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Motivation

• Decision diagrams (DDs) have proved useful for 

solving discrete optimization problems.

• Especially those with recursive dynamic programming 

(DP) models.

• Yet many (most) DP models are stochastic.

• We therefore generalize DDs to stochastic DDs

(SDDs) by adding probabilities to arcs.
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Deterministic DDs

• A deterministic (binary) DD is a graphical 

representation of a Boolean function.

• Often used for logic circuit design, product configuration.

• We use ordered DDs.

• Easily extended to multivalued DDs

• A weighted DD can represent a discrete 

optimization problem.

• For example, the maximum clique problem...
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Hadzic and JH (2006, 2007)



Maximum clique
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Max clique example

A maximum 

clique
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Weighted DD

Dashed arc:

exclude vertex 1

Solid arc:

include vertex 1

Paths to false 

terminus are 

omitted.
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Weighted DD

Arc cost (here we 

maximize cost)

Paths to false 

terminus are 

omitted.
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Weighted DD

Each r-t path 

corresponds to a 

clique

A max clique

(longest path)

Paths to false 

terminus are 

omitted.
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Weighted DD

Each r-t path 

corresponds to a 

clique

Another max 

clique

Paths to false 

terminus are 

omitted.



Dynamic Programming

• The state transition graph of a dynamic 

programming (DP) problem can be interpreted 

as a DD (or MDD).

• By associating states with nodes of the DD.

• This opens the door to using DD relaxation techniques 

to obtain bounds for DPs. 

• …and to solving the DPs by branch and bound.

• For example, the maximum clique problem...
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Andersen, Hadzic, JH, Tiedemann (2007)

Bergman, Cire, van Hoeve, JH (2013)

Bergman, Cire, van Hoeve, JH (2014)



Deterministic DDs

Max clique DP model
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xi = 0 xi = 1



Deterministic DDs

Max clique DP model
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xi = 0 xi = 1

control

cost to go

state transition functionimmediate 

cost
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Weighted DD

State
Cost to go

Max clique size



Deterministic MDDs
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Job sequencing example
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Weighted DD

Job
Tardiness

State
Cost to go



Deterministic DDs

Job sequencing DP model
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Dynamic Programming

• Note:  a state transition graph is a different 

concept than a DD.

• A DD does not need state information.
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Dynamic Programming

• Note:  a state transition graph is a different 

concept than a DD.

• A DD does not need state information.

• The DD perspective yields advantages:

• A DD can be often be reduced by identifying isomorphic 

portions of the DD that are associated with different 

states.

• This occasionally results in radical simplification (e.g., inventory 

management).

• DDs can also have different nodes that correspond to the 

same state (we will do this later).

• DP can benefit from relaxation techniques that have 

been developed for DDs…
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Bryant (1986 etc.)

JH (2013)



Relaxed DDs

• A relaxed DD represents a superset of feasible 

solutions.

• Can provide a bound on the optimal value.

• Created during top-down compilation of the DD.

• By node merger or node splitting.

• We focus on node merger.

• Mergers result in smaller DD but weaker bound.

• Can obtain bound of any desired quality by controlling 

width of relaxed DD.
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Andersen, Hadzic, JH, Tiedemann (2007)

Bergman, Cire, van Hoeve, JH (2013) 
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Weighted DD for max clique

Merge 

these 2 

nodes
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Relaxed DD for max clique

Result of 

merger

Longest path 

length of 4 

is bound on 

optimal value 3
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Weighted DD for job sequencing

Merge 

these 2 

nodes
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Relaxed DD for job sequencing

Result of 

merger

Shortest path 

length of 2 

is bound on 

optimal value 4



Traditional state space relaxation

• Requires creation of alternate (smaller) state space 

for every problem.

• General practice is to use approximate DP instead.
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Powell (2011)

Christofides, Mingozzi, Toth (1981)

Baldacci, Mingozzi, Roberti (2012)



Traditional state space relaxation

• Advantages of DD-based relaxation.

• Uses same state variables as original problem.

• This allows DD-based branch-and-bound method 

to solve problem.

• Relaxation constructed dynamically.

• Can be tightened by filtering, Lagrangian relaxation.

• Can be sized to provide bound of any desired quality.
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Bergman, Cire, van Hoeve, JH (2014)

Bergman, Cire, van Hoeve (2015); JH (2017, 2019)



Stochastic DDs

• A stochastic decision diagram (SDD) has 

probabilistic transitions to the next layer.

• A control can have several possible outcomes, each 

with a known probability.

• The outcome determines which arc is followed.

• A solution is now a policy.

• The control in a given layer depends on the state (node).
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Stochastic DDs
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Max clique example

Defined on a 

random graph
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Stochastic DD

Transition 

probabilities

Control x1 = 1

has 2 possible 

outcomes 0,1

State Si
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Stochastic DD

Transition 

probabilities

Transition 

probabilities are 

state-dependent

State Si



Stochastic DDs

Max clique DP model
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xi = 0 xi = 1



Stochastic DDs

Max clique DP model
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xi = 0 xi = 1
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Stochastic DD

Expected 

cost to go

Optimal expected clique size

Select x1 = 0 or 1

Select x2 = 1Select x2 = 1



Relaxed SDDs

• A relaxed SDD is one that provides a valid bound 

on optimal expected cost.

• Unclear how to define relaxation in terms of individual 

solutions.

• …since solutions are policies defined on the entire SDD, 

and a relaxed SDD may have very different structure.
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Relaxed SDDs

• We will relax SDDs by node merger.

• We will also provide sufficient conditions under which 

a given merger operation yields a valid relaxed SDD.

• Conditions must account for policy-based solutions 

rather than simple control sequences.

• Examples…
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Stochastic DD for max clique

Merge 

these 2 

nodes
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Relaxed DD for max clique

Result of 

merger

Expected longest 

path length of 2.4736 

is bound on optimal 

value 2.056 

We will prove that 

this is a valid 

relaxed SDD



Relaxed SDDs

Stochastic job sequencing DP model
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We can use the same node merger operation as before.

Transition 

probabilities are 

state-independent



Node Merger in SDDs

We need a concept of one state relaxing another.
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Node Merger in SDDs

We need a concept of one state relaxing another.

Max clique problem:

Job sequencing problem:

These definitions satisfy the property. 38



Node Merger in SDDs

Jointly sufficient conditions under which node merger 

yields a relaxed SDD:

Note:  (C1) and (C2) are sufficient for deterministic DDs
39JH (2017)



Node Merger in SDDs

Jointly sufficient conditions under which node merger 

yields a relaxed SDD:

Note:  (C1) and (C2) are sufficient for deterministic DDs
40JH (2017)



Node Merger in SDDs

• Key to proofs: work with fully articulated SDDs.

• All states are represented, even those that are reached 

with zero probability.

• Node merger becomes rearrangement of probabilities.  
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Lemma.



Node Merger in SDDs
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Theorem. If (C1)-(C3) are satisfied, then node 

merger yields a relaxed SDD.   



Node Merger in SDDs
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Theorem. If (C1)-(C3) are satisfied, then node 

merger yields a relaxed SDD.   

Corollary. The max clique state merger operation 

yields a relaxed SDD.   



Node Merger in SDDs
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Theorem. If probabilities are state-independent, 

then a merger operation that satisfies (C1) and 

(C2) alone yields a relaxed SDD.

Corollary. The job sequencing merger operation 

yields a relaxed SDD.   



Computational Experiments

• Use stochastic max clique problem as test case.

• Why? Relaxed DDs have been shown to provide good 

bounds for the deterministic problem.

• …tighter bounds than the full cutting plane resources 

of a state-of-the-art MIP solver, in less time, based on 

DIMACS instances.

• So DDs may also yield useful bounds for the stochastic 

problem.

• …although we cannot compare with an MIP solver, since 

no practical MIP model exists for the stochastic problem.
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Bergman, Cire, van Hoeve, JH (2013)



Computational Experiments

• The main challenge is finding tractable and yet 

nontrivial instances.

• Nearly all of the DIMACS instance are intractable as a 

stochastic problem.

• We solved only 5 instances, 3 of which were trivial, and 

1 of which required 24 hours to solve.
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Computational Experiments

• The main challenge is finding tractable and yet 

nontrivial instances.

• Nearly all of the DIMACS instance are intractable as a 

stochastic problem.

• We solved only 5 instances, 3 of which were trivial, and 

1 of which required 24 hours to solve.

• We therefore obtained SDD-based bounds for both 

random and DIMACS instances.

• Random instances sized to be tractable and nontrivial.

• Exact solutions found with complete SDDs, since state 

space enumeration is the only available method.

• DIMACS bounds were not compared with optimal 

solutions (2 exceptions). 47



Computational Experiments

• Merger heuristic is based on previous experience 

with deterministic problem.

• Merge less attractive nodes first.

• That is, nodes with shortest paths to root node in 

deterministic problem.

• These are less likely to be part of an optimal solution of 

the relaxed SDD.

• Control size of relaxed SDD by limiting width.

• Width = max number of nodes in a layer.

• To save time, we do not check whether state resulting 

from a merger already occurs in the layer.
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Random instances
Solved to optimality

Bound vs time
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Random instances
Solved to optimality
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DIMACS instances
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2 DIMACS instances
Solved to optimality

Bound vs time
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DIMACS instances
Not solved to optimality

Bound vs time



Computational Experiments

• Bound quality degrades gradually with reduction 

in SDD width/time investment.

• Even reduction down to a few seconds.

• Indicates that SDDs can provide useful bounds for 

DP models.

• Roughly logarithmic relationship.

• In most cases.

• May allow estimate of how bound will improve with 

greater time investment.
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Research Issues

• Use SDD bounds to solve moderate-sized 

problems by branch and bound.

• Based on previous experience with deterministic 

problems.

• Use relaxed SDDs to compute bounds for 

approximate DP.

• Find solution with traditional approximate DP, which 

estimates costs to go.

• Use relaxed SDDs to compute bounds on costs to go, 

using same controls as in approximate DP solution.
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References and further details are in:

J. N. Hooker, Stochastic decision diagrams, submitted.
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http://public.tepper.cmu.edu/jnh/SDD-CPAIOR2022.pdf

