
Slide 1

A Hybrid
Constraint Programming/Integer Programming

Method for Scheduling

John Hooker
Carnegie Mellon University

Univ. de São Paulo
October 2012

Problem

• Solve planning and scheduling problems that are
intractable with existing technology.

• Assign jobs to processors.

• Schedule the jobs on each processor.

Slide 2

Approach

• Combine integer programming and constraint programming .

• …through logic-based Benders decomposition .

• Exploit complementary strengths.

• IP is good for assignment problems

• CP is good for scheduling.

• Integrated approach is more effective than IP or CP used
separately.

Slide 3

Today’s Agenda

• Briefly introduce CP and resource-constrained scheduling.

• Apply CP/IP Benders to a generic planning and scheduling
problem.

• Assign jobs to processors and schedule them subject to
time windows.

• Allow jobs to run in parallel on a processor, subject to
a resource constraint.

• Report computational results.

• Investigate whether CP/IP Benders works for a pure
scheduling problem .

• No obvious decomposition

Slide 4

Motivation

• CP and IP can work together.

• Complementary strengths.

• IP good for assignment, CP good for scheduling.

• General-purpose solvers can implement integrated methods.

• Solvers are moving in this direction.

• IBM OPL Studio, Mosel, SCIP, SIMPL.

• Logic-based Benders implemented in SIMPL.

Slide 5

What Is Constraint Programming?

Basic Idea
Resource-constrained scheduling

Slide 6

What is Constraint Programming?

• An alternative to optimization methods in operations research.

• Developed in the computer science and artificial intelligence
communities.

• Over the last 20-30 years.

• Particularly successful in scheduling and logistics.

Slide 7

• Container port scheduling
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control
(Siemens, Xerox)

Applications

Slide 8

Applications

• Job shop scheduling

• Assembly line smoothing
and balancing

• Cellular frequency
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning

Slide 9

• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food,
nuclear fuel)

• Warehouse management

• Course timetabling

Applications

Slide 10

• Each line of the model is both a constraint and a procedure .

– Constraint: often a high-level global constraint
– Different modeling paradigm than math programming

– Procedure: removes infeasible values from variable
domains

– Filtering, domain consistency maintenance
– Passes reduced domains to next constraint

(constraint propagation).

Basic Idea

Slide 11

• Each line of the model is both a constraint and a procedure .

– Constraint: often a high-level global constraint
– Different modeling paradigm than math programming

– Procedure: removes infeasible values from variable
domains

– Filtering, domain consistency maintenance
– Passes reduced domains to next constraint

(constraint propagation).

• Brief intellectual history…

Basic Idea

Slide 12

• Attempt to unify procedural and
declarative modeling

– Procedural: Write the
algorithm (CS)

– Declarative: Write the
constraints (OR)

– Logic programming:
Propositions are also
procedural goals

Example of Prolog

First step: Logic programming

Slide 13

• Interpret unification step in
1st order logic as constraint
solving

– Extend equality
constraints in logic
to more general
constraints.

– Constraints accumulate in a constraint store
at each leaf node.

– Node is feasible (“succeeds”) if constraints
have a solution.

Second step: Constraint logic programming

Slide 14

• Drop the logic programming
framework.

• View each line of the program as
specifying both a constraint and
a procedure.

– Constraints are high-level
global constraints

– The procedure removes
infeasible values from variable
domains (filtering, domain consistency maintenance)

– Passes reduced domains to next constraint
(constraint propagation).

Third step: Constraint programming

Slide 15

Advantages of CP

• Good at scheduling, logistics

• …where other optimization methods may fail.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Simpler models (due to global constraints).

• Constraints convey problem structure to the solver.

Slide 16

Disadvantages of CP

• Less effective for continuous optimization.

• Relies on interval propagation

• Less robust

• May blow up past a certain problem size,

• Lacks relaxation technology

• Software is less highly engineered

• Younger field

Slide 17

• One of CP’s most successful areas.

• Schedule jobs in parallel.

• Subject to time windows and a resource constraint

• Implemented by the cumulative scheduling constraint.

• This is a global constraint

• That is, a constraint that enforces a highly-structured
set of more elementary constraints.

Resource-constrained Scheduling

Slide 18

• The cumulative scheduling constraint:

Job start times
(variables)

Job processing times
Job resource
requirements

()… … …1 1 1cumulative (, ,),(, ,),(, ,),n n nt t p p c c C

Resource-constrained Scheduling

Slide 19

Resource limit

• The problem

• Load 34 items on the ship in minimum time (min makespan)

• Each item i requires pi minutes and ci workers.

• Total of 8 workers available.

Example: Ship loading

Slide 20

1 → 2,4
2 → 3
3 → 5,7
4 → 5
5 → 6
6 → 8
7 → 8
8 → 9
9 → 10
9 → 14
10 → 11
10 → 12

11 → 13
12 → 13
13 → 15,16
14 → 15
15 → 18
16 → 17
17 → 18
18 → 19
18 → 20,21
19 → 23
20 → 23
21 → 22

22 → 23
23 → 24
24 → 25
25 → 26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints

Slide 21

Use the cumulative scheduling constraint.

()
≥ + =

≥ + ≥ +

…

… … …1 34 1 34 1 34

2 1 4 1

min

s.t. , 1, ,34

cumulative (, ,),(, ,),(, ,),8

3, 3, etc. (precedence constraints)

i i

z

z t p i

t t p p c c

t t t t

Note that there are no integer variables.

Slide 22

• Domain filtering is a key technology in CP solvers.

• Remove infeasible values from variable domains.

• That is, values that cannot occur in any feasible
solution.

• Bounds propagation is one form of filtering.

• Tighten bounds on start time of a job.

• Propagate the bounds to other constraints in the
problem.

• Edge finding is the most basic technique.

Bounds propagation for cumulative scheduling

Slide 23

Consider a cumulative scheduling constraint:

()1 2 3 1 2 3 1 2 3cumulative (, ,),(, ,),(, ,),s s s p p p c c c C

A feasible solution:

Bounds propagation for cumulative scheduling

Slide 24

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Suppose that job 3 is not the last to finish.

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Bounds propagation for cumulative scheduling

Slide 25

We can deduce that job 3 must finish after the others finish: { }3 1,2>

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8

Suppose that job 3 is not the last to finish.

Bounds propagation for cumulative scheduling

Slide 26

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total “energy”
required = 22

9

5

8Energy available
= 20

E123 L12

Bounds propagation for cumulative scheduling

Slide 27

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if
space is left for job
3 to start anytime
= 10

10

Bounds propagation for cumulative scheduling

Slide 28

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

Energy available
for jobs 1,2 if
space is left for job
3 to start anytime
= 10

10Excess energy
required by jobs
1,2 = 4

4

Bounds propagation for cumulative scheduling

Slide 29

{1,2} 3 {1,2} {1,2}
{1,2}

3

()()e C c L E
E

c

− − −
+

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

{ } 3 {1,2} {1,2}12

{1,2}
3

()()e C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if
space is left for job
3 to start anytime
= 10

10Excess energy
required by jobs
1,2 = 4

4 Move up job 3
release time
4/2 = 2 units
beyond E{1,2}

E3

Bounds propagation for cumulative scheduling

Slide 30

In general, if (){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to

()() 0

()()
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+

In general, if (){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to

()() 0

()()
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
−

Bounds propagation for cumulative scheduling

Slide 31

There is an O(n2) algorithm that finds all applications of the
edge finding rules.

Bounds propagation for cumulative scheduling

Slide 32

Other propagation rules for cumulative
scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.

Slide 33

• Constraint propagation + relaxation

– Propagation reduces search space.

– Relaxation bounds prune the search

• CP-based column generation

– In branch-and-price methods

– CP accommodates complex constraints on columns

• Decomposition methods

– Distinguish master problem and subproblem

– MILP solves one, CP the other.

• Use CP-style modeling

Schemes for CP/IP Integration

Slide 34

• Constraint propagation + relaxation

– Propagation reduces search space.

– Relaxation bounds prune the search

• CP-based column generation

– In branch-and-price methods

– CP accommodates complex constraints on columns

• Decomposition methods
– Distinguish master problem and subproblem
– MILP solves one, CP the other.

• Use CP-style modeling

Schemes for CP/IP Integration

Today’s topic

Slide 35

Planning and Scheduling

A small example
Benders cuts

Computational results

Slide 36

A Small Example

• Assign 5 jobs to 2 processors (A and B), and schedule the
machines assigned to each machine within time windows.

• The objective is to minimize makespan.

• Assign the jobs in the master problem , to be solved by IP.

• Schedule the jobs in the subproblem , to be solved by CP.

Time lapse between
start of first job and
end of last job.

Slide 37

Slide 38

Job Data Example

Assign 5 jobs to 2 processors.

Schedule jobs assigned to each
processor without overlap.

Processsor A

Processor B

A Small Example

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
processor individually.

So the subproblem decouples.

Machine A

Machine B

A Small Example

Slide 39

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
processor individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5
on processor A

A Small Example

Slide 40

Slide 41

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows

Jobs cannot overlap

The model:

A Small Example

Processor assigned to job j

Special case of cumulative constraint

Slide 42

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows

Jobs cannot overlap

For a fixed assignment the subproblem on each processor i is

()

min

, all with

, all with

disjunctive (),()

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

The model:

A Small Example

Benders cuts

Suppose we assign jobs 1,2,3,5 to processor A in iteration k.

We can prove that 10 is the optimal makespan by proving that the
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.
So these jobs alone create a minimum makespan of 10.

So we have a simple
“nogood” cut 2 3 4

1

10 if
()

0 otherwisek

x x x A
M B x+

= = =≥ =

Slide 43

We want the master problem to be an IP, which is good for
assignment problems.

So we write the Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
M B x+

= = =≥ =

using 0-1 variables: ()2 3 510 2

0
A A AM x x x

M

≥ + + −
≥ = 1 if job 5 is

assigned to
processor A

Benders cuts

Slide 44

Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

, 2 , etc., ,

10(2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

M

p x

p x

M p x v p x i A B

M x x x

M x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from processor A

Benders cut from processor B

Slide 45

Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts.

We are now using the cut
1

ik

ik ij ik
j J

v M x J
∈

≥ − +

∑

Min makespan
on processor i
in iteration k

Set of jobs
assigned to
processor i in
iteration k

A stronger cut provides a useful bound even if only some of the jobs in
Jik are assigned to processor i: (1)

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

Slide 46

Stronger Benders cuts

To strengthen cuts further, the subproblem is re-solved after removing
jobs one at a time from Jik.

1
ik

ik ij ik
j J

v M x J
∈

≥ − +

∑

Min makespan
on processor i
in iteration k

Set of jobs
assigned to
processor i in
iteration k

If removing a job has no effect on min makespan, it is left out of Jik.

Slide 47

Slide 48

{ } { }* (1) max min
ii

i

i ij ij j jj Jj J
j J

M M p x d d
∈∈∈

≥ − − + −

∑

Min makespan Benders cut for cumulative scheduling subproblem,
if release times are equal.

Minimum makespan
on processor i for jobs

currently assigned

Jobs currently assigned
to processor i

Stronger Benders cuts

There is a cost for assigning each job to each processor.

Subproblem is a feasibility problem – Can these jobs be assigned to
the processor?

Benders cuts are very simple:

Slide 49

(1) 1
i

ij
j J

x
∈

− ≥∑
Don’t assign these
jobs to processor i

again

Min cost problem

Cuts are iteratively strengthened as before.

IP model is solved by CPLEX 11.

We are now updating results using CPLEX 12 in both IP and Benders
methods. Also faster CP solver for subproblems.

Slide 50

Computational Results

Slide 51

Results – Min cost problem

Long processing times – average of 5 instances

Jobs
Proces-

sors

MILP (CPLEX 11)
Nodes Sec.

Benders
Iter. Cuts Sec.

3 2 1 0.00 2 1 0.00

7 3 1 0.00 13 16 0.12

12 3 3,351 6.6 26 35 0.73

15 5 2,779 8.8 20 29 0.83

20 5 33,321 882 13 82 5.4

22 5 352,309 10,563 69 98 9.6

Slide 52

Results – Min cost problem

Short processing times – average of 5 instances

*out of memory

Jobs
Proces-

sors

MILP (CPLEX 11)
Nodes Sec.

Benders
Iter. Cuts Sec.

3 2 1 0.01 1 0 0.00

7 3 1 0.02 1 0 0.00

12 3 499 0.98 1 0 0.01

15 5 529 2.6 2 1 0.06

20 5 250,047 369 6 5 0.28

22 5 > 27.5 mil. > 48 hr 9 12 0.42

25 5 > 5.4 mil. > 19 hr* 17 21 1.09

Slide 53

Results – Min makespan problem

Average of 5 instances

+Some instances exceeded limit of 2 hours

Jobs
MILP
Sec.

Benders
Sec.

10 3.9 0.23

12 12 0.38

14 524 1.4

16 1716+ 7.6

28 4619+ 30

20 8.7

22 2012+

Jobs
MILP
Sec.

Benders
Sec.

10 1 0.19

12 5 0.43

14 24 0.82

16 35 1.0

28 3931+ 4.4

20 28

22 945

3 processors 4 processors

Slide 54

Results – Min cost and makespan

Benders method – Larger instances (average of 5)

Jobs Processors
Min cost

Sec.

Min
makespan

Sec.

10 2 0.1 0.2

15 3 0.3 1.6

20 4 3.2 32

25 5 3.3 28

30 6 1.4 65

35 7 8.0 767

40 8 157 5944+

45 9 95 5762+

50 10 19

+Some instances exceeded limit of 2 hours

Slide 55

• The min tardiness problem cuts are slightly different.

Min Tardiness Problem

* 1 (1)
i

i i ij
j J

T T y
∈

≥ − −

∑

\

(\) 1 (1)
i i

i i i i ij
j J Z

T T J Z y
∈

≥ − −

∑

Similar to makespan
nogood cuts

Set of jobs that can be removed
from processor i, one at a time with
replacement, without changing the
min tardiness.

Ti(S) = min
tardiness on
processor i
when it runs
jobs in set S

Slide 56

Results – Min tardiness problems
3 processors – Individual instances

Jobs
MILP
Sec.

Benders
Sec.

10 4.7 2.6

6.4 1.6

6.4 1.6

32 4.1

33 22

12 0.7 0.2

0.6 0.1

0.7 0.2

15 2.4

25 12

Jobs
MILP
Sec.

Benders
Sec.

14 7.0 6.1

34 3.7

45 19

73 40

>7200 3296

16 19 1.4

46 2.1

52 4.2

1105 156

3424 765

Slide 57

3 processors – Individual instances

Jobs
MILP
Sec.

Benders
Sec.

18 187 2.8

15 5.3

46 49

256 47

>7200 1203

20 105 18

4141 23

39 29

1442 332

>7200 >7200

Jobs
MILP
Sec.

Benders
Sec.

22 6.3 19

584 37

>7200 >7200

>7200 >7200

>7200 >7200

24 10 324

>7200 94

>7200 110

>7200 >7200

>7200 >7200

Results – Min tardiness problems

Slide 58

• Benders is much faster for min cost and min makespan problems.

• Benders is somewhat faster for min tardiness problem.

• Better cuts are needed.

• Updated results are similar so far.

Summary of results

Slide 59

• In general, Benders cuts are obtained by solving the inference
dual of the subproblem.

• The dual solution is a proof of optimality.

• LP dual is a special case, where the proof is encoded by dual
multipliers.

Inference Dual

Slide 60

• In general, Benders cuts are obtained by solving the inference
dual of the subproblem.

• The dual solution is a proof of optimality.

• LP dual is a special case, where the proof is encoded by dual
multipliers.

• The Benders cut states conditions on the master problem
variables under which the proof remains valid .

• Classical Benders cut is a special case.

Inference Dual

A Pure Scheduling Problem

Segmented problem
Unsegmented problem

Slide 61

Single-processor Scheduling

• Apply logic-based Benders to single-processor scheduling with
long time horizons and many jobs.

• The classic one-machine scheduling problem.

Slide 62

Single-processor Scheduling

• Apply logic-based Benders to single-processor scheduling with
long time horizons and many jobs.

• The classic one-machine scheduling problem.

• The problem does not naturally decompose.

• But we decompose it by assigning jobs to segments of the time
horizon.

Slide 63

Single-processor Scheduling

• Apply logic-based Benders to single-processor scheduling with
long time horizons and many jobs.

• The classic one-machine scheduling problem.

• The problem does not naturally decompose.

• But we decompose it by assigning jobs to segments of the time
horizon.

• Two versions:

• Segmented problem – Jobs cannot cross segment boundaries
(e.g., weekends).

• Unsegmented problem – Jobs can cross segment boundaries.

Slide 64

Segmented problem

• Benders approach is very similar to that for the planning and
scheduling problem.

• Assign jobs to time segments rather than processors.

• Benders cuts are the same.

segment
Jobs do not overlap
segment boundaries

Slide 65

Segmented problem

• Experiments use most recent versions of CP and IP solvers.

• IBM OPL Studio 6.1

• CPLEX 12

Slide 66

67

Segmented problem computational results

Feasibility – Wide time windows (individual instances)

Slide 67

68

Segmented problem computational results

Feasibility – Tight time windows (individual instances)

Slide 68

69

Segmented problem computational results

Min makespan – Wide time windows (individual instances)

Slide 69

70

Segmented problem computational results

Min makespan – Tight time windows (individual instances)

Slide 70

71

Segmented problem computational results

Min tardiness – Wide time windows (individual instances)

Slide 71

72

Segmented problem computational results

Min tardiness – Tight time windows (individual instances)

Slide 72

Segmented problem

Computational results – tight time windows

Slide 73

Segmented problem

Computational results – wide time windows

Slide 74

Unsegmented problem

• Master problem is more complicated.

• Jobs can overlap two or more segments.

• Master problem variables must keep track of this.

• Benders cuts more sophisticated.

segment
Jobs can overlap
segment boundaries

Slide 75

Unsegmented problem

• Master problem:

yijk variables keep
track of whether job
j starts, finishes, or
runs entirely in
segment i.

xijk variables keep
track of how long a
partial job j runs in
segment i.

Slide 76

Unsegmented problem

Case 1: No partial jobs in segment i. Use simple nogood cut

0(1) 1
io

ij
j J

y
∈

− ≥∑

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

Slide 77

Unsegmented problem

Case 2: There is a partial job j1 only at the start of segment i.
Maximize the time job j1 can run in this segment, rather than fixing
it to the time in solution of master problem

Case 2a: This modified problem is still infeasible. Use nogood
cut

0(1) 1
io

ij
j J

y
∈

− ≥∑

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

Slide 78

Unsegmented problem

Case 2: There is a partial job j1 only at the start of segment i.
Maximize the time job j1 can run in this segment, rather than fixing
it to the time in solution of master problem

Case 2b: Max time is 0. Must remove job j1 or another job.

11 0(1) (1) 1
io

ij ij
j J

y y
∈

− + − ≥∑

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

Slide 79

Unsegmented problem

Case 2: There is a partial job j1 only at the start of segment i.
Maximize the time job j1 can run in this segment, rather than fixing
it to the time in solution of master problem

Case 2c: Max time > 0. Then time is either less than given by
master, or job j1 is dropped. Use this cut:

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

1 1 1

0(1) 1

(1)
io

i ij
j J

ij ij j i

y

x x p

α

α
∈

+ − ≥

≤ + −

∑

where αi ∈ {0,1}
Slide 80

Unsegmented problem

Case 3: There is a partial job j2 only at the end of segment i. Cuts
are similar to Case 2.

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

Slide 81

Unsegmented problem

Case 4: There are partial job j1 at the start and j2 at the end of
segment i. Maximize the sum xi* of the times they can run in this
segment.

Case 4b: xi* = 0. Use the cuts

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

1

2

1 0

2 0

(1) (1) 1

(1) (1) 1
io

io

ij ij
j J

ij ij
j J

y y

y y

∈

∈

− + − ≥

− + − ≥

∑

∑

Slide 82

Unsegmented problem

Case 4: There are partial job j1 at the start and j2 at the end of
segment i. Maximize the sum xi* of the times they can run in this
segment.

Case 4c: xi* > 0. Use the cuts

• Cuts for min cost problem.

• Subproblem is a feasibility problem. We generate a cut if it
is infeasible.

1 2

1 2 1 2

1 2 0

*

(1) (1) (1) 1

()(1)
io

i ij ij ij
j J

ij ij i j j i

y y y

x x x p p

γ

γ
∈

+ − + − + − ≥

+ ≤ + + −

∑

where γi ∈ {0,1}

Slide 83

Unsegmented problem

Case 1: There are no partial jobs in segment i. Use the cuts

• Cuts for min makespan problem.

• Subproblem is an optimization problem.

{ } { }()
{ } { }()

0 0

00
0

00

* * *
0 0

0 0

0

(1) (1)

1 ,

max min (1)

max min

i i

ii
i

ii

i j ij i i ij i i
j J j J

i ij i

i j j ijj Jj J
j J

i j jj Jj J

M M p y w M y M q

q y j J

w d d y

w d d

′ ′′∈ ∈

′′ ∈∈ ′∈

′′ ∈∈

≥ − − − − − −

≤ − ∈

≤ − −

≤ −

∑ ∑

∑

Slide 84

Unsegmented problem

Case 2: There is a partial job at the start of segment i. Solve a
series of problems to generate the cuts

• Cuts for min makespan problem.

• Subproblem is an optimization problem.

()
()

0

1 1 1

1 1 1 1

* *
0

min min

min min

(1) (1)

(1)

i

i i i ij
j J

ij ij i ij i i

ij ij i j ij i i

M M M y

x x p x p

x x p p x p

η

η ε

η

′′∈

≥ − − −

− + ∆ ≤ + + ∆ − −

− + ∆ ≥ − − + − ∆ −

∑

Slide 85

Unsegmented problem computational results

Feasibility -- individual instances

Slide 86

Unsegmented problem computational results

Min makespan – individual instances

Slide 87

Unsegmented problem

Computational results

Slide 88

Unsegmented problem

Computational results

CP solves it quickly
(< 1 sec) or blows up,
in which case Benders
solves it in 6 seconds
(average).

Slide 89

Slide 90

• Segmented problems:

• Benders is much faster for min cost and min makespan
problems.

• Benders is somewhat faster for min tardiness problem.

Summary of results

Slide 91

• Segmented problems:

• Benders is much faster for min cost and min makespan
problems.

• Benders is somewhat faster for min tardiness problem.

• Unsegmented problems:

• Benders and CP can work together.

• Let CP run for 1 second.

• If it fails to solve the problem, it will probably blow up. Switch
to Benders for reasonably fast solution.

Summary of results

Slide 92

Obrigado!

Vocês têm perguntas?

