Stochastic Decision Diagrams

John Hooker Carnegie Mellon University

ICS 2022

Motivation

- Decision diagrams (DDs) have proved useful for solving discrete optimization problems.
 - Especially those with recursive dynamic programming (DP) models.
- Yet many (most) DP models are **stochastic**.
 - We therefore generalize DDs to **stochastic DDs** (SDDs) by adding probabilities to arcs.

Deterministic DDs

- A deterministic (binary) DD is a graphical representation of a **Boolean function**.
 - Often used for logic circuit design, product configuration.
 - We use ordered DDs.
 - Easily extended to **multivalued** DDs
- A weighted DD can represent a discrete optimization problem. Hadzic and JH (2006, 2007)
 - For example, the **maximum clique** problem...

Maximum clique

Max clique example

Let binary variable $x_i = 1$ when vertex *i* is in the clique.

Dynamic Programming

- The state transition graph of a dynamic programming (DP) problem can be interpreted as a DD (or MDD).
 - By associating states with nodes of the DD.
 - This opens the door to using DD **relaxation** techniques to obtain bounds for DPs.

Andersen, Hadzic, JH, Tiedemann (2007) Bergman, Cire, van Hoeve, JH (2013)

• ...and to solving the DPs by branch and bound.

Bergman, Cire, van Hoeve, JH (2014)

• For example, the **maximum clique** problem...

Deterministic DDs

Max clique DP model

State variable $S_i = \{ \text{vertices selected so far} \}.$

The recursion is

$$h_i(S_i) = \max \left\{ \begin{array}{cc} h_{i+1}(S_i), & 1+h_{i+1}(S_i \cup \{i\}) \\ \uparrow & \uparrow \\ \mathbf{x}_i = \mathbf{0} & \mathbf{x}_i = \mathbf{1} \end{array} \right\}, \quad i = n, \dots, 1$$

Deterministic DDs

Max clique DP model

State variable $S_i = \{ \text{vertices selected so far} \}.$

The recursion is

$$h_{i}(S_{i}) = \max \left\{ \begin{array}{cc} h_{i+1}(S_{i}), & 1+h_{i+1}(S_{i} \cup \{i\}) \right\}, & i = n, \dots, 1 \\ \uparrow & \uparrow \\ \text{In general,} & x_{i} = 0 & x_{i} = 1 \end{array} \right.$$

$$h_{i}(S_{i}) = \min_{\substack{x_{i} \\ i \\ \text{control}}} \left\{ \begin{array}{c} c_{i}(S_{i}, x_{i}) + h_{i+1}(\phi_{i}(S_{i}, x_{i})) \\ \uparrow & \text{state transition function} \\ \text{cost to go} & 1 \end{array} \right\}, \quad i = n, \dots, 1$$

Deterministic MDDs

Job sequencing example

Let control x_i be *i*th job in sequence. Time window $[r_i, d_i]$ and processing time t_i for each job *i*. Minimize total tardiness.

Weighted DD

State = (S_i, f_i) , where $S_i = \{\text{jobs sequenced so far}\}, f_i = \text{finish time of previous job}$

Deterministic DDs

Job sequencing DP model

State is (S_i, f_i) .

The recursion is $h_i(S_i, f_i) = \min_{x_i \notin S_i} \left\{ c_i(S_i, f_i) + h_{i+1} \left(\phi_i((S_i, f_i), x_i) \right) \right\}$ where

$$c_i((S_i, f_i), x_i) = \max\{0, \max\{r_{x_i}, f_i\} + t_{x_i} - d_{x_i}\}$$

$$\phi_i((S_i, f_i), x_i) = (S_i \cup \{x_i\}, \max\{r_{x_i}, f_i\} + t_{x_i})$$

Dynamic Programming

- Note: a state transition graph is a **different concept** than a DD.
 - A DD does not need state information.

Dynamic Programming

- Note: a state transition graph is a **different concept** than a DD.
 - A DD does not need state information.
- The DD perspective yields advantages:
 - A DD can be often be **reduced** by identifying isomorphic portions of the DD that are associated with different states.
 Bryant (1986 etc.)
 - This occasionally results in **radical** simplification (e.g., inventory management).
 JH (2013)
 - DDs can also have **different** nodes that correspond to the **same state** (we will do this later).
 - DP can benefit from **relaxation techniques** that have been developed for DDs...

Relaxed DDs

- A **relaxed** DD represents a superset of feasible solutions.
 - Can provide a **bound** on the optimal value.
- Created during top-down compilation of the DD.
 - By node merger or node splitting.
 - We focus on node merger.
 - Mergers result in smaller DD but weaker bound.
 - Can obtain bound of **any desired quality** by controlling width of relaxed DD.

Andersen, Hadzic, JH, Tiedemann (2007) Bergman, Cire, van Hoeve, JH (2013)

Weighted DD for max clique

Relaxed DD for max clique

Weighted DD for job sequencing

State merger rule: $(S_i, f_i) \oplus (S'_i, f'_i) = ((S_i \cap S'_i), \min\{f_i, f'_i\})$

Relaxed DD for job sequencing

New state $(\{2\}, 5) = (\{1, 2\} \cap \{2, 3\}, \min\{6, 5\})$

Traditional state space relaxation

 Requires creation of alternate (smaller) state space for every problem.
 Christofides, Mingozzi, Toth (1981)

• General practice is to use **approximate DP** instead.

Powell (2011)

Baldacci, Mingozzi, Roberti (2012)

Traditional state space relaxation

- Advantages of DD-based relaxation.
 - Uses same state variables as original problem.
 - This allows DD-based branch-and-bound method to solve problem.
 Bergman, Cire, van Hoeve, JH (2014)
 - Relaxation constructed dynamically.
 - Can be **tightened** by filtering, Lagrangian relaxation.

Bergman, Cire, van Hoeve (2015); JH (2017, 2019)

• Can be sized to provide bound of any desired quality.

- A stochastic decision diagram (SDD) has **probabilistic** transitions to the next layer.
 - A control can have several possible **outcomes**, each with a known probability.
 - The outcome determines which arc is followed.
- A solution is now a **policy**.
 - The control in a given layer depends on the **state** (node).

Max clique example

Each arc has probability 0.6

Objective is to maximize expected clique size.

Max clique DP model

The recursion is

$$h_{i}(S_{i}) = \max \left\{ \begin{array}{c} h_{i+1}(S_{i}), \ \left(1 - p(S_{i})\right) h_{i+1}(S_{i}) + p(S_{i}) h_{i+1}\left(S_{i} \cup \{i\}\right) \right\} \\ \uparrow \\ x_{i} = 0 \\ x_{i} = 1 \end{array} \right\}$$

where $p(S_i)$ = probability that vertex *i* can be added to clique

Max clique DP model

The recursion is

$$h_{i}(S_{i}) = \max \left\{ \begin{array}{c} h_{i+1}(S_{i}), \ \left(1 - p(S_{i})\right)h_{i+1}(S_{i}) + p(S_{i})h_{i+1}\left(S_{i} \cup \{i\}\right) \right\} \\ \uparrow \\ \mathbf{x}_{i} = \mathbf{0} \\ \mathbf{x}_{i} = \mathbf{1} \end{array} \right\}$$

where $p(S_i)$ = probability that vertex *i* can be added to clique

In general,

$$h_i(\mathbf{S}_i) = \min_{x_i} \left\{ \sum_{\omega} p_{i\omega}(\mathbf{S}_i, x_i) \left[c_{i\omega}(\mathbf{S}_i, x_i) + h_{i+1} \left(\phi_{i\omega}(\mathbf{S}_i, x_i) \right) \right] \right\}$$

where $p_{i\omega}(\mathbf{S}_i, x_i) = \text{prob.}$ of outcome ω given control x_i in state \mathbf{S}_i and similarly for $c_{i\omega}(\mathbf{S}_i, x_i)$ and $\phi_{i\omega}(\mathbf{S}_i, x_i)$ 30

Relaxed SDDs

- A relaxed SDD is one that provides a **valid bound** on optimal expected cost.
 - Unclear how to define relaxation in terms of individual solutions.
 - ...since solutions are **policies** defined on the **entire SDD**, and a relaxed SDD may have very different structure.

Stochastic diagram \overline{D} relaxes diagram D when \overline{D} and D have the same variables, controls, and possible outcomes, and when optimal cost of $\overline{D} \leq$ optimal cost of D.

Relaxed SDDs

- We will relax SDDs by node merger.
 - We will also provide **sufficient conditions** under which a given merger operation yields a valid relaxed SDD.
 - Conditions must account for **policy-based** solutions rather than simple control sequences.
 - Examples...

Relaxed SDDs

Stochastic job sequencing DP model

Stochastic element is processing time (state independent). Let $t_{j\omega} = \text{job } j$ processing time in outcome ω . Let $p_{j\omega}$ probability of outcome ω for job j. Transition

Transition probabilities are <u>state-independent</u>

The recursion is

$$h_i(S_i, f_i) = \min_{x_i \notin S_i} \left\{ \sum_{\omega} p_{i\omega}(S_i, x_i) \left[c_{i\omega}(S_i, f_i) + h_{i+1} \left(\phi_{i\omega}((S_i, f_i), x_i) \right) \right] \right\}$$

where

$$c_{i\omega}((S_i, f_i), x_i) = \max\{0, \max\{r_{x_i}, f_i\} + t_{x_i\omega} - d_{x_i}\}$$

$$\phi_{i\omega}((S_i, f_i), x_i) = (S_i \cup \{x_i\}, \max\{r_{x_i}, f_i\} + t_{x_i\omega})$$

We can use the same node merger operation as before. $_{36}$

We need a concept of one state relaxing another.

Relaxation must have the property that state \bar{S}_i relaxes state S_i only if

$$p_{i\omega}(\bar{\mathbf{S}}_i, x_i)c_{i\omega}(\bar{\mathbf{S}}_i, x_i) \le p_{i\omega}(\mathbf{S}_i, x_i)c_{i\omega}(\mathbf{S}_i, x_i)$$

for any control x_i and any outcome ω .

We need a concept of one state relaxing another.

Relaxation must have the property that state \bar{S}_i relaxes state S_i only if

$$p_{i\omega}(\bar{\mathbf{S}}_i, x_i)c_{i\omega}(\bar{\mathbf{S}}_i, x_i) \le p_{i\omega}(\mathbf{S}_i, x_i)c_{i\omega}(\mathbf{S}_i, x_i)$$

for any control x_i and any outcome ω .

Max clique problem: \bar{S}_i relaxes S_i when $\bar{S}_i \subseteq S_i$. Job sequencing problem: (\bar{S}_i, \bar{f}_i) relaxes (S_i, f_i) when $\bar{S}_i \subseteq S_i$ and $\bar{f}_i \leq f_i$.

These definitions satisfy the property.

Jointly sufficient conditions under which node merger yields a relaxed SDD:

(C1) State $S_i \oplus S'_i$ relaxes both S_i and S'_i .

(C2) If state \bar{S}_i relaxes state S_i , then $\phi_{i\omega}(\bar{S}_i, x_i)$ relaxes $\phi_{i\omega}(S_i, x_i)$ for any ω, x_i .

Note: (C1) and (C2) are sufficient for deterministic DDs

Jointly sufficient conditions under which node merger yields a relaxed SDD:

(C1) State $S_i \oplus S'_i$ relaxes both S_i and S'_i .

- (C2) If state \bar{S}_i relaxes state S_i , then $\phi_{i\omega}(\bar{S}_i, x_i)$ relaxes $\phi_{i\omega}(S_i, x_i)$ for any ω, x_i .
- (C3) If state \bar{S}_i relaxes state S_i , then given any control x_i and any set of numbers $\{\eta_{\omega} \mid \text{all } \omega\}$, there is a control \bar{x}_i such that

$$\sum_{\omega} p_{i\omega}(\bar{\boldsymbol{S}}_i, \bar{x}_i) \left(c_{i\omega}(\bar{\boldsymbol{S}}_i, \bar{x}_i) + \eta_{\omega} \right) \leq \sum_{\omega} p_{i\omega}(\boldsymbol{S}_i, x_i) \left(c_{i\omega}(\boldsymbol{S}_i, x_i) + \eta_{\omega} \right)$$

Note: (C1) and (C2) are sufficient for deterministic DDs

- Key to proofs: work with fully articulated SDDs.
 - All states are represented, even those that are reached with zero probability.
 - Node merger becomes rearrangement of probabilities.

Lemma. If condition (C2) is satisfied, and \bar{S}_i relaxes S_i , then cost to go of $\bar{S}_i \leq \text{cost}$ to go of S_i .

Proof by backward induction on layers.

Theorem. If **(C1)-(C3)** are satisfied, then node merger yields a relaxed SDD.

Proof by forward induction on layers of partially compiled SDDs.

Theorem. If **(C1)-(C3)** are satisfied, then node merger yields a relaxed SDD.

Proof by forward induction on layers of partially compiled SDDs.

Corollary. The **max clique** state merger operation yields a relaxed SDD.

The operation satisfies (C1)-(C3), but the proof is nontrivial due to the strength of condition (C3).

Theorem. If **probabilities are state-independent**, then a merger operation that satisfies (C1) and (C2) alone yields a relaxed SDD.

Corollary. The **job sequencing** merger operation yields a relaxed SDD.

Probabilities are state-independent, and it is easy to show the merger operation satisfies (C1)-(C2).

• Use stochastic max clique problem as test case.

- Why? Relaxed DDs have been shown to provide good bounds for the **deterministic** problem.
- ...tighter bounds than the full cutting plane resources of a state-of-the-art MIP solver, in less time, based on DIMACS instances.
 Bergman, Cire, van Hoeve, JH (2013)
- So DDs may also yield useful bounds for the **stochastic** problem.
- ...although we cannot compare with an MIP solver, since **no practical MIP model** exists for the stochastic problem.

- The main challenge is finding **tractable** and yet **nontrivial** instances.
 - **Nearly all** of the DIMACS instance are intractable as a stochastic problem.
 - We solved only **5 instances**, 3 of which were trivial, and 1 of which required 24 hours to solve.

- The main challenge is finding **tractable** and yet **nontrivial** instances.
 - **Nearly all** of the DIMACS instance are intractable as a stochastic problem.
 - We solved only **5 instances**, 3 of which were trivial, and 1 of which required 24 hours to solve.
- We therefore obtained SDD-based bounds for both random and DIMACS instances.
 - Random instances **sized** to be tractable and nontrivial.
 - Exact solutions found with **complete** SDDs, since state space enumeration is the only available method.
 - DIMACS bounds were not compared with optimal solutions (2 exceptions).

- Merger heuristic is based on previous experience with deterministic problem.
 - Merge less attractive nodes first.
 - That is, nodes with **shortest paths** to root node in deterministic problem.
 - These are less likely to be part of an optimal solution of the relaxed SDD.
- Control size of relaxed SDD by limiting width.
 - Width = max number of nodes in a layer.
 - To save time, we do not check whether state resulting from a merger already occurs in the layer.

Random instances

Solved to optimality

Bound vs time

Density 0.7

Random instances Solved to optimality

DIMACS instances

Instance	Vertices	Density	Instance	Vertices	Density
brock200_1	200	0.7417	hamming6-2	64	0.8906
cfat 200-1	200	0.0767	johnson8-4-4	4 70	0.7571
cfat500-1	500	0.0357	keller4	171	0.6453
c125.9	125	0.8913	p_hat300-1	300	0.2430
$DSJC500_5$	500	0.5010	$san200_0.7_1$	200	0.6965
gen200_p0.9_	_44 200	0.8955	$\mathrm{sanr}_{-}0.7$	200	0.6934

2 DIMACS instances

Solved to optimality Bound vs time

DIMACS instances

Not solved to optimality Bound vs time

- Bound quality degrades gradually with reduction in SDD width/time investment.
 - Even reduction down to a few seconds.
 - Indicates that SDDs can provide useful bounds for DP models.
- Roughly logarithmic relationship.
 - In most cases.
 - May allow estimate of how bound will **improve** with greater time investment.

Research Issues

- Use SDD bounds to solve moderate-sized problems by **branch and bound.**
 - Based on previous experience with deterministic problems.
- Use relaxed SDDs to compute bounds for approximate DP.
 - Find solution with traditional approximate DP, which estimates costs to go.
 - Use relaxed SDDs to compute **bounds** on costs to go, using same controls as in approximate DP solution.

References and further details are in:

J. N. Hooker, Stochastic decision diagrams, submitted.