solved
NG

10 100
Computation time (sec)

1000 10000

Performance
profile

50 “e” instances

-—=Relax + strong cuts
—Relax + weak cuts
===MIP (CPLEX)

28

Observations

« LBBD is orders of magnitude faster than MIP.

(1Pt

— Less dramatic for “c” instances with 2 resources.
— Almost all complexity is in the subproblem.

« Relaxation is most important success factor.

« Strength of cut is important for larger instances.

111 7

— Especially for “e” instances.

29

Further Analysis

« Number of Benders iterations

« Breakdown of computation time
— Master problem vs. subproblem

30

Relaxation reduces

number of iterations
and therefore difficulty

of master problem.

Strong cuts only

Relax + weak cuts

“c” instances, 2 resources

Relax + strong cuts

Iters Master Subpr | Iters Master Subpr| Iters Master Subpr
m n sec sec sec sec sec sec
2 10|18 o1 o1 o8 o1 oo[[48 | 00 00
12 13 0.1 0.1 5.0 10.0 0.0]] 34 0.0 0.0
14 19 0.1 0.3 1.8 1 0.0 0.0 1.8 0.0 0.0
16 41 0.5 1.5 2.0 100 0211 2.0 0.0 0.3
1811149 57 14 24 100 0.5 24 0.0 0.7
20 [| 107 3.5 117 3.6 | 0.0 2011 2.8 0.0 8.0
221 1340+ 70+ 1782+ 46 100 o617 4.4 0.0 955
24 | 1327+ 67+ 6263+ 2.0+ 0.0+ 1495+ 1.8+ 0.0+ 1936+
26 - - - 1.8 100 327 1.6+ 0.0+ 1642+
28 - - - 20 100 1004 1.8 0.0 1133
30 - - - 4.2+1 0.0+ 5391+ 1.0+ 1452+ 4309+
32 - - - 1.2+ 0.0+ 4325+ 1.0+ 0.0+ 4325+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

31

Relaxation reduces
number of iterations
and therefore difficulty
of master problem.

“c” instances, 3 resources

Strong cuts only Relax + weak cuts Relax + strong cuts
Iters Master Subpr | Iters Master Subpr| Iters Master Subpr

m n sec sec sec sec sec sec
310131 00 o1[98] o1 00 44| 00 0.0
12 23 0.2 0.2 14 0.4 00| 64 0.1 0.1
14 42 0.7 0.5 13 0.2 0.1 6.8 0.1 0.1
16 86 4.0 1.5 40 2.5 0.2 1 17 0.5 0.3
18 || 183 19 3.0 61 7.3 0.5 || 23 1.0 0.5
20 [} 226 23 6.4 21 0.8 0.4 8.2 0.1 0.4
22 [340 49 10 49 2.9 4.6 (] 16 0.4 2.3
24 [11222+ 1689+ 50+ 55 12 3.5 22 1.6 4.1
26 [|1854+) 2723+ 786+ []130 33 158 22 0.6 97
28 [|2113+4] 3283+ 3363+ 15 02 270 8.0 0.1 209
30 - - - 80+ | 9.2+ 2344+ || 21+ 1.1+ 1855+
32 - - - 143+ | 64+ 4602+ || 23+ 1.7+ 4750+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

32

Relaxation reduces
number of iterations
and therefore difficulty
of master problem.

“c” instances, 4 resources

Strong cuts only Relax + weak cuts Relax + strong cuts
Iters Master Subpr | Iters Master Subpr| Iters Master Subpr
m n sec sec sec sec sec sec
4 10[[68 00 o1[[46] 00 00[[30] 00 0.0
12 12 0.1 0.1 6.2] 0.1 0.0|] 44 0.0 0.0
14 26 0.3 0.3 22 0.9 0.1 9.0 0.2 0.1
16 27 0.2 0.3 12 0.3 0.1 5.6 0.1 0.1
18 74 3.0 1.0 32 1.5 0.1} 15 0.3 0.2
20] 130 9.0 2.3 26 1.0 0.2 (] 11 0.1 0.2
22] 334 69 6.6 51 7.6 0.6 |} 15 0.7 0.5
24 [407 | 104 18 96 20 3.11| 37 3.4 5.6
26 [|1351+] 3315+ 54+ 83 11 7.5 |] 32 2.0 5.4
28 [12042+] 4091+ 532+ 27 1.7 34 12 0.5 11
30 | 11408+) 4665+ 175+ | 117 |395 35 41 41 20
32 - - - 60 6.3 673 14 0.4 478

+ Computation terminated after 7200 sec for instances not

solved to optimality.

33

Severe imbalance of

master and subproblem

time, resulting in poorer

performance for LBBD.

Strong cuts only

Relax + weak cuts

“c” instances, 2 resources

Relax + strong cuts

Iters Master Subpr | Iters Master Subpr| Iters Master Subpr
m n sec sec sec sec sec sec
2 10 18 0.1 0.1 9.8 0.1 0.0 4.8 0.0 0.0
12 13 0.1 0.1 5.0 0.0 00| 34 0.0 0.0
14 19 0.1 0.3 1.8 0.0 0.0 1.8 0.0 0.0
16 41 0.5 1.5 20 0.0 021 2.0 0.0 0.3
18| 149 57 14 24 (0.0 0.5 24 0.0 0.7
201 107 3.5 117 3.6 10.0 201 2.8 0.0 8.0
22 [340+ |70+ 1782+ 46 100 617 4.4 0.0 955
24 [327+ |67+ 6263+ 2.0+ |0.0+ 1495+ 1.8+ 0.0+ 1936+
26 - - - 1.8 10.0 327 1.6+ 0.0+ 1642+
28 - - - 2.0 0.0 1004 1.8 0.0 1133
30 - - - 4.2+ 10.0+ 5391+ 1.0+ 1452+ 4309+
32 - - - 1.2+ 0.0+ 4325+ 1.0+ 0.0+ 4325+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

34

Subproblem blows up

when more than _
10 tasks per resource “c” instances, 2 resources

on average

Strong cuts only Relax + weak cuts Relax + strong cuts
Iters Master Subpr | Iters Master Subpr| Iters Master Subpr

m n S€C S€C SCC S€C S€C SEC

2 10 18 0.1 0.1 98 0.1 0.0 4.8 0.0 0.0
12 13 0.1 0.1 50 00 00| 34 0.0 0.0
14 19 0.1 0.3 1.8 0.0 0.0 1.8 0.0 0.0
16 41 0.5 1.5 20 00 02 2.0 0.0 0.3
181 149 57 14 24 00 05| 24 0.0 0.7
201 107 3.5 117 3.6 0.0 20| 2.8 0.0 8.0

22 [340+ 70+ |1782+ 46 00 | o617 4.4 0.0 | 955
24| 327+ 6746263+ 2.0+ 0.0+ 1495+ 1.8+ 0.0+ | 1936+

26 - - 1.8 0.0 | 327 1.6+ 0.0+] 1642+
28 - - 2.0 0.0 1004 1.8 0.0 | 1133
30 - - 4.2+ 0.0+ 5391+ 1.0+ 1452+ 14309+
32 - - 1.2+ 0.0+] 4325+ 1.0+ 0.0+ | 4325+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

Subproblem blows up
when more than
10 tasks per resource

“c” instances, 3 resources

on average
Strong cuts only Relax + weak cuts Relax + strong cuts
Iters Master Subpr | Iters Master Subpr| Iters Master Subpr
m n sec sec sec sec sec sec
3 10 13 0.0 0.1 9.8 0.1 00 44 0.0 0.0
12 23 0.2 0.2 14 0.4 00| 64 0.1 0.1
14 42 0.7 0.5 13 0.2 0.1 6.8 0.1 0.1
16 86 4.0 1.5 40 2.5 021 17 0.5 0.3
18 183 19 3.0 61 7.3 05| 23 1.0 0.5
20 226 23 6.4 21 0.8 0.4 8.2 0.1 0.4
22 | 340 49 10 49 29 46| 16 0.4 2.3
24 | 1222+ 1689+ 50+ 55 12 35 22 1.6 4.1
26 | 1854+ 2723+ 786+ | 130 33 158 22 0.6 97
28 | 2113+ 3283+ 3363+ 15 02 270 8.0 0.1 209
30 - - - 80+ 9.2+)12344+ | 21+ 1.1+] 1855+
32 - - - 143+ 64+ 4602+ | 23+ 1.7+ 14750+

+ Computation terminated after 7200 sec for instances not

solved to optimality.

36

Balance between

master and subproblem

results in superior

“@” instances

performance
Relax + weak cuts Relax + strong cuts
Iters Master Subpr Iters Master Subpr
m o n sec sec sec sec
2 10 9.4 0.1 0.0 5.2 0.0 0.0
2 12 13 0.3 0.0 4.4 0.0 0.0
3 15 14 0.4 0.0 5.6 0.1 0.1
4 20 55 14 0.0 16 1.7 0.3
5 25 19 0.4 0.0 8.6 0.1 0.6
5 30 26 1.1 0.0 8.8 0.2 0.2
7 35 76 34 0.0 19 2.0 0.7
8 40 107+ 1525+ 0.0+ | 31 78 2.1
9 45 132 1048 0.0 39 33 2.2
10 50 | 39 43 00 | 18 | 3.6 1.7 |

+ Computation terminated after 7200 sec for instances not

solved to optimality.

37

Mild imbalance results
iIn somewhat worse

“@” instances

performance
Relax + weak cuts Relax + strong cuts

Iters Master Subpr Iters Master Subpr

m o n sec sec sec sec
2 10 9.4 0.1 0.0 5.2 0.0 0.0
2 12 13 0.3 0.0 4.4 0.0 0.0
3 15 14 0.4 0.0 5.6 0.1 0.1
4 20 55 14 0.0 16 1.7 0.3
5 25 19 0.4 0.0 8.6 0.1 0.6
5 30 26 1.1 0.0 8.8 0.2 0.2
7 35 76 34 0.0 19 2.0 0.7
8 40 107+ 1525+ 0.0+ | 31 78 2.1
9 45 132 1048 0.0 39 33 2.2
10 50 39 43 0.0 18 3.6 1.7

+ Computation terminated after 7200 sec for instances not

solved to optimality.

38

Conclusions

« Superiority to MIP, CP
— LBBD remains orders of magnitude faster than MIP.

— For this problem class.
— Despite huge improvements in MIP.

— Even greater advantage over CP.

39

Conclusions

« Superiority to MIP, CP
— LBBD remains orders of magnitude faster than MIP.

— For this problem class.
— Despite huge improvements in MIP.

— Even greater advantage over CP.

* Importance of master/subproblem balance

— LBBD is most effective when master and subproblem
share substantial portions of combinatorial complexity.

— ...and consume roughly equal time.

40

Conclusions

« Superiority to MIP, CP
— LBBD remains orders of magnitude faster than MIP.

— For this problem class.
— Despite huge improvements in MIP.

— Even greater advantage over CP.

* Importance of master/subproblem balance

— LBBD is most effective when master and subproblem
share substantial portions of combinatorial complexity.

— ...and consume roughly equal time.

 Failure in subproblem

— LBBD most often fails when subproblem blows up
due to assignment of too many tasks to a resource.

41

Conclusions

« Subproblem relaxation

— Most important success factor for LBBD is inclusion of
a subproblem relaxation in the master.

42

Conclusions

« Subproblem relaxation

— Most important success factor for LBBD is inclusion of
a subproblem relaxation in the master.

« Strong Benders cuts

— Stronger Benders cuts can help significantly when master
and subproblem are properly balanced in difficulty.

43

Suggested Solution Strategies

 Tighter subproblem relaxations

— Design tighter subproblem relaxations for the master

— ...using subproblem variables, whose values are
discarded after master is solved

44

Suggested Solution Strategies

» Tighter subproblem relaxations

— Design tighter subproblem relaxations for the master

— ...using subproblem variables, whose values are
discarded after master is solved

 Falilure-directed search in subproblem
— Recently introduced in ILOG CP optimizer.

45

Suggested Solution Strategies

» Tighter subproblem relaxations

— Design tighter subproblem relaxations for the master

— ...using subproblem variables, whose values are
discarded after master is solved

 Falilure-directed search in subproblem
— Recently introduced in ILOG CP optimizer.

« Subproblem decomposition
— Solve subproblem with LBBD when it grows too large.

46

Suggested Solution Strategies

Tighter subproblem relaxations

— Design tighter subproblem relaxations for the master

— ...using subproblem variables, whose values are
discarded after master is solved

Failure-directed search in subproblem
— Recently introduced in ILOG CP optimizer.

Subproblem decomposition
— Solve subproblem with LBBD when it grows too large.

More dual information

— Use subproblem solver that reveals proof of optimality,
perhaps resulting in stronger Benders cuts.

a7

