
Optimization Bounds from Binary Decision

Diagrams

David Bergman∗ Andre A. Cire† Willem-Jan van Hoeve‡

J. N. Hooker§

April 2012

Abstract

We explore the idea of obtaining bounds on the optimal value of an
optimization problem from a discrete relaxation based on binary decision
diagrams (BDDs). We show how to construct a BDD that represents a
relaxation of an optimization problem with binary variables, and how to
obtain a bound for any separable objective function by solving a shortest
(or longest) path problem in the BDD. As a test case we apply the method
to the maximum independent set problem on a graph. We find that it
can can deliver significantly tighter bounds, in far less computation time,
than state-of-the-art integer programming software obtains for an integer
programming formulation by solving a continuous relaxation augmented
with cutting planes.

1 Introduction

Bounds on the optimal value are often indispensible for the practical solution
of discrete optimization problems, as for example in branch-and-bound proce-
dures. Such bounds are frequently obtained by solving a continuous relaxation
of the problem, perhaps a linear programming (LP) relaxation of an integer pro-
gramming model. In this paper, we explore an alternative strategy of obtaining
bounds from a discrete relaxation, namely a binary decision diagram (BDD).

Binary decision diagrams are compact graphical representations of Boolean
functions Ake78,Lee59,Bry86. They were originally introduced for applications
in circuit design and formal verification [14, 15] but have since been used for a
variety of other purposes. These include sequential pattern mining and genetic
programming [16, 17].

∗Tepper School of Business, Carnegie Mellon University, bergman@andrew.cmu.edu
†Tepper School of Business, Carnegie Mellon University, acire@andrew.cmu.edu
‡Tepper School of Business, Carnegie Mellon University, vanhoeve@andrew.cmu.edu
§Tepper School of Business, Carnegie Mellon University, jh38@andrew.cmu.edu

1

A BDD can represent the feasible set of a 0-1 optimization problem, because
the constraints can be viewed as defining a Boolean function f(x) that is 1
when x is a feasible solution. Unfortunately, a BDD that exactly represents
the feasible set can grow exponentially in size. We circumvent this difficulty by
creating a relaxed BBD of limited size that represents a superset of the feasible
set. The relaxation is created by merging nodes of the BDD in such a way
that no feasible solutions are excluded. A bound on any additively separable
objection function can now be obtained by solving a longest (or shortest) path
problem on the relaxed BDD. The idea is readily extended to general discrete (as
opposed to 0-1) optimization problems by using multivalued decision diagrams
(MDDs).

As a test case, we apply the proposed method to the maximum independent
set problem on a graph. We find that BDDs can deliver significantly tighter
bounds than those obtained by state-of-the-art integer programming software,
which solves an LP relaxation augmented by cutting planes. The BDD bounds
are also obtained in far less computation time.

The paper is organized as follows. After a brief literature review, we show
how BDDs can represent 0-1 optimization problems in general and the max-
imum weighted independent set problem in particular. We then exhibit an
efficient top-down compilation algorithm that generates exact reduced BDDs
for the independent set problem, and prove its correctness. We then modify
the algorithm to generate a limited-size relaxed BDD, prove its correctness, and
show that it has polynomial time complexity. We also discuss heuristics for
ordering variables and deciding which nodes to merge while building a relaxed
BDD.

At this point we report computational results for random and benchmark
instances of the maximum independent set problem. We experiment with var-
ious heuristics for ordering variables and merging nodes in the relaxed BDDs
and test the quality of the bound provided by the relaxed BDDs versus the size
allowed for the BDD. We then compare the bounds obtained from the BDDs
with those obtained at the root node by the CPLEX mixed-integer solver for
a 0-1 programming formulation of the problem. We conclude with suggestions
for future work.

2 Previous Work

Relaxed BDDs and MDDs were introduced by [2] for the purpose of replacing
the typical domain store relaxation used in constraint programming by a richer
data structure. They found that MDDs drastically reduce the size of the search
tree and allow much faster solution of problems with multiple all-different con-
straints, which are equivalent to graph coloring problems. Similar methods were
applied to other types of constraints in [12] and [13]. The latter paper also de-
velops a general top-down compilation method based on state information at
nodes of the MDD.

None of this work addresses the issue of obtaining bounds from relaxed

2

BDDs. Three of us applied this idea to the set covering problem in a conference
paper [6], which reports good results for certain structured instances. In the
current paper, we present novel and improved methods for BDD compilation
and relaxation. These methods are superior to continuous relaxation technology
for a much wider range of instances, and require far less time.

The ordering of variables can have a significant bearing on the effectiveness
of a BDD relaxation. We investigate this for the independent set problem in [5]
and apply the results here.

Binary decision diagrams have also been applied to post-optimality analysis
in discrete optimization [10, 11], cut generation in integer programming [3], and
0-1 vertex and facet enumeration [4].

3 Binary Decision Diagrams

Given binary variables x = (x1, . . . , xn), a binary decision diagram (BDD) B =
(U,A) for x is a directed acyclic multigraph that encodes a set of values of x. The
set U of nodes is partitioned into layers L1, . . . , Ln corresponding to variables
x1, . . . , xn, plus a terminal layer Ln+1. Layers L1 and Ln+1 are singletons
consisting of the root node r and the terminal node t, respectively. All directed
arcs in A run from a node in some layer Lj to a node in some deeper layer Lk

(j < k). For a node u ∈ Lj , we write `(u) = j to indicate the layer in which u
lies.

Each node u ∈ Lj has one or two out-directed arcs, a 0-arc a0(u) and/or a
1-arc a1(u). These correspond to setting xj to 0 and 1, respectively. We use
the notation b0(u) to indicate the node at the opposite end of arc a1(u), and
similarly for b1(u). Each arc-specified path from r to t represents the 0-1 tuple
x in which x`(u) = 1 for each 1-arc a1(u) on the path, and xj = 0 for all other
j. The entire BDD represents the set Sol(B) of all tuples corresponding to r–t
paths.

Figure 1(a) illustrates a BDD for variables x = (x1, . . . , x6). The left-most
path from root node r to terminal node t represents the tuple (x1, . . . , x6) =
(0, 0, 1, 0, 0, 0). The third arc in the path is a long arc because it skips one or
more variables. It represents the partial assignment (x3, x4, x5, x6) = (1, 0, 0, 0).1

In general, a long arc from level j to level k encodes the partial assignment
(xj , . . . , xk−1) = (1, 0, . . . , 0). The entire BDD of Fig. 1(a) represents a set of
10 tuples, corresponding to the 10 r–t paths.

Given nodes u, u′ ∈ U , we will say that Buu′ is the subgraph of B induced
by the nodes in U that lie on some directed path from u to u′. Thus Brt = B.
Two nodes u, u′ on a given level of a BDD are equivalent if But = Bu′t. A
reduced BDD is one that contains no equivalent nodes. A standard result of
BDD theory is that for a fixed variable order, there is a unique reduced BDD

1This differs from the standard interpretation of a long arc (u, u′), which represents all
partial assignments to (x`(u), . . . , x`(u′)) with x`(u) = 1 if (u, u′) is a 1-arc, and all partial
assignments with x`(u) = 0 if it is a 0-arc.

3

x1

x2

x3

x4

x5

x6

rB

tB

v1

v2 v3

v4

v5v6

x1

x2

x3

x4

x5

x6

rB′

tB′

Figure 1: (a) Example of a BDD. (b) Independent set problem for which (a) is
an exact BDD. (c) Relaxed BDD for the problem in (b).

that represents a given set. The width ωj of level j is |Lj |, and the width ω(B)
of a BDD B is maxj ωj . The BDD of Fig. 1(a) is reduced and has width 2.

The feasible set of any optimization problem with binary variables x1, . . . , xn

can be represented by an appropriate reduced BDD. The BDD can be regarded
as a compact representation of a search tree for the problem. It can in principle
be obtained by omitting infeasible leaf nodes from the search tree, superimposing
isomorphic subtrees, and identifying all feasible leaf nodes with t. We will
present below a much more efficient procedure for obtaining a reduced BDD.
A slight generalization of BDDs, multivalued decision diagrams (MDDs), can
similarly represent the feasible set of any discrete optimization problem. MDDs
allow a node to have more than two outgoing arcs and therefore accommodate
discrete variables with several possible values.

4 BDD Representation of Independent Sets

We focus on BDD representations of the maximum weighted independent set
problem. Given a graph G = (V,E), an independent set is a subset of the vertex
set V , such that no two vertices are connected by an edge in E. If each vertex
vi is associated with a weight wi, the problem is to find an independent set
of maximum weight. If each wi = 1, we have the maximum independent set
problem.

If we let binary variable xj be 1 when vj is included in the independent
set, the feasible solutions of any independent set problem can be represented
by a BDD on variables x1, . . . , xn. Figure 1(a), for example, represents the 10
independent sets of the graph in Fig. 1(b).

We can remove any node u in a BDD with a single outgoing arc if it is a 0-arc

4

a0(u). This is accomplished by replacing every 0-arc a0(u
′) for which b0(u

′) = u
with a longer arc a0(u

′) for which b0(u
′) = b0(u), and similarly for every such

1-arc. If the BDD represents an independent set problem, a single outgoing arc
must be a 0-arc, which means that all nodes with single outgoing arcs can be
removed. Every node in the resulting BDD has exactly two outgoing arcs.

To represent the objective function in the BDD, let each 1-arc a1(u) have
length equal to the weight w`(u), and each 0-arc length 0. Then the length
of a path from r to t is the weight of the independent set it represents. The
weighted independent set problem becomes the problem of finding a longest
path in a BDD. If all the weights wi = 1, the four longest paths in the BDD
of Fig. 1(a) have length 2, corresponding to the maximum independent sets
{v1, v3}, {v1, v5}, {v2, v4}, and {v4, v6}.

Any binary optimization problem with an additively separable objective
function

∑
j fj(xj) can be similarly represented as a longest path problem on

a BDD. Long edges as defined here may be used if fj(0) = 0 and fj(1) ≥ 0 for
each j. This condition is met by any independent set problem with nonnegative
weights. It can be met by any binary problem if each fj(xj) is replaced with
f̄(x̄j), where f̄j(0) = 0 and

f̄j(1) = fj(1)− fj(0) and x̄j = xj , if fj(1) ≥ fj(0)

f̄j(1) = fj(0)− fj(1) and x̄j = 1− xj , otherwise

5 Exact and Relaxed BDDs

If Sol(B) is equal to the feasible set of an optimization problem, we will say that
B is an exact BDD for the problem. If Sol(B) is a superset of the feasible set,
B is a relaxed BDD for the problem. We will construct limited-width relaxed
BDDs by requiring ω(B) to be at most some pre-set maximum width W .

Figure 1(c) shows a relaxed BDD B′ of width 1 for the independent set
problem of Fig. 1(b). B′ represents 21 vertex sets, including the 10 independent
sets. The length of a longest path in B′ is therefore an upper bound on the
optimal value of the original problem. If, again, all weights wj = 1, the longest
path length is 3, which provides an upper bound on the maximum cardinality
2 of an indepedent set.

6 Exact BDD Compilation

We now describe an algorithm that builds an exact reduced BDD for an inde-
pendent set problem. Similar algorithms can be designed for any optimization
problem on binary variables [13], but here we exploit the special structure of
the independent set problem.

Starting with the root r, the procedure constructs the BDD B = (U,A) layer
by layer, selecting a graph vertex for each layer and associating a state with each
node. The definition of a state is problem dependent, but for the independent
set problem we define it as follows. Using a slight abuse of notation, let Sol(B)

5

be the set of independent sets represented by B (rather than the corresponding
set of tuples x). Thus, in particular, Sol(Bru) is the set of independent sets
defined by paths from r to u. Let the neighborhood N(V̄) of a vertex set V̄ be
the set of vertices adjacent to vertices in V̄ , where by convention V̄ ⊂ N(V̄).
The state s(u) of node u is the set of vertices that can be added to any of the
independent sets defined by paths from r to u. Thus

s(u) = {v`(u), . . . , vn} \
⋃

V̄ ∈Sol(Bru)

N(V̄)

In an exact BDD, all paths to a given node u define partial assigments to x that
have the same feasible completions. So s(u) = {v`(u), . . . , vn} \ N(V̄) for any
V̄ ∈ Sol(Bru). In addition, no two nodes on the same layer of an exact reduced
BDD have the same feasible completions. So we have the following:

Lemma 1 An exact BDD for G is reduced if and only if s(u) 6= s(u′) for any
two nodes u, u′ on the same layer of the BDD.

The exact BDD compilation is stated in Algorithm 1. We begin by creating
the root r of B, which has state s(r) = V because every vertex in V is part of
some independent set. We then add r to a pool P of nodes that have not yet
been placed on some layer. Each node u ∈ P is stored along with its state s(u)
and the arcs that terminate at u.

To create layer Lj , we first select the j-th vertex vj by means of a function
select (step 4), which can follow a predefined order or select vertices dynam-
ically. We let Lj contain the nodes u ∈ P for which vj ∈ s(u). These are the
only nodes in P that will have both outgoing arcs a0(u) and a1(u). All of the
remaining nodes in P would have only an outgoing 0-arc if placed on this layer
and can therefore be skipped. The nodes in Lj are removed from P , as we need
only process them once.

For each node u in Lj , we create outgoing arcs a0(u) and a1(u) as follows.
Node b0(u) (i.e., the node at the opposite end of a0(u)) has state s0 = s(u)\{vj},
and node b1(u) has state s1 = s(u)\N({vj}). To ensure that the BDD is
reduced, we check whether s0 = s(u′) for some node u′ ∈ P , and if so let
b0(u) = u′. Otherwise, we create node u0 with s(u0) = s0, let b0(u) = u0, and
insert u0 into P . If s0 = ∅, u0 is the terminal node t. Arc a1(u) is treated
similarly. After the last iteration, P will contain exactly one node with state ∅,
and it becomes the terminal node t of B.

We now show this algorithm returns the exact BDD.

Theorem 2 For any graph G = (V,E), Algorithm 1 generates a reduced exact
BDD for the independent set problem on G.

Proof. Let Ind(G) be the set of independent sets of G. We wish to show
that if B is the BDD created by Algorithm 1, Sol(B) = Ind(G). We proceed by
induction on n = |V |.

6

Algorithm 1 Exact BDD Compilation

1: Create node r with s(r) = V
2: Let P = {r} and R = V
3: for j = 1 to n do
4: vj = select(R,P)
5: R← R\{vj}
6: Lj = {u ∈ P : vj ∈ s(u)}
7: P ← P\Lj

8: for all u ∈ Lj do
9: s0 := s(u)\{vj}, s1 := s(u)\N(vj)

10: if ∃u′ ∈ P with s(u′) = s0 then
11: a0(u) = (u, u′)
12: else
13: create node u0 with s(u0) = s0 (u0 = t if s0 = ∅)
14: a0(u) = (u, u0)
15: P ← P ∪ {u0}
16: if ∃u′ ∈ P with s(u′) = s1 then
17: a1(u) = (u, u′)
18: else
19: create node u1 with s(u1) = s1 (u1 = t if s0 = ∅)
20: a1(u) = (u, u1)
21: P ← P ∪ {u1}
22: Let t be the remaining node in P and set Ln+1 = {t}

First, suppose n = 1, and let G consist of a single vertex v. B consists of
two nodes, r and t, and two arcs a0(r) and a1(r), both directed from r to t.
Therefore, Sol(B) = {∅, v} = Ind(G). Moreover, this BDD is trivially reduced.

For the induction hypothesis, suppose that Algorithm 1 creates a reduced
exact BDD for any graph on fewer than n (≥ 2) vertices. Let G be a graph
on n vertices. Assume the select function in Step 4 returns vertices in a
fixed order v1, . . . , vn. Let G0 = (V0, E0) be the subgraph of G induced by
vertex set V \{v1}, and G1 = (V1, E1) the subgraph induced by V \N(v1). Then
Ind(G) = Ind(G0)∪{V̄ ∪{v1} | V̄ ∈ Ind(G1)}, since each independent set either
excludes v1 (whereupon it appears in Ind(G0)) or includes v1 (whereupon it
appears as the union of {v1} with a set in Ind(G1)).

Let B be the BDD returned by the algorithm for G. By construction,
s(b0(r)) = V0 and s(b1(r)) = V1. Let B0 be the BDD that the algorithm
creates for G0, and similarly for B1. We observe as follows that B0 = Bb0(r)t

and B1 = Bb1(r)t. The root r0 of B0 has s(r0) = V0, the same state as node
b0(r) in B. But the successor nodes created by the algorithm for r0 and b0(r)
depend entirely on the state and are therefore identical in B0 and B, respec-
tively. Moreover, the states of the successor nodes depend entirely on the state
of the parent and which branch is taken. Thus the successor nodes have the
same states in B0 as in B. If we apply this reasoning recursively, we obtain

7

B0 = Bb0(r)t. A parallel argument shows that B1 = Bb1(r)t. Now

Sol(B) = Sol(Bb0(r)t) ∪ {V̄ ∪ {v1} | V̄ ∈ Sol(Bb1(r)t)}
= Sol(B0) ∪ {V̄ ∪ {v1} | V̄ ∈ Sol(B1)}
= Ind(G0) ∪ {V̄ ∪ {v1} | V̄ ∈ Ind(G1)}
= Ind(G)

as claimed, where the third equation is due to the inductive hypothesis. Fur-
thermore, since all nodes with the same state are merged, Lemma 1 implies that
B is reduced. �.

Lemma 3 The time complexity of Algorithm 1 is polynomial in the size of the
reduced exact BDD B = (U,A) for a graph G.

Proof. Assume for sake of clarity that select (Step 4) takes constant time.
We observe that an arc of B is never rechecked again once it was created in
one of the Steps 11, 14, 17, or 20. Hence, the complexity of the algorithm
is dominated by the operations required when creating the out-arcs of a node
removed from the pool P .

These operations consist of creating a new state (Step 9) and inserting or
searching in the node pool (Steps 10, 15, 16, and 21), which can be implemented
in O(|V |). Since every node has exactly two outgoing arcs (i.e., |A| = 2|U |), the
worst-case complexity of Algorithm 1 is O(|U | |V |). �

7 Relaxed BDDs

Limited-width relaxed BDDs allow us to represent an over-approximation of the
family of independent sets of a graph, and thus obtain an upper bound on the
optimal value of the independent set problem.

We propose a novel top-down compilation method for constructing relaxed
BDDs. The procedure modifies Algorithm 1 by forcing nodes to be merged when
a particular layer exceeds a pre-set maximum width W . This modification
is given in Algorithm 2, which is to be inserted immediately after line 7 in
Algorithm 1.

The procedure is as follows. We begin by checking if ωj > W , which indicates
that the width of layer Lj exceeds W . If so, we select a subset M of Lj using
function select nodes in Step 2, which ensures that 2 ≤ |M | ≤ ωj−W . The set
M represents the nodes to be merged so that the desired width is met. Various
heuristics for selecting M are discussed in Section 8.

The state of the new node that results from the merge, snew, must be such
that no feasible independent set is lost in further iterations of the algorithm. As
it will be shown in Theorem 4, it suffices to let snew be the union of the states
associated with the nodes in M (Step 3). Once snew is created, we search for
some node u′ ∈ Lj such that s(u′) = snew. If u

′ exists, then by Lemma 1 we are

8

Algorithm 2 Node merger for obtaining a relaxed BDD.
Insert immediately after line 7 of Algorithm 1.

1: while ωj > W do
2: M := node select(Lj) // where 2 ≤ |M | ≤ ωj −W
3: snew :=

⋃
u∈M s(u)

4: Lj ← Lj\M
5: if ∃u′ ∈ Lj with s(u′) = snew then
6: merge(M,u′)
7: else
8: Create node û with s(û) = snew
9: merge(M, û)

10: Lj = Lj ∪ {û}

Algorithm 3 merge(M,u′)

1: for all u ∈M do
2: for all arcs a0(w) with b0(w) = u do
3: b0(w)← u′

4: for all arcs a1(w) with b1(w) = u do
5: b1(w)← u′

only required to direct the incoming arcs of the nodes in M to u′, as presented
in Algorithm 3. Otherwise, we create a new node û with s(û) = snew and add
it to Lj .

In each iteration of the while loop in Algorithm 2, we decrease the size of
Lj by at least |M | − 1. Thus, after at most ωj −W iterations, the layer Lj

will have width no greater than W . The modified Algorithm 1 hence yields a
limited-width W BDD, i.e. ω(B) ≤W .

The correctness of Algorithm 2 is proved as follows.

Theorem 4 For any graph G = (V,E), Algorithm 1 modified by adding Algo-
rithm 2 after line 7 generates a relaxed BDD.

Proof. We will use the notation Bu for the BDD consisting of all r–t paths
in B that pass through u. Thus

Sol(Bu) = {V1 ∪ V2 | V1 ∈ Sol(Bru), V2 ∈ Sol(But)} (1)

It suffices to show that each iteration of the while-loop yields a relaxed BDD if it
begins with a relaxed BDD. Thus we show that if B is a relaxed (or exact) BDD,
then the BDD B̂ that results from merging the nodes in M satisfies Sol(B) ⊆
Sol(B̂). Here M is any proper subset of Lj for an arbitrary j ∈ {2, . . . , n− 1}.

Let M = {u1, . . . , uk} be the nodes to be merged into û. Also, let B̄ be the
BDD consisting of all r–t paths in B that do not include any of the nodes ui.

9

Then

Sol(B) = Sol(B̄) ∪
k⋃

i=1

Sol(Bui)

The merge procedure has no effect on Sol(B̄). Hence it remains to show that

k⋃
i=1

Sol(Bui) ⊆ Sol(B̂û)

But we can write

k⋃
i=1

Sol(Bui) =
k⋃

i=1

{V1 ∪ V2 | V1 ∈ Sol(Brui), V2 ∈ Sol(Buit)}

=

{
V1 ∪ V2

∣∣∣∣∣ V1 ∈
k⋃

i=1

Sol(Brui), V2 ∈
k⋃

i=1

Sol(Buit)

}

=

{
V1 ∪ V2

∣∣∣∣∣ V1 ∈ Sol(B̂rû), V2 ∈
k⋃

i=1

Sol(Buit)

}

⊆
{
V1 ∪ V2

∣∣∣ V1 ∈ Sol(B̂rû), V2 ∈ Sol(B̂ût)
}

= Sol(B̂û)

The first and last equations are due to (1). The third equation is due to⋃
i Sol(Brui) = Sol(B̂rû), which follows from the fact that û receives precisely

the paths received by the uis before the merge. The fourth line is due to⋃
i Sol(Buit) ⊆ Sol(B̂ût). This follows from the facts that (a) Sol(Buit) contains

the independent sets in the subgraph of G induced by s(ui); (b) Sol(B̂ût) con-
tains the independent sets in the subgraph induced by s(û); and (c) s(ui) ⊆ s(û)
for all i. �

The time complexity of Algorithm 2 is highly dependent on the node select

function and on the number of nodes to be merged. Once a subset M of nodes
has been chosen, taking the union of the states (Step 3) has a time complexity of
O(|M ||V |), and Algorithm 3 has a worst-case time complexity of O(W |M |) by
supposing that every node in M is adjacent to as many as W nodes located in
previous layers. Hence, if k is the number of nodes to be merged, the complexity
of Algorithm 2 isO(H(k)+|M ||V |+W |M |) per iteration of the while loop in Step
1, where H(k) is the complexity of the node selection heuristic (node select)
for a given k. The number of iterations depends on the size of the selected
node set. For example, if |M | is always 2, then at most W − k iterations are
required (if none of the newly defined states appeared in Lj previously). The
time complexity for the complete relaxation procedure is given by the following
lemma.

10

Lemma 5 Let S be the time complexity of selecting the next variable (select
function in Step 4 of Algorithm 1), and let R(k) be the time complexity of
Algorithm 2. The worst-case time complexity of Algorithm 1 modified with the
procedure in Algorithm 2 is given by O(n(S +R(nW) +W |V |)).

Proof. If k nodes are removed from the pool in Step 6 of Algorithm 1, then
the merging procedure in Algorithm 2 ensures that at most 2min{k,W} new
nodes are added back to the pool. Thus, at each iteration the pool can be
increased by at most W nodes. Since n iterations in the worst case are required
for the complete compilation, the pool can have at most nW nodes.

Suppose now nW nodes are removed from the pool (Step 6 of Algorithm 1) at
a particular iteration. These nodes are first merged so that the maximum width
W is met (Algorithm 2), and then new nodes or arcs are created according to
the result of the merge. The time complexity for the first operation is R(nW),
which yields a new layer with at most W nodes. For the second operation, we
observe as in Lemma 3 that creating a new state or searching in the pool size can
be implemented in time O(|V |); hence, the second operation has a worst-case
time complexity of O(W |V |).

This implies that the time required per iteration is O(S +R(nW) +W |V |),
yielding a time complexity of O(n(S + R(nW) +W |V |)) for the modified pro-
cedure. �

8 Merging Heuristics

The selection of nodes to merge in a layer that exceeds the maximum alloted
width W is critical for the construction of relaxation BDDs. Different selections
may yield dramatic differences on the obtained upper bounds on the optimal
value, since the merging procedure adds paths corresponding to infeasible solu-
tions to the BDD.

In this section we present a number of possible heuristics for selecting nodes.
This refers to how the subsets M are chosen on line 2 in Algorithm 2. The
heuristics we test are described below.

11

random : Randomly select a subsetM of size |Lj |−W+1 from Lj .
We suggest this selection not only as a stand alone selec-
tion but also as a heuristic that may be mixed with any
of the following heuristics for the purpose of generating
several relaxations.

minLP : Sort nodes in Lj in increasing order of the longest path
value up to those nodes and merge the first |Lj |−W +1
nodes. We suggest this selection because infeasibility is
introduced into the BDD only when nodes are merged.
By selected nodes with the smallest longest path, we
are losing information in sections of the BDD where the
optimal solution is unlikely to lie.

minSize : Sort nodes in Lj in decreasing order of their corre-
sponding state sizes and merge the first 2 nodes until
|Lj | ≤W . With this selection heuristic, we merge nodes
that have the largest number of vertices in their associ-
ated state. Therefore, it will be likely that they agree
on the nodes in their states, and hence this heuristic
tends to merge nodes that represent similar regions of
the solution space.

9 Variable Ordering

The ordering of the vertices plays an important role in not only the size of exact
BDDs, but also in the bound obtained by Relaxation BDDs. It is well known
that finding orderings which minimize the size of BDDs (or even improving on
a given ordering) is NP-hard [9, 7]. Moreover, in preliminary computational
results, we found that the ordering of the vertices is the single most important
parameter in creating small width exact BDDs and in proving tight bounds via
relaxed BDDs.

Indeed, different orderings can yields exact BDDs with dramatically different
widths. For example, Figure 2a shows a path on 6 vertices with two different
orderings given by x1, . . . , x6 and y1, . . . , y6. In Figure 2b we see that the vertex
ordering x1, . . . , x6 yields an exact BDD with width 1, while in Figure 2c the
vertex ordering y1, . . . , y6 yields an exact BDD with width 4. This last example
can be extended to a path with 2n vertices, yielding a BDD with a width of
2n−1 while ordering the vertices according to the order that they lie on the paths
yields a BDD of width 1.

A thorough analysis of vertex ordering was done by the authors in [5]. We
showed that, for particular structured instances of graphs, there exists orderings
for which the width of the exact reduced BDD is polynomial in the size of the
graph. This includes paths, cliques, and trees. For the case of general graphs,
we proved that the ordering induced by a maximal path decomposition of the
vertices yields an exact reduced BDD for which the width of layer Lj is bounded
by the j + 1-st Fibonacci number.

12

x1 x2 x3 x4 x5 x6

y1 y4 y2 y5 y3 y6

(a) Path with two orderings

x1

x2

x3

x4

x5

x6

(b) x

y1

y2

y3

y4

y5

y6

(c) y

Figure 2: Path with two different variable orderings.

The previous paper also discusses various ordering heuristics for relaxed
BDDs. We outline them below, noting that the first two orderings are dynamic,
in that we select the j-th vertex in the order based on the first j − 1 vertices
chosen and the partially constructed BDD. In contrast, the last ordering is
static, in that the ordering is determined prior to building the BDD.

random : Randomly select some vertex that has yet to be chosen.
We suggest this vertex selection not only as a stand
alone variable ordering hueristic, but also as a heuristic
that may be mixed with any of the following heuristics
for the purpose of generating several relaxations.

minState : Select the next vertex vj as the vertex appearing in the
fewest number of states in P . This selection minimizes
the size of Lj , given the previous selection of vertices
v1, . . . , vj−1, since the only nodes in P that will appear
in Lj are exactly those nodes containing vj in their as-
sociated state. Doing so limits the number of merging
operations that need to be performed.

MPD : As mentioned above, it was shown in [5] that a Maximal
Path Decomposition of the vertices in a graph yields an
ordering which bounds the exact BDD width by the Fi-
bonacci numbers, which grow slower than 2j (the worst
case). Hence this ordering limits the width of all layers,
therefore also limiting the number of merging operations
necessary to build the BDD.

13

10 Computational Experiments

In this section we perform an experimental analysis to assess the impact of
different parameters on the bounds provided by a relaxation BDD. We first
compare the different node merging techniques discussed in Section 8. We then
evaluate the bounds obtained for the variable orderings heuristics presented in
Section 9. Next, we analyze the strength of the bound with respect to the max-
imum allotted width. Finally, we compare our bounds with the ones obtained
via state-of-the art integer programming technology, which is a common bound-
ing technique for 0-1 problems. We measure the deviation of the bounds by the
bound divided by the optimal value (substituting the best lower bound known
in the case when the problem is unsolved).

We tested our procedure on two sets of instances. The first set, denoted
by random, consists of 45 randomly generated graphs according to the Erdös-
Rényi model G(n, p), in which graphs on n vertices are constructed in a way
that two vertices are adjacent with probability p. We fixed n = 100 and gen-
erated 5 instances for each p in the set {0.1, 0.2, . . . , 0.9}. The second set of
instances, denoted by dimacs, is composed by the complement graphs of the
well-known DIMACS benchmark for the Maximum Clique Problem, obtained
from http://cs.hbg.psu.edu/txn131/clique.html. These are graphs of size be-
tween 100 and 4000 vertices and contain various types of structure. Further-
more, we consider the misp optimization problem for our test-bed (i.e., wj = 1
for all vertices).

The tests ran on an Intel Xeon E5345 with 8 GB RAM. The BDD was
implemented in C++. We used Ilog CPLEX 12.4 as our Integer Programming
solver. In particular, we took the bound obtained from the root node relaxation
after 1 hour of CPU time. We set the solver parameters in a way to balance
the quality of the bound value and the CPU time to process the root node.
The CPLEX parameters used in our computational experiments are presented
in Table 1.

Table 1: CPLEX Parameters

Parameters (CPLEX internal name) Value
Version 12.4
Presolve (Preind) 0 (off)
Number of explored nodes (NodeLim) 0 (only root)
Parallel processes (Threads) 1
Clique cuts (Cliques) 2 (aggressive)
Other cuts (Covers, DisjCuts, ...) -1 (off)
Emphasis (MIPEmphasis) 2 (optimization)
Primal Heuristics (HeurFreq, RINSHeur, Probe) -1 (off)
Time limit (TiLim) 3600

Two parameters specifically warrant discussion. Our tests set Preind to 0 in
order to have a fair comparison between the two bounding techniques. Actually,
allowing CPLEX to invoke presolving mechanisms typically increases the bound
on this problem domain, or returns a bound within 1 of the bound ouputted
by turning presolve off. In addition, we turned off all cuts besides clique cuts.
This was set because allowing all classes of cuts to be generated often leads to

14

CPU times orders of magntitude higher and returns a bound typically within 1
of the bound with only clique cuts.

10.1 Merging Heuristics

We tested the three merging heuristics presented in Section 8 on the random

instance set. In all experiments, we set a maximum width of W = 10 and fixed
the MPD as the ordering of variables for all cases. Figure 3 presents the deviation
from the optimum solution for each instance, where the x-axis represents the
graph density. In particular, we ran the random merging five times per instance,
and the results are presented in a candlestick format where the top, center,
and bottom represent the maximum, average, and minimum bound obtained,
respectively.

We see that among the merging heuristics tested, minLP achieves by far
the tightest bounds. This behavior follows from the fact that infeasibility is
introduced only at those nodes selected to be merged, and it seems better to
preserve the nodes with the best bounds, which is accomplished byminLP. The
plot also highlights the importance of considering structured merging heuristics,
since random yielded much weaker bounds in comparison to the other techniques
tested.

In light of these results, minLP is henceforth fixed as the merging heuristic
for the remainder of the experiments.

10.2 Variable Ordering Heuristics

We tested the three variable ordering heuristics presented in Section 9 on the
random instance set. Figure 4 presents the deviation from the optimum solu-
tion for each instance, again with the x-axis representing graph density. The
maximum alloted width is fixed to W = 10. Analogous to the merging heuristic
comparison, we ran the random ordering five times per instance, and plot the
results in a candlestick format.

We see that the MinState ordering is the best ordering tested, with this
being particularly true for sparse graphs, since the number of possible node
states generated by dense graphs is relatively small. As such, we fix this as the
ordering for the remainder of the experiments.

10.3 Relation between Bounds and Maximum Allotted
Width

The purpose of this experiment is to analyze the impact on the bound provided
by the BDDs of the maximum width W imposed on the layers of the BDD.
To this end, we tested the bound that Relaxation BDDs provide versus the
maximum width W allowed for the relaxations on the p-hat 300-1 instance
from the dimacs set. We note that the obtained results were common among
all instances tested.

15

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
ou

nd
/O

pt
im

al
 V

al
ue

Density

minLP
minSize
random

Figure 3: Deviation from the optimal value for each merging heuristic. The
results correspond to the random instance set with MPD ordering and width
W = 10.

The experiment proceeded as follows. Starting with W = 5, we increased
W until the bound provided by the Relaxation BDD matched the optimal value
(in this case, 8). Figure 5 depicts the result, with the width-axis in log-scale.
We see that as the width increases, the bound approaches the optimal value,
but that the convergence is super-exponential in W .

10.4 Comparison with CPLEX

The results comparing CPLEX and the BDD approach for the random instance
set are presented in Table 3. In that table, ρ refers to the graph density, OPT is
the average optimal value over all random graphs generated, zLP is the root node
relaxation value provided by CPLEX, andW10,W50 andW100 report the average
bound provided by the relaxed BDDs with width 10, 50, and 100, respectively.

Figure 6 depicts plots comparing the deviation from optimum and the CPU
time for a maximum alloted width of W = 100. We note that the bounds
provided by the relaxed BDD are tighter for high density graphs, since the
number of possible node states is greatly reduced for such graphs. Moreover,
the relaxed BDD time is consistently below 0.08 seconds, with the time required
for CPLEX always exceeded this time and in addition deteriorates as the density
increases, perhaps due to higher complexity of generating Clique cuts in these

16

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
ou

nd
/O

pt
im

al
 V

al
ue

Density

MPD
MinState
random

Figure 4: Deviation from the optimal value for each variable ordering heuristic.
The results correspond to the random instance set with minLP merging and
width W = 10.

cases.
The results for the dimacs instance set are presented in Table 4. OPT, ρ and

zLP are as in Table 3, where in addition tLP is the time CPLEX took in solving
the root node relaxation and n is the number of vertices in the corresponding
instance. We report the bound provided by a relaxed BDD having maximum
widths W = 1, 10, 100, and 1000. Additionally we include tW , the time required
to compile a relaxed BDD with width W .

Figure 7 depicts the plots comparing the deviation from optimum and the
CPU time between CPLEX and the BDD approach for the dimacs instances and
maximum alloted width W = 1000. In both plots, the instances are ordered by
decreasing performance (measured by deviation) of CPLEX performance. We
see that in general the relaxed BDDs provide a significantly better bound than
CPLEX. This is especially true for larger instances as seen in Table 4. Also of
interest is that typically the times to compute the bounds are quite smaller for
the BDD approach. The average time for CPLEX is 564.93 seconds, while for
the Relaxation BDDs it is 0.05, 0.33, 2.43, and 22.83 for W = 1, 10, 100, 1000,
respectively. We note here that for the instances in class c-fat we are able to
build the exact BDD and that the exact reduced BDDs always have width 4.

17

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 10 100 1000

B
ou

nd

Relaxation BDD Width

Figure 5: Relaxation Bound versus W for p-hat 300-1.

Table 2: Bound comparison between CPLEX and BDD approach on the random
instance set.

ρ OPT CPLEX W10 W50 W100

0.1 20.6 27.6086 32.4 29 27
0.2 14 19.372 23 18.8 17.6
0.3 10 14.9824 16.8 13.6 12.6
0.4 8.2 12.1355 13 10 9.4
0.5 7 10.1535 10.4 8.4 7.6
0.6 6 8.5885 8.4 6 6
0.7 5 7.41869 6.8 5 5
0.8 5.2 6.49913 6 5.2 5.2
0.9 4.4 5.69734 5 4.4 4.4

11 Conclusions

[ROUGH DRAFT] We proposed a method, based on binary decision diagrams
(BDDs), for obtaining relaxation bounds on the optimal value of 0-1 optimiza-
tion problems. We applied the technique to the maximum independent set prob-
lem and found that, in most instances, it provides significantly tighter bounds
than state-of-the-art integer programming software obtains by solving an LP
relaxation (with cutting planes) at the root node. The BDD bound requires
far less computation time, even though we accelerated the integer programming

18

Table 3: Comparison on Random Graphs

W=10 W=100
Rand MPD MIN Rand MPD MIN

ρ OPT zLP min avg max min avg max
0.1 20.6 27.6086 50 52.76 55.8 41.2 32.4 38.4 40.4 43 35 27
0.2 14 19.372 36.2 37.32 38.4 32.8 23 23.2 25.04 26.6 23.6 17.6
0.3 10 14.9824 25.4 27.76 29.8 25.2 16.8 15 16.28 17.2 16 12.6
0.4 8.2 12.1355 19.8 21.2 22 21 13 11 11.56 12.4 11.4 9.4
0.5 7 10.1535 15.4 16.32 17.4 15.6 10.4 8 8.44 9 8.4 7.6
0.6 6 8.5885 11.8 12.68 13.6 12.8 8.4 6 6.4 7.2 6.4 6
0.7 5 7.41869 9.2 10.04 11 10.2 6.8 5 5.04 5.2 5 5
0.8 5.2 6.49913 7.6 8.2 8.6 8.6 6 5.2 5.2 5.2 5.2 5.2
0.9 4.4 5.69734 6 6.6 7.2 6.2 5 4.4 4.4 4.4 4.4 4.4

software by turning off the generation of cuts we found to be ineffective.
These results suggest that BDD-based relaxations may have promise as a

general technique for bounding the optimal value of discrete problems. Due to
the small computation times, they could be used alongside the LP relaxation, at
the root node and perhaps at subsequent nodes of a branch-and-bound tree, to
obtain tighter bounds with little additional time investment. Alternatively, they
could be applied to combinatorial problems that are not formulated as mixed
integer models. Unlike LP relaxations, BDD relaxations do not presuppose that
the constraints have linear inequality form.

Future research would involve testing of BDD-based methods on additional
0-1 problems, and extending them to general discrete problems by means of
multivalued decision diagrams (MDDs). Important subtasks include the devel-
opment of general variable-ordering and node-merging heuristics. There may
be value in specializing BDD-based relaxations to problems in inequality form,
for inclusion in existing mixed integer solvers. One can also construct restricted
MDDs, as opposed to relaxed MDDs, and use them as a basis for primal heuris-
tics. A more distant goal would be to extend MDD-based technology to accom-
modate continuous as well as discrete variables.

19

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
ou

nd
/O

pt
im

al
 V

al
ue

Density

CPLEX
BDD

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
im

e(
s)

Density

CPLEX
BDD

Figure 6: Comparison of deviation from optimum (top) and time (bottom)
between CPLEX and BDD approach for the random set. The maximum width
was set to W = 100.

20

 1

 10

 100

 1000

 0 10 20 30 40 50 60 70 80

B
ou

nd
/O

pt
im

al
 V

al
ue

Benchmark instance by increasing CPLEX deviation from optimal value

CPLEX
BDD

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 10 20 30 40 50 60 70 80

T
im

e(
s)

Benchmark instance by increasing CPLEX deviation from optimal value

CPLEX
BDD

Figure 7: Comparison of deviation from optimum (top) and time (bottom)
between CPLEX and BDD approach for the dimacs instance set. The maximum
width was set to W = 1000.

21

Table 4: Bound comparison for the dimacs instance set.

OPT n ρ zLP tLP W = 1 t1 W = 10 t10 W = 100 t100 W = 1000 t1000
brock200 1.clq 21 200 0.25 38.39 1.69 75 0 46 0.02 38 0.11 32 0.91
brock200 2.clq 12 200 0.5 21.93 8.14 50 0 25 0.01 17 0.06 13 0.51
brock200 3.clq 15 200 0.39 27.73 4.26 57 0 34 0.02 25 0.08 19 0.75
brock200 4.clq 17 200 0.34 31.28 1.91 62 0.01 37 0.02 29 0.09 23 0.87
brock400 1.clq 27 400 0.25 65.05 26.31 140 0.01 89 0.07 66 0.42 55 3.83
brock400 2.clq 29 400 0.25 65.21 25.15 134 0.01 89 0.06 66 0.43 56 3.79
brock400 3.clq 31 400 0.25 65.05 26.02 137 0.01 88 0.06 67 0.42 56 3.74
brock400 4.clq 33 400 0.25 65.11 25.02 133 0.01 90 0.07 67 0.42 55 3.99
brock800 1.clq 23 800 0.35 92.56 618.35 216 0.04 126 0.22 89 1.34 68 15.97
brock800 2.clq 24 800 0.35 93.35 416.84 223 0.04 129 0.24 90 1.3 67 16.46
brock800 3.clq 25 800 0.35 92.71 594.02 224 0.04 123 0.23 88 1.3 67 18.11
brock800 4.clq 26 800 0.35 92.85 623.49 225 0.04 128 0.23 89 1.29 68 16.45
C1000.9.clq 68 1000 0.1 217.04 314.08 409 0.07 319 0.54 270 4.34 240 38
C125.9.clq 34 125 0.1 43.06 0.04 62 0 49 0.01 46 0.07 41 0.51
C2000.5.clq 16 2000 0.5 1000.00 3601.88 414 0.24 200 1.17 124 6.1 80 73.77
C2000.9.clq 77 2000 0.1 1000.00 3600.49 800 0.27 618 2.15 507 17.44 438 151.52
C250.9.clq 44 250 0.1 71.67 0.98 121 0 92 0.03 84 0.27 74 2.47
C4000.5.clq 18 4000 0.5 2000.00 3606.94 796 0.92 374 4.76 237 24.53 147 209.03
C500.9.clq 57 500 0.1 123.11 6.47 219 0.02 174 0.13 146 1.07 133 9.13

c-fat200-1.clq 12 200 0.92 12.00 11.57 12 0 12 0 12 0.01 12 0
c-fat200-2.clq 24 200 0.84 24.00 5.07 24 0 24 0 24 0 24 0.01
c-fat200-5.clq 58 200 0.57 66.67 1.46 68 0 58 0.01 58 0.01 58 0
c-fat500-1.clq 14 500 0.96 14.00 507.05 14 0.01 14 0.01 14 0.02 14 0.01
c-fat500-10.clq 126 500 0.63 126.00 69.88 126 0.02 126 0.02 126 0.02 126 0.02
c-fat500-2.clq 26 500 0.93 26.00 413.38 26 0.01 26 0.02 26 0.01 26 0.01
c-fat500-5.clq 64 500 0.81 64.00 147.73 64 0.01 64 0.01 64 0.01 64 0.01

gen200 p0.9 44.clq 44 200 0.1 44.00 0.39 86 0 70 0.02 63 0.17 58 1.43
gen200 p0.9 55.clq 55 200 0.1 55.00 0.28 95 0 76 0.02 64 0.17 60 1.58
gen400 p0.9 55.clq 55 400 0.1 55.00 4.18 130 0.01 126 0.08 102 0.71 97 5.94
gen400 p0.9 65.clq 65 400 0.1 65.00 5.53 155 0.01 128 0.09 113 0.69 105 6.6
gen400 p0.9 75.clq 75 400 0.1 75.00 7.91 169 0.02 135 0.08 114 0.69 107 5.85
hamming10-2.clq 512 1024 0.01 512.00 0.04 555 0.07 567 0.66 536 6.07 545 60.23
hamming10-4.clq 40 1024 0.17 51.20 292.85 173 0.07 154 0.49 126 3.77 93 35.92
hamming6-2.clq 32 64 0.1 32.00 0.01 35 0 34 0 32 0.01 32 0.11
hamming6-4.clq 4 64 0.65 5.33 0.1 11 0 4 0 4 0 4 0
hamming8-2.clq 128 256 0.03 128.00 0.01 138 0 137 0.04 131 0.31 137 3.02
hamming8-4.clq 16 256 0.36 16.00 4.25 45 0 32 0.02 23 0.13 18 1.09
johnson16-2-4.clq 8 120 0.24 8.00 0.06 15 0 15 0.01 13 0.03 8 0.13
johnson32-2-4.clq 16 496 0.12 16.00 2.26 31 0.01 33 0.11 30 0.92 30 7.05
johnson8-2-4.clq 4 28 0.44 4.00 0 7 0 4 0 4 0 4 0
johnson8-4-4.clq 14 70 0.23 14.00 0.02 21 0 17 0 14 0.01 14 0.06

keller4.clq 11 171 0.35 14.85 1.44 28 0 21 0.01 14 0.07 12 0.43
keller5.clq 27 776 0.25 31.00 677.79 71 0.04 74 0.26 62 1.82 51 18.29
keller6.clq 59 3361 0.18 1680.50 3601.81 154 0.72 240 5.5 195 45.47 190 429.03

MANN a27.clq 126 378 0.01 135.00 0.03 144 0.01 169 0.07 152 0.55 137 4.49
MANN a45.clq 345 1035 0 360.00 0.08 375 0.04 437 0.38 376 3.27 366 32.42
MANN a81.clq 1100 3321 0 1134.00 0.36 1161 0.4 1493 3.53 1429 35.82 1222 299.96
MANN a9.clq 16 45 0.07 18.00 0 21 0 20 0 18 0 16 0.01

p hat1000-1.clq 10 1000 0.76 47.68 3600.44 134 0.05 55 0.18 32 0.92 20 15.4
p hat1000-2.clq 46 1000 0.51 92.84 3385.19 247 0.06 154 0.29 122 1.56 101 17.69
p hat1000-3.clq 68 1000 0.26 149.65 1249.82 350 0.06 245 0.43 197 2.85 169 27.78
p hat1500-1.clq 12 1500 0.75 750.00 3601.54 207 0.11 80 0.43 48 2.47 29 36.14
p hat1500-2.clq 65 1500 0.49 408.55 3600.74 379 0.14 237 0.7 187 3.97 157 43.16
p hat1500-3.clq 94 1500 0.25 335.08 3600.52 507 0.15 357 1 299 6.75 262 58.43
p hat300-1.clq 8 300 0.76 16.70 82.95 52 0.01 20 0.02 12 0.06 9 0.31
p hat300-2.clq 25 300 0.51 34.49 34.27 83 0.01 55 0.03 43 0.13 37 1.23
p hat300-3.clq 36 300 0.26 54.95 9.31 113 0.01 80 0.04 67 0.24 61 2.54
p hat500-1.clq 9 500 0.75 25.48 539.9 77 0.02 31 0.05 19 0.2 12 2.02
p hat500-2.clq 36 500 0.5 54.38 198.9 130 0.01 86 0.07 70 0.39 61 4.8
p hat500-3.clq 50 500 0.25 85.32 69.56 186 0.02 131 0.11 111 0.71 99 6.8
p hat700-1.clq 11 700 0.75 33.10 1845.98 101 0.03 41 0.09 25 0.4 15 6.18
p hat700-2.clq 44 700 0.5 71.40 808.32 185 0.03 121 0.14 92 0.77 81 8.58
p hat700-3.clq 62 700 0.25 113.30 250.18 255 0.04 183 0.21 152 1.39 132 14.5
san1000.clq 15 1000 0.5 17.18 1633.5 27 0.06 23 0.24 17 1.42 15 15.12

san200 0.7 1.clq 30 200 0.3 30.00 0.76 50 0.01 35 0.01 30 0.09 30 0.77
san200 0.7 2.clq 18 200 0.3 18.53 2.11 36 0.01 24 0.01 20 0.08 18 0.55
san200 0.9 1.clq 70 200 0.1 70.00 0.08 108 0 83 0.02 71 0.16 70 1.49
san200 0.9 2.clq 60 200 0.1 60.00 0.14 98 0 77 0.03 65 0.17 60 1.39
san200 0.9 3.clq 44 200 0.1 44.00 0.28 81 0 63 0.02 57 0.17 53 1.67
san400 0.5 1.clq 13 400 0.5 13.80 77.29 24 0.01 15 0.04 13 0.22 13 1.45
san400 0.7 1.clq 40 400 0.3 41.25 28.86 84 0.01 55 0.06 44 0.39 40 3.88
san400 0.7 2.clq 30 400 0.3 33.65 29.93 57 0.01 48 0.06 37 0.4 31 3.62
san400 0.7 3.clq 22 400 0.3 22.00 53.75 40 0.01 41 0.06 28 0.38 26 4.53
san400 0.9 1.clq 100 400 0.1 100.00 3.3 203 0.01 147 0.08 120 0.7 109 5.95
sanr200 0.7.clq 18 200 0.3 33.84 2.13 67 0 43 0.01 33 0.09 27 0.95
sanr200 0.9.clq 42 200 0.1 59.89 0.47 97 0.01 72 0.02 66 0.17 60 1.52
sanr400 0.5.clq 13 400 0.5 38.61 66.02 96 0.01 49 0.05 32 0.24 23 4.24
sanr400 0.7.clq 21 400 0.3 58.49 30.62 119 0.01 78 0.06 59 0.36 46 4.43

22

References

[1] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27:509–516, 1978.

[2] H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint
store based on multivalued decision diagrams. In C. Bessière, editor, Prin-
ciples and Practice of Constraint Programming (CP 2007), volume 4741 of
Lecture Notes in Computer Science, pages 118–132. Springer, 2007.

[3] B. Becker, M. Behle, F. Eisenbrand, and R. Wimmer. BDDs in a branch
and cut framework. In S. Nikoletseas, editor, Experimental and Efficient
Algorithms, Proceedings of the 4th International Workshop on Efficient and
Experimental Algorithms (WEA 05), volume 3503 of Lecture Notes in Com-
puter Science, pages 452–463. Springer, 2005.

[4] Markus Behle and Friedrich Eisenbrand. 0/1 vertex and facet enumeration
with BDDs. In ALENEX. SIAM, 2007.

[5] David Bergman, Andre A. Cire, W.-J. van Hoeve, and J. N. Hooker. Vari-
able ordering for the application of BDDs to the maximum independent set
problem. In Integration of AI and OR Techniques in Constraint Program-
ming for Combinatorial Optimization Problems (CPAIOR 2012). Springer,
to appear.

[6] David Bergman, Willem Jan van Hoeve, and John N. Hooker. Manipulating
MDD relaxations for combinatorial optimization. In Tobias Achterberg and
J. Christopher Beck, editors, CPAIOR, volume 6697 of Lecture Notes in
Computer Science, pages 20–35. Springer, 2011.

[7] Bollig and Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEETC: IEEE Transactions on Computers, 45, 1996.

[8] R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677–691, 1986.

[9] Rudiger Ebendt, Wolfgang Gunther, and Rolf Drechsler. An improved
branch and bound algorithm for exact BDD minimization. IEEE Trans.
on CAD of Integrated Circuits and Systems, 22(12):1657–1663, 2003.

[10] T. Hadzic and J. N. Hooker. Postoptimality analysis for integer program-
ming using binary decision diagrams, presented at GICOLAG workshop
(Global Optimization: Integrating Convexity, Optimization, Logic Pro-
gramming, and Computational Algebraic Geometry), Vienna. Technical
report, Carnegie Mellon University, 2006.

[11] T. Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for
0-1 programming. In E. Loute and L. Wolsey, editors, Proceedings of the
International Workshop on Integration of Artificial Intelligence and Oper-
ations Research Techniques in Constraint Programming for Combinatorial

23

Optimization Problems (CPAIOR 2007), volume 4510 of Lecture Notes in
Computer Science, pages 84–98. Springer, 2007.

[12] T. Hadzic, J. N. Hooker, B. O’Sullivan, and P. Tiedemann. Approximate
compilation of constraints into multivalued decision diagrams. In P. J.
Stuckey, editor, Principles and Practice of Constraint Programming (CP
2008), volume 5202 of Lecture Notes in Computer Science, pages 448–462.
Springer, 2008.

[13] S. Hoda, W.-J. van Hoeve, and John N. Hooker. A systematic approach to
MDD-based constraint programming. In Proceedings of the 16th Interna-
tional Conference on Principles and Practices of Constraint Programming,
Lecture Notes in Computer Science. Springer, 2010.

[14] Alan John Hu. Techniques for efficient formal verification using binary de-
cision diagrams. Thesis CS-TR-95-1561, Stanford University, Department
of Computer Science, December 1995.

[15] C. Y. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell Systems Technical Journal, 38:985–999, 1959.

[16] Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram based
approach for mining frequent subsequences. Knowl. Inf. Syst, 24(2):235–
268, 2010.

[17] I. Wegener. Branching programs and binary decision diagrams: theory and
applications. SIAM monographs on discrete mathematics and applications.
Society for Industrial and Applied Mathematics, 2000.

24

