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Problem

• Solve planning and scheduling problems that are 
intractable with existing technology.

• Assign jobs to processors.

• Schedule the jobs on each processor.
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Approach

• Combine integer programming and constraint programming .

• …through logic-based Benders decomposition .

• Exploit complementary strengths.

• IP is good for assignment problems

• CP is good for scheduling.

• Integrated approach is more effective than IP or CP used 
separately.
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Today’s Agenda

• Briefly introduce CP and resource-constrained scheduling.

• Apply CP/IP Benders to a generic planning and scheduling 
problem.

• Assign jobs to processors and schedule them subject to 
time windows.

• Allow jobs to run in parallel on a processor, subject to 
a resource constraint.

• Report computational results.

• Investigate whether CP/IP Benders works for a pure 
scheduling problem .

• No obvious decomposition

Slide 4



Motivation

• CP and IP can work together.

• Complementary strengths.

• IP good for assignment, CP good for scheduling.

• General-purpose solvers can implement integrated methods.

• Solvers are moving in this direction.

• IBM OPL Studio, Mosel, SCIP, SIMPL.

• Logic-based Benders implemented in SIMPL.
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What Is Constraint Programming?

Basic Idea
Resource-constrained scheduling
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What is Constraint Programming?

• An alternative to optimization methods in operations research.

• Developed in the computer science and artificial intelligence 
communities.

• Over the last 20-30 years.

• Particularly successful in scheduling and logistics.
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• Container port scheduling 
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control 
(Siemens, Xerox)

Applications
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Applications

• Job shop scheduling

• Assembly line smoothing 
and balancing 

• Cellular frequency 
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning
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• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food, 
nuclear fuel)

• Warehouse management

• Course timetabling

Applications
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• Each line of the model is both a constraint and a procedure .

– Constraint: often a high-level global constraint
– Different modeling paradigm than math programming

– Procedure: removes infeasible values from variable 
domains

– Filtering, domain consistency maintenance
– Passes reduced domains to next constraint 

(constraint propagation).

Basic Idea
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• Each line of the model is both a constraint and a procedure .

– Constraint: often a high-level global constraint
– Different modeling paradigm than math programming

– Procedure: removes infeasible values from variable 
domains

– Filtering, domain consistency maintenance
– Passes reduced domains to next constraint 

(constraint propagation).

• Brief intellectual history…

Basic Idea
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• Attempt to unify procedural and 
declarative modeling

– Procedural:  Write the 
algorithm (CS)

– Declarative:  Write the 
constraints (OR)

– Logic programming:
Propositions are also
procedural goals

Example of Prolog

First step:  Logic programming
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• Interpret unification step in
1st order logic as constraint
solving

– Extend equality
constraints in logic
to more general
constraints.

– Constraints accumulate in a constraint store
at each leaf node.

– Node is feasible (“succeeds”) if constraints
have a solution.

Second step:  Constraint logic programming
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• Drop the logic programming
framework.

• View each line of the program as 
specifying both a constraint and 
a procedure.

– Constraints are high-level
global constraints

– The procedure removes 
infeasible values from variable 
domains (filtering, domain consistency maintenance)

– Passes reduced domains to next constraint 
(constraint propagation).

Third step:  Constraint programming
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Advantages of CP

• Good at scheduling, logistics

• …where other optimization methods may fail.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Simpler models (due to global constraints).

• Constraints convey problem structure to the solver.
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Disadvantages of CP

• Less effective for continuous optimization.

• Relies on interval propagation

• Less robust

• May blow up past a certain problem size,

• Lacks relaxation technology

• Software is less highly engineered

• Younger field

Slide 17



• One of CP’s most successful areas.

• Schedule jobs in parallel.

• Subject to time windows and a resource constraint

• Implemented by the cumulative scheduling constraint.

• This is a global constraint 

• That is, a constraint that enforces a highly-structured 
set of more elementary constraints.

Resource-constrained Scheduling
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• The cumulative scheduling constraint:

Job start times
(variables)

Job processing times
Job resource 
requirements

( )… … …1 1 1cumulative ( , , ),( , , ),( , , ),n n nt t p p c c C

Resource-constrained Scheduling
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• The problem

• Load 34 items on the ship in minimum time (min makespan)

• Each item i requires pi minutes and ci workers.

• Total of 8 workers available.

Example: Ship loading
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1 → 2,4
2 → 3
3 → 5,7
4 → 5
5 → 6
6 → 8
7 → 8
8 → 9
9 → 10
9 → 14
10 → 11
10 → 12

11 → 13
12 → 13
13 → 15,16
14 → 15
15 → 18
16 → 17
17 → 18
18 → 19
18 → 20,21
19 → 23
20 → 23
21 → 22

22 → 23
23 → 24
24 → 25
25 → 26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints
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Use the cumulative scheduling constraint.

( )
≥ + =

≥ + ≥ +

…

… … …1 34 1 34 1 34

2 1 4 1

min

s.t. , 1, ,34

cumulative ( , , ),( , , ),( , , ),8

3,   3,   etc. (precedence constraints)

i i

z

z t p i

t t p p c c

t t t t

Note that there are no integer variables.
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• Domain filtering is a key technology in CP solvers.

• Remove infeasible values from variable domains.

• That is, values that cannot occur in any feasible 
solution.

• Bounds propagation is one form of filtering.

• Tighten bounds on start time of a job.

• Propagate the bounds to other constraints in the 
problem. 

• Edge finding is the most basic technique.

Bounds propagation for cumulative scheduling
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Consider a cumulative scheduling constraint:

( )1 2 3 1 2 3 1 2 3cumulative ( , , ),( , , ),( , , ),s s s p p p c c c C

A feasible solution:

Bounds propagation for cumulative scheduling
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We can deduce that job 3 must finish after the others finish: { }3 1,2>
Suppose that job 3 is not the last to finish.

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Bounds propagation for cumulative scheduling
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We can deduce that job 3 must finish after the others finish: { }3 1,2>

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8

Suppose that job 3 is not the last to finish.

Bounds propagation for cumulative scheduling
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We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total “energy” 
required = 22

9

5

8Energy available 
= 20

E123 L12

Bounds propagation for cumulative scheduling
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We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 
space is left for job 
3 to start anytime
= 10

10

Bounds propagation for cumulative scheduling
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We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

Energy available 
for jobs 1,2 if 
space is left for job 
3 to start anytime 
= 10

10Excess energy 
required by jobs 
1,2 = 4

4

Bounds propagation for cumulative scheduling
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E

c

− − −
+



We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

{ } 3 {1,2} {1,2}12

{1,2}
3

( )( )e C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 
space is left for job 
3 to start anytime 
= 10

10Excess energy 
required by jobs 
1,2 = 4

4 Move up job 3 
release time 
4/2 = 2 units 
beyond E{1,2}

E3

Bounds propagation for cumulative scheduling
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In general, if ( ){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to 

( )( ) 0

( )( )
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+ 

 

In general, if ( ){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to 

( )( ) 0

( )( )
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
− 

 

Bounds propagation for cumulative scheduling
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There is an O(n2) algorithm that finds all applications of the 
edge finding rules.

Bounds propagation for cumulative scheduling
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Other propagation rules for cumulative 
scheduling

• Extended edge finding.

• Timetabling.

• Not-first/not-last rules.

• Energetic reasoning.
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• Constraint propagation + relaxation

– Propagation reduces search space.

– Relaxation bounds prune the search

• CP-based column generation

– In branch-and-price methods

– CP accommodates complex constraints on columns

• Decomposition methods

– Distinguish master problem and subproblem

– MILP solves one, CP the other.

• Use CP-style modeling

Schemes for CP/IP Integration
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• Constraint propagation + relaxation

– Propagation reduces search space.

– Relaxation bounds prune the search

• CP-based column generation

– In branch-and-price methods

– CP accommodates complex constraints on columns

• Decomposition methods
– Distinguish master problem and subproblem
– MILP solves one, CP the other.

• Use CP-style modeling

Schemes for CP/IP Integration

Today’s topic
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Planning and Scheduling

A small example
Benders cuts

Computational results
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A Small Example

• Assign 5 jobs to 2 processors (A and B), and schedule the 
machines assigned to each machine within time windows.

• The objective is to minimize makespan.

• Assign the jobs in the master problem , to be solved by IP.

• Schedule the jobs in the subproblem , to be solved by CP.

Time lapse between 
start of first job and 
end of last job.
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Job Data Example

Assign 5 jobs to 2 processors.

Schedule jobs assigned to each 
processor without overlap.

Processsor A

Processor B

A Small Example



Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
processor individually.

So the subproblem decouples.

Machine A

Machine B

A Small Example
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Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
processor individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5 
on processor A

A Small Example
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( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows

Jobs cannot overlap

The model:

A Small Example

Processor assigned to job j

Special case of cumulative constraint
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( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows

Jobs cannot overlap

For a fixed assignment      the subproblem on each processor i is

( )

min

, all  with 

,  all  with 

disjunctive ( ),( )

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

The model:

A Small Example



Benders cuts

Suppose we assign jobs 1,2,3,5 to processor A in iteration k.  

We can prove that 10 is the optimal makespan by proving that the 
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.  
So these jobs alone create a minimum makespan of 10.

So we have a simple
“nogood” cut 2 3 4

1

10 if 
( )

0 otherwisek

x x x A
M B x+

= = =≥ = 

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We want the master problem to be an IP, which is good for 
assignment problems.

So we write the Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
M B x+

= = =≥ = 


using 0-1 variables: ( )2 3 510 2

0
A A AM x x x

M

≥ + + −
≥ = 1 if job 5 is 

assigned to 
processor A

Benders cuts
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Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

,  2 , etc.,  ,

10( 2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

M

p x

p x

M p x v p x i A B

M x x x

M x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from processor A

Benders cut from processor B
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Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts. 

We are now using the cut 
1

ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 
∑

Min makespan
on processor i
in iteration k

Set of jobs 
assigned to 
processor i in 
iteration k

A stronger cut provides a useful bound even if only some of the jobs in 
Jik are assigned to processor i: (1 )

ik

ik ij ij
j J

v M x p
∈

≥ − −∑
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Stronger Benders cuts

To strengthen cuts further, the subproblem is re-solved after removing 
jobs one at a time from Jik.

1
ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 
∑

Min makespan
on processor i
in iteration k

Set of jobs 
assigned to 
processor i in 
iteration k

If removing a job has no effect on min makespan, it is left out of Jik.
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{ } { }* (1 ) max min
ii

i

i ij ij j jj Jj J
j J

M M p x d d
∈∈∈

 
≥ − − + −  

 
∑

Min makespan Benders cut for cumulative scheduling subproblem,
if release times are equal.

Minimum makespan
on processor i for jobs 

currently assigned

Jobs currently assigned 
to processor i

Stronger Benders cuts



There is a cost for assigning each job to each processor.

Subproblem is a feasibility problem – Can these jobs be assigned to 
the processor?

Benders cuts are very simple:
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(1 ) 1
i

ij
j J

x
∈

− ≥∑
Don’t assign these 
jobs to processor i

again

Min cost problem

Cuts are iteratively  strengthened as before.



IP model is solved by CPLEX 11. 

We are now updating results using CPLEX 12 in both IP and Benders 
methods.  Also faster CP solver for subproblems.
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Computational Results
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Results – Min cost problem

Long processing times – average of 5 instances

Jobs
Proces-

sors

MILP (CPLEX 11)
Nodes          Sec.

Benders
Iter.          Cuts          Sec.

3 2 1 0.00 2 1 0.00

7 3 1 0.00 13 16 0.12

12 3 3,351 6.6 26 35 0.73

15 5 2,779 8.8 20 29 0.83

20 5 33,321 882 13 82 5.4

22 5 352,309 10,563 69 98 9.6
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Results – Min cost problem

Short processing times – average of 5 instances

*out of memory

Jobs
Proces-

sors

MILP (CPLEX 11)
Nodes             Sec.

Benders
Iter.     Cuts       Sec.

3 2 1 0.01 1 0 0.00

7 3 1 0.02 1 0 0.00

12 3 499 0.98 1 0 0.01

15 5 529 2.6 2 1 0.06

20 5 250,047 369 6 5 0.28

22 5 > 27.5 mil. > 48 hr 9 12 0.42

25 5 > 5.4 mil. > 19 hr* 17 21 1.09
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Results – Min makespan problem

Average of 5 instances

+Some instances exceeded limit of 2 hours 

Jobs
MILP
Sec.

Benders
Sec.

10 3.9 0.23

12 12 0.38

14 524 1.4

16 1716+ 7.6

28 4619+ 30

20 8.7

22 2012+

Jobs
MILP
Sec.

Benders
Sec.

10 1 0.19

12 5 0.43

14 24 0.82

16 35 1.0

28 3931+ 4.4

20 28

22 945

3 processors 4 processors
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Results – Min cost and makespan

Benders method – Larger instances (average of 5)

Jobs Processors
Min cost

Sec.

Min 
makespan

Sec.

10 2 0.1 0.2

15 3 0.3 1.6

20 4 3.2 32

25 5 3.3 28

30 6 1.4 65

35 7 8.0 767

40 8 157 5944+

45 9 95 5762+

50 10 19

+Some instances exceeded limit of 2 hours 
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• The min tardiness problem cuts are slightly different.

Min Tardiness Problem

* 1 (1 )
i

i i ij
j J

T T y
∈

 
≥ − − 

 
∑

\

( \ ) 1 (1 )
i i

i i i i ij
j J Z

T T J Z y
∈

 
≥ − − 

 
∑

Similar to makespan 
nogood cuts

Set of jobs that can be removed 
from processor i, one at a time with 
replacement, without changing the 
min tardiness. 

Ti(S) = min 
tardiness on 
processor i
when it runs 
jobs in set S
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Results – Min tardiness problems
3 processors – Individual instances

Jobs
MILP
Sec.

Benders
Sec.

10 4.7 2.6

6.4 1.6

6.4 1.6

32 4.1

33 22

12 0.7 0.2

0.6 0.1

0.7 0.2

15 2.4

25 12

Jobs
MILP
Sec.

Benders
Sec.

14 7.0 6.1

34 3.7

45 19

73 40

>7200 3296

16 19 1.4

46 2.1

52 4.2

1105 156

3424 765
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3 processors – Individual instances 

Jobs
MILP
Sec.

Benders
Sec.

18 187 2.8

15 5.3

46 49

256 47

>7200 1203

20 105 18

4141 23

39 29

1442 332

>7200 >7200

Jobs
MILP
Sec.

Benders
Sec.

22 6.3 19

584 37

>7200 >7200

>7200 >7200

>7200 >7200

24 10 324

>7200 94

>7200 110

>7200 >7200

>7200 >7200

Results – Min tardiness problems
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• Benders is much faster for min cost and min makespan problems.

• Benders is somewhat faster for min tardiness problem.

• Better cuts are needed.

• Updated results are similar so far.

Summary of results



Slide 59

• In general, Benders cuts are obtained by solving the inference 
dual of the subproblem.

• The dual solution is a proof of optimality.

• LP dual is a special case, where the proof is encoded by dual 
multipliers.

Inference Dual
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• In general, Benders cuts are obtained by solving the inference 
dual of the subproblem.

• The dual solution is a proof of optimality.

• LP dual is a special case, where the proof is encoded by dual 
multipliers.

• The Benders cut states conditions on the master problem 
variables under which the proof remains valid .

• Classical Benders cut is a special case.

Inference Dual



A Pure Scheduling Problem

Segmented problem 
Unsegmented problem
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Single-processor Scheduling

• Apply logic-based Benders to single-processor scheduling with 
long time horizons and many jobs.

• The classic one-machine scheduling problem.
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Single-processor Scheduling

• Apply logic-based Benders to single-processor scheduling with 
long time horizons and many jobs.

• The classic one-machine scheduling problem.

• The problem does not naturally decompose.

• But we decompose it by assigning jobs to segments of the time 
horizon.
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Single-processor Scheduling

• Apply logic-based Benders to single-processor scheduling with 
long time horizons and many jobs.

• The classic one-machine scheduling problem.

• The problem does not naturally decompose.

• But we decompose it by assigning jobs to segments of the time 
horizon.

• Two versions:

• Segmented problem – Jobs cannot cross segment boundaries 
(e.g., weekends).

• Unsegmented problem – Jobs can cross segment boundaries.
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Segmented problem

• Benders approach is very similar to that for the planning and 
scheduling problem.

• Assign jobs to time segments rather than processors.

• Benders cuts are the same.

segment
Jobs do not overlap 
segment boundaries
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Segmented problem

• Experiments use most recent versions of CP and IP solvers.

• IBM OPL Studio 6.1

• CPLEX 12
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Segmented problem computational results

Feasibility – Wide time windows (individual instances)
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Segmented problem computational results

Feasibility – Tight time windows (individual instances)
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Segmented problem computational results

Min makespan – Wide time windows (individual instances)
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Segmented problem computational results

Min makespan – Tight time windows (individual instances)
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Segmented problem computational results

Min tardiness – Wide time windows (individual instances)
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Segmented problem computational results

Min tardiness – Tight time windows (individual instances)
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Segmented problem

Computational results – tight time windows
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Segmented problem

Computational results – wide time windows
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Unsegmented problem

• Master problem is more complicated.

• Jobs can overlap two or more segments.

• Master problem variables must keep track of this.

• Benders cuts more sophisticated.

segment
Jobs can overlap 
segment boundaries
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Unsegmented problem

• Master problem:

yijk variables keep 
track of whether job 
j starts, finishes, or 
runs entirely in 
segment i.

xijk variables keep 
track of how long a 
partial job j runs in 
segment i.
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Unsegmented problem

Case 1:  No partial jobs in segment i.  Use simple nogood cut

0(1 ) 1
io

ij
j J

y
∈

− ≥∑

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.
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Unsegmented problem

Case 2:  There is a partial job j1 only at the start of segment i.  
Maximize the time job j1 can run in this segment, rather than fixing 
it to the time in solution of master problem

Case 2a:  This modified problem is still infeasible.  Use nogood
cut

0(1 ) 1
io

ij
j J

y
∈

− ≥∑

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.
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Unsegmented problem

Case 2:  There is a partial job j1 only at the start of segment i.  
Maximize the time job j1 can run in this segment, rather than fixing 
it to the time in solution of master problem

Case 2b:  Max time is 0.  Must remove job j1 or another job.

11 0(1 ) (1 ) 1
io

ij ij
j J

y y
∈

− + − ≥∑

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.
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Unsegmented problem

Case 2:  There is a partial job j1 only at the start of segment i.  
Maximize the time job j1 can run in this segment, rather than fixing 
it to the time in solution of master problem

Case 2c:  Max time > 0.  Then time is either less than given by 
master, or job j1 is dropped.  Use this cut:

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.

1 1 1

0(1 ) 1

(1 )
io

i ij
j J

ij ij j i

y

x x p

α

α
∈

+ − ≥

≤ + −

∑

where αi ∈ {0,1}
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Unsegmented problem

Case 3:  There is a partial job j2 only at the end of segment i.  Cuts 
are similar to Case 2.

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.
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Unsegmented problem

Case 4:  There are partial job j1 at the start and j2 at the end of 
segment i.  Maximize the sum xi* of the times they can run in this 
segment.

Case 4b:  xi* = 0. Use the cuts

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.
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Unsegmented problem

Case 4:  There are partial job j1 at the start and j2 at the end of 
segment i.  Maximize the sum xi* of the times they can run in this 
segment.

Case 4c:  xi* > 0. Use the cuts

• Cuts for min cost problem.

• Subproblem is a feasibility problem.  We generate a cut if it 
is infeasible.
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where γi ∈ {0,1}
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Unsegmented problem

Case 1:  There are no partial jobs in segment i.  Use the cuts

• Cuts for min makespan problem.

• Subproblem is an optimization problem. 
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Unsegmented problem

Case 2:  There is a partial job at the start of segment i.  Solve a 
series of problems to generate the cuts

• Cuts for min makespan problem.

• Subproblem is an optimization problem. 

( )
( )

0

1 1 1

1 1 1 1

* *
0

min min

min min

(1 ) (1 )

(1 )

i

i i i ij
j J

ij ij i ij i i

ij ij i j ij i i

M M M y

x x p x p

x x p p x p

η

η ε

η

′′∈

≥ − − −

− + ∆ ≤ + + ∆ − −

− + ∆ ≥ − − + − ∆ −

∑

Slide 85



Unsegmented problem computational results

Feasibility -- individual instances
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Unsegmented problem computational results

Min makespan – individual instances
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Unsegmented problem

Computational results
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Unsegmented problem

Computational results

CP solves it quickly 
(< 1 sec) or blows up, 
in which case Benders 
solves it in 6 seconds
(average).
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• Segmented problems: 

• Benders is much faster for min cost and min makespan
problems.

• Benders is somewhat faster for min tardiness problem.

Summary of results
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• Segmented problems: 

• Benders is much faster for min cost and min makespan 
problems.

• Benders is somewhat faster for min tardiness problem.

• Unsegmented problems:

• Benders and CP can work together.

• Let CP run for 1 second.

• If it fails to solve the problem, it will probably blow up.  Switch 
to Benders for reasonably fast solution.

Summary of results
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Obrigado!

Vocês têm perguntas?


