
Discrete Applied Mathematics 96–97 (1999) 395–442

Mixed logical-linear programming(

J.N. Hookera ; ∗, M.A. Osoriob
aGraduate School of Industrial Administration, Carnegie Mellon University, Pittsburgh, PA 15213, USA

bSchool of Computer Science, Autonomous University of Puebla, Puebla, Mexico 72550

Abstract

Mixed logical=linear programming (MLLP) is an extension of mixed integer=linear program-
ming (MILP). It can represent the discrete elements of a problem with logical propositions
and provides a more natural modeling framework than MILP. It can also have computational
advantages, partly because it eliminates integer variables when they serve no purpose, provides
alternatives to the traditional continuous relaxation, and applies logic processing algorithms. This
paper surveys previous work and attempts to organize ideas associated with MLLP, some old and
some new, into a coherent framework. It articulates potential advantages of MLLP’s wider choice
of modeling and solution options and illustrates some of them with computational experiments.
? 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

Mixed logical=linear programming (MLLP) is a general approach to formulating
and solving optimization problems that have both discrete and continuous elements. It
extends mixed integer=linear programming (MILP) by introducing logic-based model-
ing and solution options. MLLP in no way rejects integer programming and in fact
incorporates all of its techniques. Its expanded modeling framework may, however,
allow more natural or succinct formulations without sacri�cing solution e�ciency. Its
larger repertory of solution techniques may accelerate solution or even solve problems
that are intractable for MILP alone. These techniques include branching strategies,
relaxations and logic processing algorithms that are not ordinarily associated with in-
teger programming.
Mixed discrete=continuous problems are traditionally conceived as continuous prob-

lems in which some of the variables are restricted to be integers. MLLP permits one
to take a di�erent view. Rather than embed the discrete aspects of the problem within

(This research is partially supported by the U.S. O�ce of Naval Research Grant N00014-95-1-0517 and
by the Engineering Design Research Center at Carnegie Mellon University, an Engineering Research Center
of the National Science Foundation (USA), under grant EEC-8943164.

∗ Corresponding author.

0166-218X/99/$ - see front matter ? 1999 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00100 -6

396 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

a linear programming model, which may not be the most natural approach, one can
represent them with logical formulas. MLLP therefore has the option of dispensing
with integer variables. Rather than require that a feasible solution satisfy a �xed set of
inequalities, an MLLP model can contain several alternative sets of inequalities. The
logical formulas govern which sets must be satis�ed by a feasible solution.

1.1. General form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical
description. An MLLP model has the form

min cx

s:t: pj(y; h)→ (Ajx¿aj); j ∈ J | qi(y; h); i ∈ I: (1)

The constraint set has a logical part (on the right-hand side of the bar) and a continuous
part (on the left).
The logical part consists of formulas qi(y; h) that involve atomic propositions

y=(y1; : : : ; yn), which are either true or false. Such a formula might be q1(y; h)=y1∨y2,
which says that y1 or y2 (or both) must be true. There may also be some variables
h=(h1; : : : ; hm) that take several discrete values. Thus qi(y; h) could be (y1∨y2)∧ (h1 6=
h2), where ∧ means ‘and’. In general, the formulas pj and qi may take any form that
is convenient for the purpose at hand, provided that their truth value is a function of
the truth values of the propositions y and the values of the discrete variables h.
The continuous part associates logical formulas pj(y; h) with systems Ajx¿aj of lin-

ear inequalities. A system Ajx¿aj is enforced when pj(y; h) is true. So the
constraints of the following problem in e�ect require x to satisfy A1x¿a1 or A2x¿a2

(or both):

min cx

s:t: y1 → (A1x¿a1)

y2 → (A2x¿a2)

∣∣∣∣∣ y1 ∨ y2

In general, (x; y; h) is feasible if (y; h) makes all the logical formulas qi(y; h) true, and
x satis�es the linear systems corresponding to the formulas pj(y; h) that (y; h) makes
true.

1.2. Solution of an MLLP

Problem (1) can be solved by branching on the truth values of the yj’s and the
discrete values of the hj’s. At each node of the search tree, one solves a linear
programming problem (LP) containing the constraints that correspond to true pj’s,
plus any inequalities added to strengthen the relaxation. A key element of MLLP is to
apply a logical inference algorithm to the logical formulas before solving the LP. This

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 397

may generate valid constraints (constraints satis�ed by all feasible solutions) in logical
form, and in particular it may �x some additional yj’s and hj’s.
An MLLP can therefore be solved in a manner that is analogous to the traditional

branch-and-cut algorithms used in MILP. There are two primary di�erences, however.
First, as one descends into the tree, the LPs solved at the nodes are not necessar-
ily de�ned by �xing certain variables in them. They may also be de�ned by adding
new constraints corresponding to formulas that �xed variables make true, or by some
combination of the two methods.
A second di�erence is that at each node of the search tree, the logical part of

the constraint set can be processed with its own set of algorithms, in order to gen-
erate additional constraints or check for feasibility. These include many of the logic
programming and constraint satisfaction techniques that appear in the computer science
and arti�cial intelligence literatures (discussed below). MLLP therefore provides one
means of uniting mathematical programming with methods have been developed more
or less independently in other �elds.

1.3. Motivation for MLLP

The primary rationale for MLLP is that it brings to mathematical programming
greater modeling power and a wider range of solution options. But MLLP also grows
out of a rethinking of the role of integer variables.
Traditionally integer variables have in most cases served a modeling function and a

relaxation function simultaneously. It is proposed here that these functions be separated.
When integer variables provide the most natural modeling device for certain constraints,
e.g. knapsack constraints, they should be used to formulate those constraints. When a
certain portion of the constraint set has a useful continuous relaxation when formulated
with integer variables, they should be included in that portion of the problem in order
to obtain the relaxation.
In other cases, however, inequalities may not provide the most convenient way to

formulate the discrete aspect of the problem. Also their continuous relaxation may be
weak, or its e�ect may be duplicated by adding a few valid inequalities that involve
only the original continuous variables. Furthermore, it will be seen that integer variables
may have fractional values in the continuous relaxation even when a feasible solution
of the original problem has been found. Thus if one branches on integer variables with
fractional values, branching may continue unnecessarily.
In such cases, integer modeling may not justify the overhead it incurs. The inclusion

of integer variables enlarges the linear programming problems that must be solved at
nodes of the search tree. This can be particularly costly when there are many discrete
variables, because it may be possible to process the discrete elements of the constraint
set much more rapidly in logical form. A simple constraint propagation algorithm,
for example, may have the same ability to detect infeasibility in logical constraints
as solving the linear relaxation of their inequality formulation. But its speed may be
two or three orders of magnitude greater, because it need not carry along the data

398 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

structures and machinery of a linear solver. Other types of logic processing may obtain
valid constraints or �x variables in ways that are not available in MILP.
The primary drawback of MLLP is that it requires more expertise on the part of the

user. It provides more options but presupposes that the user knows how to choose the
best one. In particular, if integer variables are not used, then the traditional continuous
relaxation is unavailable, and it may be necessary to concoct an alternate relaxation.

1.4. Aim of this paper

The aim here is to explore MLLP as a general and practical approach to solving
problems with both discrete and continuous elements. Previous work is drawn together,
and an attempt is made to order ideas associated with MLLP, some old and some
new, in a coherent frame-work. The potential advantages of an expanded repertory of
modeling and solution options are articulated, and several are illustrated by computa-
tional experiments. The logic processing component of MLLP is explored only deeply
enough to convey the
avor of the ideas, but some expository literature is cited.
Because MLLP is a general approach to continuous=discrete problem solving, a

thorough-going experimental evaluation would be a massive undertaking, and it is not
attempted here. The task would be further complicated, both practically and
conceptually, by the fact that MLLP is not a single approach to problem solving but a
framework within which several approaches can be used. As in MILP, its e�ectiveness
depends on how carefully one designs relaxations and branching schemes to �t the
problem at hand. The intent here is to provide a broader range of options and to show
by example that at least some of them can be superior to the conventional ones.
The examples include chemical engineering network synthesis problems, warehouse

location problems,
ow shop scheduling problems, and the “progressive party prob-
lem”, which is a scheduling problem posed by a yacht party. The last problem is
rather frivolous but has attracted a good deal of attention and illustrates several ideas
associated with MLLP.
Experience with engineering design problems (e.g., [11,66]) suggests that MLLP

can be usefully extended to mixed logical=nonlinear programming (MLNLP). This
possibility is not pursued here.

1.5. Previous work

A logic-based approach to operations research was discussed as early as 1968 in
Hammer and Rudeanu’s treatise on boolean methods [26]. Granot and Hammer [24]
suggested in 1971 the possibility of using boolean methods for integer programming.
The MLLP approach described here was perhaps �rst clearly articulated by Jeroslow

[41,42], who was primarily interested in issues of representability. He viewed discrete
variables as arti�ces for representing a feasible subset of continuous space, which in
the case of an MLLP or MILP model is a union of �nitely many polyhedra. From
this it follows that MLLP and MILP models are essentially disjunctive programming

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 399

models. Building on joint work with Lowe [43], Jeroslow proved that an MILP model
can represent a union of �nitely many polyhedra if and only if they have the same
recession cone.
In the meantime, Williams [68–70,72], Blair [9,10] and Hooker [27–32] explored

connections between logic and optimization. Beaumont [7] undertook what is
apparently the �rst systematic study of MLLP as a solution technique for optimization
problems. Drawing on the seminal work of Balas in disjunctive programming [2–4],
he described families of valid inequalities that can be used to create relaxations of
disjunctive constraints.
More recently, Hooker argued in [33] that a logic-based approach to optimization,

including MLLP, can exploit problem structure in ways that are parallel to traditional
polyhedral techniques. Wilson [73–75] studied logic-based formulations.
It is crucial to demonstrate the practical value of MLLP in a problem domain.

This was accomplished largely by Grossmann in the area of chemical process design
in a series of papers coauthored with Hooker, Turkay, Yan and particularly Raman
[38,51–54,66]. These papers developed some of the key MLLP concepts discussed
here. Bollapragada, Ghattas and Hooker also obtained encouraging results in structural
design [11].

1.6. Other approaches

It is instructive to contrast MLLP with other approaches that combine discrete and
continuous elements.
The mixed logical=linear programming approach of McAloon and Tretko� [45,46],

which is implemented in the system 2LP, combines procedural with declarative
programming. The discrete element is represented by a user-supplied script that con-
trols the formulation and solution of LP models that represent the continuous element.
This contrasts with the approach to MLLP described here, in which both elements are
modeled in a declarative fashion. The two approaches are not incompatible, however,
and 2LP could in fact provide a framework in which to implement the MLLP tech-
niques presented here.
Even pure 0–1 optimization problems have a continuous element in the sense that

the constraints are represented by linear inequalities, and it is not obvious how to apply
logic-based methods to them. An approach devised by Barth [6] is to derive formulas
from the inequalities that can be processed with logical inference methods. Barth’s
techniques can enhance the logical processing phase of MLLP algorithms.
The work of McAloon, Tretko� and Barth is in
uenced by several streams of

research that have historically focused on discrete problems but are experimenting
with ways to incorporate continuous variables. Logic programming models, introduced
by Colmerauer [18] and Kowalski [44], allow one to formulate a problem in a sub-
set of �rst-order logic (Horn clause logic). Recent versions of the logic programming
language PROLOG [12,63], such as PROLOG III [17] (and soon IV), incorporate
linear programming.

400 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

The integration of constraint solving with logic programming is formalized in the
constraint logic programming (CLP) scheme of Ja�ar and Lassez [39]. It generalizes
the “uni�cation” step of logical inference methods to encompass constraint solving in
general [40].
CLP provides a framework for integrating constraint satisfaction methods developed

in the arti�cial intelligence community (and elsewhere) with logic programming ideas
[21,65,67]. A number of systems along this line have been developed in addition to
Prolog III, including CLP(R) [39], CAL [1], CHIP [20,61], the ILOG solver [48],
and other packages [13,55,59]. Linear programming has a place in several of these
systems. Unlike MLLP, these methods rely to some extent on procedural modeling.
They also lack MLLP’s emphasis on exploiting problem structure in the generation
of valid constraints and relaxations, although the constraint programming literature has
shown some interest in exploiting structure (e.g., [22]).

1.7. Outline of the paper

The remainder of the paper begins with a few simple modeling examples (Section 2).
Two long sections (3 and 4) respectively discuss relaxations and logic processing
algorithms. Section 5 provides a generic algorithm for solving MLLPs, and Section 6
presents models and computational results for four sets of problems. The concluding
section attempts to assemble guidelines for modeling and solving problems in an MLLP
framework.
Aside from its survey and development of MLLP generally, the speci�c contribu-

tions of this paper include necessary and su�cient conditions for whether an elementary
inequality for a disjunction is supporting (Section 3.4), necessary and su�cient con-
ditions for integrality of a 0–1 disjunctive representation (Section 3.5), a de�nition of
optimal separating inequalities (Section 3.7), a completeness proof for multivalent res-
olution (Section 4.1), and a unit resolution algorithm for multivalent clauses (Section
4.2).

2. Modeling examples

A few simple examples will illustrate modeling in MLLP.

2.1. Fixed charges and semicontinuous variables

A cost function with a �xed charge is generally given a big-M formulation in integer
programming,

min cx + dy

s:t: x6My;

x¿0;

y ∈ {0; 1};

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 401

where c is the variable cost and d the �xed cost. (Other constraints and objective
function coe�cients would normally be present.) An MLLP model is,

min cx + z

s:t: y → (z = d)

y′ → (x = 0)

x; z¿0:

∣∣∣∣∣∣∣∣
y ∨ y′

The proposition y ∨ y′ states that either the �xed cost is incurred or it is not. The
model can also be written by replacing y′ with ¬y (not-y) and deleting y ∨ y′.
A semicontinuous variable x is one whose value must lie in one of the intervals

[at ; bt] for t = 0; : : : ; T . One MILP representation is,

atyt6xt6btyt ; t = 0; : : : ; T
T∑

t=0

xt = x; yt ∈ {0; 1}; t = 0; : : : ; T: (2)

An MLLP representation is

yt → (at6x6bt)

∣∣∣∣∣
T∨

t=0

yt :

2.2. Quadratic assignment problem

The quadratic assignment problem is typically formulated as an MILP model in the
following way:

min
∑
ikjl

vijcklwijkl

s:t:
∑

i

yik = 1 all k;

∑
k

yik = 1 all i;

zijkl¿yik + yjl − 1; all i; j; k; l;

yik ; wijkl ∈ {0; 1}; all i; j; k; l:

Here vij is the volume of tra�c between facilities i and j, and ckl is the unit cost of
tra�c between locations k and l. yik = 1 if facility i is assigned to location k, and
zijkl = 1 if facilities i; j are respectively assigned to locations k; l.

402 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

An MLLP model can be written with fewer variables.

min
∑
ij

zij

s:t: (yik ∧ yjl)→ (zij = vijckl); all i; j; k; l

zij¿0; all i; j:

∣∣∣∣∣∣∣∣

∑
i

yik = 1; all k

∑
k

yik = 1; all i

(3)

The constraints on the right are intended to be read as logical constraints. The �rst
constraint, for example, says that exactly one of the propositions y1k ; : : : ; ynk is true,
for each k. The symbol ∧ on the left means ‘and’.
An alternate model uses multivalued discrete variables hi to indicate which location

is assigned to facility i:

min
∑
ij

zij

s:t: (hi = k ∧ hj = l)→ (zij = vijckl); all i; j; k; l

zij¿0; all i; j:

∣∣∣∣∣ alldi�(h1; : : : ; hn)

hi ∈ {1; : : : ; n}; all i:

The “alldi�” constraint on the right states that h1; : : : ; hn must all take distinct values.
All-di�erent constraints are widely used in constraint programming.

3. Relaxations

The linear programming problem solved at each node of an MLLP search tree
provides a lower bound on the optimal value at that node. However, the LP contains
only those constraints that are enforced by true propositions. Many logical constraints
may therefore be unrepresented in the LP relaxation, which may therefore provide a
weak bound. When possible it is important to augment the relaxation with additional
valid inequalities that represent logical formulas.
This section presents some techniques for obtaining linear relaxations of logical

formulas by generating valid inequalities in the continuous variables. We will consider
only disjunctive formulas in which each disjunct is an atomic proposition that enforces
a linear system:

yj → (Ajx¿aj) | y1 ∨ · · · ∨ ym: (4)

An important research question is how relaxations may be written for broader classes
of formulas, particularly formulas that contain multivalued discrete variables hj. This
matter is being investigated.
Some of the valid inequalities that will be presented for disjunctions mimic the e�ect

of the traditional continuous relaxation of a 0–1 model. The strength and nature of the
traditional relaxation is remarkably ill understood, given the degree to which it is used.
An analysis of it will therefore comprise an important part of the discussion.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 403

Fig. 1. Convex hull of the feasible set of a scheduling disjunction.

3.1. The convex hull

The task at hand is to generate valid inequalities for (4), which can be written∨
t∈T

Atx¿at: (5)

The feasible set is a union of |T | polyhedra, and a description of the convex hull of
this union is the best possible linear relaxation of the formula.
In some cases the convex hull is so large that even the best possible relaxation is

poor or useless. If for example x is bounded 06x6m, it is not uncommon for the
convex hull of (5) to �ll most or all of the box described by 06x6m. A notorious
example of this arises in scheduling problems. If operations 1 and 2 begin at times x1
and x2 and last 2 min, one imposes the disjunctive constraint

(x2¿x1 + 2) ∨ (x1¿x2 + 2)

to ensure that one occurs after the other. The upper bounds m represent the latest time
at which an operation could be scheduled and therefore may be much larger than 2.
The dashed line in Fig. 1 encloses the convex hull when m=(10; 10). In this case the
best possible relaxation is given by x1 + x2¿2; x1 + x2618 and 06xj610. This is
not much di�erent than 06xj610 and is probably useless in practice.

3.2. Disjunctive and dual inequalities

A relaxation of (5) can be obtained by generating valid inequalities that partially or
completely describe the convex hull. Balas [4] characterized valid inequalities for (5)

404 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

as follows. First, note that bx¿� is a valid inequality for a feasible disjunct Atx¿at

if and only if it is dominated by a nonnegative linear combination (or surrogate) of
Atx¿at . A dominating surrogate can be written uAx¿ua, where b¿uA; �6ua and
u¿0. But bx¿� is a valid inequality for the disjunction as a whole if it is valid for
each disjunct; i.e., for each disjunct a surrogate can be found that dominates bx¿�.

Theorem 1 (Balas [4]). The inequality bx¿� is valid for (5) if any only if for each
feasible system Atx¿at there is a ut¿0 such that b¿utAt and �6utat .

Given any set of surrogates utAtx¿utat ; if x¿0 one can immediately write the valid
disjunctive inequality(

max
t∈T

{utAt}
)

x¿min
t∈T

{utat} (6)

for (5), where the maximum is componentwise. Theorem 1 clearly implies that if x¿0,
every valid inequality is dominated by a disjunctive inequality (6). The strength and
usefulness of a disjunctive inequality (6) depends radically on the choice of surrogates.
One could in principle generate disjunctive inequalities to de�ne every facet of the
convex hull, but this is often impractical. The task of obtaining a good relaxation for
(5) is in essence the task of choosing multipliers ut judiciously.
One initially attractive choice for ut is given by the solution of a dual problem.

Each surrogate should ideally give the best possible bound on the objective function
cx. That is, ut should be chosen so that the minimum value of cx subject to utAtx¿utat

is maximized. The desired ut is easily seen to be the optimal solution of the LP dual
of min{cx |Atx¿at}, where ut is the vector of dual variables. (To put it di�erently,
the surrogate dual for linear programming is identical to the LP dual [23].)
The di�culty with this approach is that because Atx¿at is only a small part of the

original constraint set, it may have no coupling with the objective function. That is, the
variables xj that have nonzero coe�cients in cx may have zero coe�cients in Atx¿at ,
and vice-versa. This means that cx provides no information to guide the choice of ut ,
a situation that is in fact common in practice.
A possible remedy is to include more constraints in the problem whose dual is

solved, so as to capture the link between cx and Atx¿at . This can be done as follows.
At any node of the search tree a system Ax¿a of certain linear constraints are enforced
by true formulas pi(y; h). If Ax¿a is included in each term of the disjunction (5), it
becomes∨

t∈T

(
Atx¿at

Ax¿a

)
:

For each t one solves the dual of

min cx

s:t: Atx¿at (ut);

Ax¿a (u);

(7)

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 405

where (ut ; u) are the dual variables as shown. An optimal solution of the dual supplies
a reasonable set of multipliers ut for the disjunctive inequality (6).
Unfortunately, this approach appears to be impractical, because (7) is generally

a large LP. Computational results reported in Section 6.2 suggest that it is very
time-consuming to solve the dual of (7) for each disjunct. The remaining discussion
will therefore focus on much faster mechanisms for choosing e�ective multipliers ut .

3.3. Elementary inequalities

The most common sort of disjunctive constraint (5) is one in which each disjunct
is a single inequality,∨

t∈T

atx¿�t ; (8)

where it is assumed that 06x6m. Beaumont [7] showed how to generate a valid
inequality for (8) that is equivalent to the continuous relaxation of the traditional 0–1
formulation of (8). The latter is

atx¿�t −Mt(1− yt); t ∈ T;∑
t∈T

yt = 1;

06x6m;
yt ∈ {0; 1}; t ∈ T:

(9)

Each Mt is chosen so that �t −Mt is a lower bound on the value of atx:

�t −Mt =
∑
j

min{0; at
j}mj: (10)

The bounds 06x6m are imposed to ensure that such a lower bound exists. It can
be assumed without loss of generality that Mt ¿ 0, because otherwise the inequality is
vacuous and can be dropped. Beaumont obtains a valid inequality by taking a linear
combination of the inequalities in (9), where each inequality t receives weight 1=Mt .
This yields an elementary inequality for (8),(∑

t∈T

at

Mt

)
x¿

∑
t∈T

�t

Mt
− |T |+ 1: (11)

Theorem 2 (Beaumont [7]). The elementary inequality (11) is equivalent to the
continuous relaxation of (9). That is; the feasible set of (11) and 06x6m is equal to
the projection of the feasible set of the continuous relaxation of (9) onto the x-space.

One can also prove equivalence by applying Fourier elimination to (9) in order to
eliminate y. It is easy to show that (11) and 06x6m are the resulting inequalities.

406 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

A similar technique obtains elementary inequalities for all logical formulas that are
expressible as knapsack constraints,

dy¿�

yt → (atx¿�t); t ∈ T;

06x6m;

(12)

where d¿0. The 0–1 representation of (12) is

atx¿�t −Mt(1− yt); t ∈ T;

06x6m;

dy¿�;

yt ∈ {0; 1}; t ∈ T:

(13)

A linear combination of the inequalities, using weights dt=Mt , yields the elementary
inequality,(∑

t∈T

at dt

Mt

)
x¿

∑
t∈T

�t
dt

Mt
−
∑
t∈T

dt + �: (14)

This is in general weaker than the continuous relaxation of (13), however. If
∑

t dt=�,
for example, (13) forces all the disjuncts to hold, where (14) only forces a linear
combination of them to hold.
In many cases a better lower bound than that in (10) can be obtained for atx,

resulting in a stronger inequality. One method is to minimize atx subject to each of
the other disjuncts and 06x6m and pick the smallest of the minimum values. Mt is
therefore chosen so that

�t −Mt =min
t′ 6=t

{
min

x
{atx | at′x¿�t′ ; 06x6m}

}
: (15)

The computation involved is negligible.
Consider for example the following constraint set, whose feasible set is the shaded

area in Fig. 2.

(x1 + 2x2¿2) ∨ (3x1 + x2¿3); 06xj62:

The 0–1 formulation is

x1 + 2x2¿2−M1(1− y1);

3x1 + x2¿3−M2(1− y2);

y1 + y2 = 1;

06xj62; yj ∈ {0; 1}:
Beaumont puts (M1; M2)=(2; 3) which results in the valid inequality 3

2x1 +
4
3x2¿1. By

contrast, (15) puts (M1; M2) = (1; 2), which yields the stronger inequality x1 + x2¿1.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 407

Fig. 2. Illustration of a supporting elementary inequality (a) and a nonsupporting elementary inequality (b).

Fig. 3. Illustration of an elementary inequality (a) and a strengthened elementary inequality (b).

This is a supporting inequality in the sense that it de�nes a supporting hyperplane for
the feasible set.
Even when (15) is used to compute Mt , the resulting inequality may fail to be

supporting. Consider the constraints (Fig. 3),

(−x1 + 2x2¿2) ∨ (2x1 − x2¿2); 06xj62:

408 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Eq. (15) sets (M1; M2) = (4; 4), which results in the useless inequality x1 + x2¿0. The
inequality can obviously be strengthened to x1 + x2¿1.
When the inequalities atx¿�t in (12) are replaced by systems of inequalities Atx¿at ,

many elementary inequalities are required to achieve the e�ect of the traditional
relaxation. Let each system Atx¿at consist of inequalities Atix¿at

i for i ∈ It . The
0–1 formulation is

Atx¿at −Mt(1− yt); t ∈ T;

06x6m;

dy¿�;

yt ∈ {0; 1}; t ∈ T:

(16)

Here Mt is an array such that for each i ∈ It ; at
i − Mt

i is a lower bound on Atix.
Repeated applications of Fourier elimination reveal that the projection of the feasible
set of (16) onto the x-space is described by the set of inequalities of the form,(∑

t∈T

Atit dt

M t
it

)
x¿

∑
t∈T

at
it

dt

M t
it

−
∑
t∈T

dt + �;

for all possible vectors (i1; : : : ; i|T |) ∈ I1 × · · · × I|T |.
Elementary inequalities may therefore be impractical when the yt’s correspond to

systems of inequalities. In such cases one can use optimal separating inequalities (de-
scribed below) or the traditional relaxation.

3.4. Supporting elementary inequalities

The example of Fig. 3 shows that an elementary inequality can fail to be supporting.
In such cases it is a simple matter to increase its right-hand side until it supports the
feasible set, thus obtaining a strengthened elementary inequality. In fact, there is a
closed-form formula for the best possible right-hand side. The formula allows one to
check easily whether a given elementary inequality is supporting, and when it is not,
to improve upon the traditional continuous relaxation the inequality represents.
Figures 2 and 3 may suggest that a disjunction a1x¿�1 ∨ a2x¿�2 produces a sup-

porting elementary inequality if and only if the vectors a1; a2 subtend an acute angle,
and that a similar relationship might be discovered for more than two disjuncts. A
third example reveals that the situation is more complicated than this. Fig. 4 shows
the feasible set for

(−3x1 + x2¿− 3) ∨ (−x2¿− 1); 06xj63:

The elementary inequality (a) is 3x1+2x2612, which is supporting even though (−3; 1)
and (0;−1) subtend an obtuse angle.
A more adequate analysis goes as follows. Let bx¿� be any valid inequality for

the disjunction (8), such as an elementary inequality, such that the inequality de�nes a

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 409

Fig. 4. A supporting elementary inequality (a) and a facet-de�ning inequality (b).

supporting hyperplane of the feasible set of (8). Then � is the smallest of the minimum
values obtained by minimizing bx subject to each of the disjuncts atx¿�t . That is,

� =min
t∈T

�t ; (17)

where

�t =min{bx | atx¿�t ; 06x6m}:
The computation of �t is simpli�ed if b¿0, because in this case the upper bounds
x6m can be ignored. To this end one can introduce the change of variable,

x̂j =

{
xj if bj¿0;

mj − xj otherwise:

The strengthened elementary inequality in terms of x̂, namely b̂x̂¿B̂, can now be
computed, where b̂j = |bj|. The right-hand side of bx¿� can then be recovered from
(17) by setting

�t = �̂t +
∑
j

bj¡0

mjbj: (18)

It remains to compute

�̂t =min{b̂x | ât x̂¿â; x̂¿0}; (19)

where

ât
j =

{
at
j if bt

j¿0;

−at
j otherwise

(20)

410 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

and

�̂t = �t −
∑
j

bj¡0

mjat
j: (21)

Because b̂¿0, LP duality applied to (19) yields that

�̂t = min
j

âtj¿0

{
b̂j

ât
j

}
max{�̂t ; 0}: (22)

This proves,

Theorem 3. A valid inequality bx¿�′ for the disjunction (8) is supporting if and only
if �′ = �; where � is de�ned by (17); (18) and (22).

3.5. Integral 0–1 representations

The traditional continuous relaxation of a disjunctive constraint may permit fractional
solutions even when the original disjunction is satis�ed. This means that a traditional
branch-and-bound method can keep branching even when a feasible solution has been
discovered. It is therefore best to check disjunctions (as well as other logical con-
straints) directly for feasibility, as done in MLLP.
The 0–1 formulation of the disjunction (5) is the following (see Fig. 5):

Atx¿at −Mt(1− yt); t ∈ T;

06x6m;∑
t∈T

yt = 1;

yt ∈ {0; 1}; t ∈ T;

(23)

where Mt satis�es

at −Mt6min{Atx | 06x6m}; (24)

and e=(1; : : : ; 1). The claim is that when x is �xed to some value �x, an extreme point
solution y = �y of (23) can be nonintegral even when �x satis�es (5). An example of
this is presented by simple semicontinuous variable, x ∈ {0} ∪ [s1; s2], or

(−x¿0) ∨ (x¿s1); 06x6s2:

The continuous relaxation of (23) is

−x¿− s2(1− y);

x¿s1 − s1y;

06x6s2;

06y61:

(25)

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 411

Fig. 5. The line segment from (�x; 0) to (�x; �y) is the polytope described by the continuous relaxation of the
0–1 representation of a semicontinuous variable. (�x; �y) is a fractional extreme point of the polytope even
though �x is a feasible value.

If x is �xed to �x and (25) is projected onto y, the result is

1− �x
s1
6y61− �x

s2
; 06y61: (26)

If s16�x6s2; �y=1− �x=s2 is an extreme point solution of (26) and therefore (25), and
it is nonintegral whenever s1¡ �x¡ s2. So (25) can have extreme point solutions with
fractional y even when �x ∈ [s1; s2], and even though (25) is the best possible (convex
hull) relaxation of (23). The extreme point solutions for �x ∈ [s1; s2] are guaranteed to
have integral y only when s1 = s2, i.e., when x is essentially a rescaled binary variable.
The idea can be de�ned in general as follows. Let P �x be the set of points y that

satisfy the continuous relaxation of (23) when x is �xed to �x. Let the continuous
relaxation of (23) be integral if for every (�x; �y) satisfying (23) such that �y is an
extreme point of P �x; �y is integral.
The following characterizes integral relaxations. A disjunct of (5) is redundant when

its feasible set lies within that of another disjunct. Obviously, redundant disjuncts can
be dropped without e�ect.

Theorem 4. Suppose that the disjunction (5) contains no redundant disjuncts; that
06x6Mt; and that Mt satis�es (23) for t ∈ T . For t; t′ ∈ T with t 6= t′ de�ne

ytt′ =max{yt |Mtyt6Atx − at +Mt; At′x¿at′ ; 06x6m; yt61}:
Then the continuous relaxation of (23) is integral if and only if ytt′ = 0 for every
pair t; t′ ∈ T with t 6= t′.

Proof. It is clear that ytt′ can be written,

ytt′ =max{yt |Atx¿at −Mt(1− yt); At′x¿at′ ; 06x6m; yt61}: (27)

412 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

It is convenient to let St be the feasible set for disjunct t ∈ T , i.e., St = {x |Atx¿at ;
06x6m}. For �x ∈ St′ de�ne

ytt′(�x) = max{yt |At �x¿at −Mt(1− yt); yt61}: (28)

Claim. For any �x ∈ St′ and any t 6= t′;

ytt′(�x) = max
y

{yt |y ∈ P �x}: (29)

Proof of Claim. It su�ces to show that any yt that is feasible in (29) is feasible in
(28), and vice versa. The former is obvious. To show the latter, let yt be feasible in
(27). To see that if it is feasible in (29), set yt′ = 1− yt and yt′′ = 0 for t′′ 6= t; t′. It
is enough to show

At′′ �x¿at′′ −Mt′′(1− yt′′) (30)

for all t′′ ∈ T . But (30) holds for t′′ = t by stipulation. It holds for t′′ = t′ because
�x ∈ St′ , and it holds for t′′ 6= t; t′ by de�nition of Mt′′ . This proves the claim.
Now suppose that ytt′ ¿ 0 for some t; t′ with t 6= t′. Because the disjunct t′ is

not redundant, St′ is nonempty, and one can choose any �x1 ∈ St′ and note that
ytt′(�x1)¿ 0. Again because disjunct t′ is not redundant, one can choose �x2 ∈ St′\St

and note that ytt′(�x2)¡ 1. There exists a convex combination �x ∈ St′ of �x1 and �x2

with 0¡ytt′(�x)¡ 1, so that ytt′(�x) is not integral. But (29) implies that some �y with
�y t = ytt′(�x) is an extreme point of P �x. It follows that (23) is not integral.
For the converse, suppose that ytt′ = 0 for all pairs t; t′ with t 6= t′. It su�ces to

show that for any �x satisfying (5), any given extreme point �y of P �x is integral. If it
is supposed that �x ∈ St′ , the following can be stated:

max{yt′ |y ∈ P �x}= 1
max{yt |y ∈ P �x}= 0; t 6= t′:

(31)

The �rst is due simply to the fact that �x ∈ St′ . By the above claim, the second is
equivalent to ytt′(�x) = 0, which is implied by the fact ytt′ = 0. Now (31) implies that
P �x is a line segment of unit length extending from the origin in a positive direction
along the yt′ -axis. Thus any extreme point �y ∈ P �x is integral, which means that (23)
is integral.

This specializes to disjunctions with one inequality per disjunct as follows.

Corollary 1. Consider a disjunction (8) with one inequality per disjunction and bounds
06x6m. If (8) contains no redundant disjuncts; then (23) is integral if and only if

max{atx | at′x¿�t′ ; 06x6m}= �t −Mt (32)

for every t; t′ ∈ T with t 6= t′.

The conditions in Theorem 4 and Corollary 1 are quite strict. In fact,

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 413

Corollary 2. The continuous relaxation of (23) is integral only if the feasible sets
described by the disjuncts of (5) are disjoint.

Proof. Suppose two of the feasible sets intersect, e.g. those corresponding to disjuncts
t and t′. Then y∗

t (t
′) = 1, which violates the condition of the theorem.

Not even disjoint feasible sets are su�cient for integrality, as the above example
shows. Furthermore, Corollary 1 and (15) imply that when there are two disjuncts
containing one inequality each, (23) is integral only if the feasible sets of the disjuncts
are vertices or other faces of the box 06x6m. Corollary 2 implies that the faces must
also be disjoint.

3.6. Beaumont’s inequalities

Beaumont [7] identi�ed a class of facet-de�ning inequalities for disjunctive
constraints in which each disjunct consists of a single inequality, as in (8). They
are facet-de�ning in the sense that, under certain conditions, they de�ne facets of the
convex hull of the feasible set of (8). Unfortunately, these conditions are often unsat-
is�ed, which limits the usefulness of the inequalities.
Beaumont’s approach is essentially a reasonable method for choosing multipliers ut

so as to generate a disjunctive inequality (6). He �rst incorporates the bounds x6m
into the disjunction (8) to obtain

∨
t∈T

[
−I

at

]
x¿

[
−m

�t

]
; t ∈ T:

The vector of nonnegative multipliers for each disjunct is ut = (vt ; wt), where wt

corresponds to the last inequality in the disjunct. The object is to derive an inequality
bx¿� that satis�es

b¿wtat − vt

�6wt�t − vtm

for all t. For a given wt (yet undetermined), it is reasonable to make the components
of b as small as possible to get a tight constraint. So let

b=min
t
{wtat}; (33)

where the minimum is taken componentwise. One can now set

vt = wtat − b; t ∈ T;

because (33) implies vt¿0. To make the right-hand side of the inequality as tight as
possible, set

� =min
t∈T

{wt�t − vtm}: (34)

414 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

It remains to pick values for the wt’s. Beaumont’s choice is equivalent to setting wt=Mt

when Mt is derived from the variable bounds as in (10) and at60. Thus

wt =
1

�t − atm
: (35)

The approach breaks down when the denominator is nonpositive, whereupon Beaumont
suggests letting

wt =
1

�t −min{at ; 0}m: (36)

Theorem 5 (Beaumont [7]). The inequality bx¿� given by (33)–(35) is facet-de�ning
for (8) if �t − atm¿ 0 for all t ∈ T .

Beaumont’s inequality can therefore be superior to a supporting elementary inequal-
ity. This is illustrated in Fig. 4, where Beaumont’s inequality is the facet-de�ning
inequality 2x1 + x267.
Assuming �t−atm¿ 0 is equivalent to assuming that the point x=m is infeasible, in

which case it makes sense to separate this point from the feasible set. However, x=m
is often feasible, as in the example of Fig. 2. Here (35) puts (w1; w2)= (− 1

4 ;− 1
5), and

one must revert to (36), which yields the useless inequality 3x1 + 2x2¿− 2.
The underlying di�culty is that Beaumont’s approach has no mechanism for detect-

ing which corner of the box 06x6m should be cut o� from the feasible set.

3.7. Optimal separating inequalities

When valid inequalities are added to the lineaer constraint set, there is always the
possibility that most of them will never play a role in the solution process. That is, the
relaxations may provide the same bounds even if most of the inequalities are removed.
This is true of the traditional continuous relaxation of an MILP model, for example.

The relaxation is nothing other than a set of valid inequalities, most of which are
generally inactive in the solution of the relaxation.
This phenomenon can be avoided by generating only separating inequalities, which

are valid inequalities that are violated by the current solution of the inequality
constraints.
It is straightforward to state a small LP problem whose solution identi�es an

separating inequality for a disjunction if and only if one exists. Thus if no separating
inequality is found, the current solution is known to lie within the convex hull of the
feasible set. In this case, branching is necessary to obtain a feasible solution, unless of
course the current solution is already feasible. The inequality is optimal in the sense
that it is chosen to maximize the amount by which the current solution violates it. Un-
like Beaumont’s and elementary inequalities, this sort of inequality can be generated
when the disjuncts contain more than one inequality.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 415

Suppose that the solution �x of the current LP is to be separated from the feasible
set of the disjunctive constraint (5). Any upper bounds x6m should be incorporated
into each disjunct of (5). Because any disjunctive inequality is de�ned by a choice of
multipliers ut , an LP model can be formulated so as to �nd a set of ut’s that de�ne
an inequality bx¿� that is maximally violated by �x. Such a model is,

max � − b�x

s:t: �6utat ; t ∈ T;

b¿utAt ; t ∈ T;

−e6b6e;

ut¿0; t ∈ T;

�; b unrestricted:

(37)

Note that the variables in the model are �; b; u. If the objective function value is zero,
there is no separating inequality. The constraint −e6b6e ensures that an optimal
solution exits.
The model (37) has an interesting dual:

min (s+ s′)e

s:t: �x −
∑
t∈T

xt = s− s′ (b);

Atxt¿atyt ; t ∈ T (ut);∑
t∈T

yt = 1 (�);

s; s′; xt ; yt¿0; t ∈ T:

(38)

If s − s′ is �xed to zero and �x is a variable, the constraint set is Balas’ convex hull
representation for the disjunction (5) [4]. That is, when s − s′ = 0; the projection of
the feasible set of (38) onto the �x-space is the convex hull of the feasible set of (5).
(This is related to the fact, observed by Williams [71], that the dual of the dual of
a disjunctive programming problem is the convex hull representation of the problem.)
The problem (38) therefore seeks a point

∑
t∈T xt in the convex hull that is closest to

�x, as measured by the rectilinear distance.
An optimal separating inequality can be superior to a supporting elementary inequal-

ity. Consider the example of Fig. 4, which becomes




−3x1 + x2¿− 3
−x1¿− 3
−x2¿− 3


 ∨




−x2¿− 1
−x1¿− 3
−x2¿− 3


 :

416 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

The solution of (37) for �x=(1; 1) is �=− 7
2 ; b=(−1;− 1

2); u
1 =(13 ; 0;

5
6); u2 =(12 ; 1; 0);

which produces the facet-de�ning inequality 2x1 + x267.
The optimal separating inequality need not be facet-de�ning, however. If the convex

hull of the disjunction is the box de�ned by 06xj6m for j=1; 2, the optimal separating
inequality for �x = (2; 2) is x1 + x262.
Optimal separating inequalities are roughly analogous to the optimal disjunctive

cuts used in the lift-and-project method of Balas et al. [5]. One di�erence is that
lift-and-project cuts involve integer variables. Another is that they are derived from
disjunctions of the form yj = 0 ∨ yj = 1. Optimal separating inequalities may be
derived from any disjunction, and they are valid only in those portions of the search
tree where the disjunction is valid. Optimal separating inequalities have not been evalu-
ated computationally, but the success of lift-and-project cuts suggests that an evaluation
is worthwhile.

4. Logic processing

Logic processing can be understood as the derivation of logical implications from
the constraint set. It generates valid logic constraints, which are formulas q(h; y) that
are implied by the set S of formulas qi(y; h) in the model; i.e., all truth values of y
and discrete values of h that make the formulas in S true also make q(h; y) true.
Valid logic constraints are derived by inference algorithms that may also go by the

name of constraint propagation, preprocessing, etc. Feasibility checking is a special
case of inference, because a set of formulas is unsatis�able if and only if they imply
a logical contradiction, such as xj ∧ ¬ xj.
Cutting plane algorithms are actually special cases of inference algorithms. An

inequality can be viewed as a formula that is true when it is satis�ed. A cutting
plane for a constraint set S is an inequality that is satis�ed by all integer points that
are feasible in S; and it is therefore an implication of S. Logic processing algorithms
can therefore be viewed as logical analogs of cutting plane algorithms.
The advantage of logic processing is that it can reduce backtracking. It may, for

example, determine that the logical constraint set is infeasible and thereby prune the
search tree at the current node. It may also generate valid logic constraints that will
prune the search tree at a later time. Suppose, for example, that the formulas

x1 ∨ x100

x1 ∨ ¬ x100
(39)

are among the logical constraints. Obviously x1 can be false in no feasible solution.
Yet if one branches on the variables in the order x1; : : : ; x100 and takes the branch
x1 = false �rst, one could conceivably search all 2100 − 1 nodes in the corresponding
subtree before discovering that x1 must be true. However, if the valid logic constraint
x1 had been derived from (39), the subtree could have been eliminated immediately.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 417

A theory to support this view of constraint generation has been developed in the
constraint satisfaction literature. Generating the constraint x1, for example, is viewed
as increasing the degree of “consistency” of the constraint set, which in turn reduces
backtracking. Consistency is not feasibility, as the word may suggest, but is roughly
analogous to integrality in a polyhedral setting, because a totally consistent constraint
set can be solved without backtracking. There is no space to present this theory here, but
an expository development written for mathematical programmers is available in [36].
In the context of MLLP, generating valid logic constraints has another advantage. It

may be possible to de�ne relaxations for the logic constraints in the continuous part
of the model, thereby strengthening the overall relaxation.
The discussion here will be limited to three types of inference algorithms that are

useful for logic processing: resolution, a simple form of constraint propagation, and
the derivation of “l-cuts” for knapsack constraints. In general one does not carry any
of these algorithms to completion. It is usually best to generate a few implications that
seem most useful for the problem at hand.
Valid (and nonvalid) logic constraints can also be derived from the special structure

of a problem, much as is done for polyhedral cuts. These constraints may be valid or
nonvalid and are discussed brie
y below.

4.1. Resolution

Resolution [49,50,56] was originally de�ned for logical clauses, which are disjunc-
tions of literals (atomic propositions or their negations). Resolution can derive valid
logic constraints for any set of formulas q(y) in which the variables y are atomic
propositions, because any such formula is equivalent to a �nite set of clauses.
Clause C1 implies clause C2 if and only every literal of C1 occurs in C2. Two clauses

have a (unique) resolvent when exactly one variable yj occurs positively in one and
negatively in the other. The resolvant is a disjunction of all literals that occur in either
clause except yj and ¬yj. For instance, y2 ∨ ¬y3 is the resolvent of y1 ∨ y2 and
¬y1 ∨ ¬y3. Given a set S of clauses, the resolution algorithm picks a pair of clauses
in S that have a resolvent that is implied by no clause in S, and adds the resolvent to
S. It repeats until there is no such pair, which occurs after �nitely many iterations.

Theorem 6 (Quine [49,50]). A clause set S implies clause C if and only if the res-
olution algorithm applied to S generates a clause that implies C. In particular; S is
unsatis�able if and only if resolution generates the empty clause.

Thus, resolution is somewhat analogous to Chv�atal’s cutting plane procedure,
because it generates all valid logic constraints in clausal form. Quine’s theorem follows
from Theorem 7, proved below. Resolution has exponential complexity in the worst
case [25] and can be very slow in the typical case [28]. In practice, however, one
would generate a limited number of resolvents, such as those with k or fewer literals,
for some small k.

418 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Any formula q(y; h) that contains both atomic propositions y and discrete variables
h is equivalent to a �nite set of multivalent clauses. Logic constraints can be derived
for a set of formulas by applying a generalized form of resolution to clauses implied
by them. A multivalent clause has the form

n∨
j=1

(hj ∈ Hj); (40)

where each Hj is a subset of the domain Dj of hj. For notational simplicity, it is
assumed that an atomic proposition yj is written hj ∈ {T} or hj ∈ {F}, where hj is a
bivalent variable. If Hj is empty, the term (hj ∈ Hj) can be omitted from (40), but it
is convenient to suppose that (40) contains a term for each hj. One multivalent clause∨

j(hj ∈ H1j) implies another
∨

j(hj ∈ H2j) if and only if H1j ⊂H2j for each j.
The multivalent resolution algorithm is related to Cooper’s algorithm for obtaining

k-consistency for a set of constraints [19]. Given a set of multivalent clauses.


n∨
j=1

(hj ∈ Hij)

∣∣∣∣∣∣ i ∈ I


; (41)

the resolvent on hk of these clauses is(
hk ∈

⋂
i∈I

Hik

)
∨
∨
j 6=k

(
hj ∈

⋃
i∈I

Hij

)
:

Ordinary bivalent resolution is a special case.
For example, the �rst three clauses below resolve on h1 to produce the fourth. Here

each hj has domain {1; 2; 3; 4}:
(h1 ∈ {1; 4}) ∨ (h2 ∈ {1});
(h1 ∈ {2; 4}) ∨ (h2 ∈ {1; 2; 3});
(h1 ∈ {3; 4}) ∨ (h2 ∈ {1});
(h1 ∈ {4}) ∨ (h2 ∈ {1; 2; 3}):

It is pointless to resolve the �rst three clauses on h2, because this produces the tautol-
ogy,

(h1 ∈ {1; 2; 3; 4}) ∨ (x2 ∈ {1}):
To apply the resolution algorithm to a set S of multivalent clauses, �nd a subset of

S whose resolvent M is implied by no clause in S, and add M to S. Continue until
no further clauses can be added to S.
The multivalent resolution algorithm derives all multivalent clauses that are valid

logic constraints for a given set of multivalent clauses. The proof of the theorem uses
the idea of Quine’s original proof for ordinary resolution.

Theorem 7. A set S of multivalent clauses implies a multivalent clause M if and only
if the multivalent resolution algorithm applied to S generates a clause that implies M .

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 419

Proof. Multivalent resolution derives only implication of S because it is clearly valid.
To prove the converse, let S ′ be the result of applying the algorithm to S. Also de�ne
the length of a clause (40) be

∑
j |Hj|. Suppose the theorem is false, and let (40) be

a longest clause implied by S but by no clause in S ′.

Claim. At least one Hj in (40) is missing at least two elements; i.e.; |Dj\Hj|¿2 for
some j.

First it is clear that no Hj = Dj, because otherwise (40) would be implied by a
(in fact, every) clause in S ′. Suppose contrary to the claim that every Hj is missing
exactly one element, say vj. Then h= v= (v1; : : : ; vn) violates (40) and must therefore
violate some clause

∨
j(hj ∈ H ′

j) in S ′, because S ′ implies (40). This means each
H ′

j ⊂Dj\{vj}; so that
∨

j(hj ∈ H ′
j) implies (40), contrary to hypothesis. This proves

the claim

Now suppose vk ; v′k are missing from Hk , and consider the multivalent clauses

(hk ∈ Hk ∪ {vk}) ∨
∨
j 6=k

(hj ∈ Hj); (hk ∈ Hk ∪ {v′k}) ∨
∨
j 6=k

(hj ∈ Hj): (42)

They must respectively be implied by clauses M1; M2 ∈ S ′ because they are longer than
(40). This means that the resolvant of M1; M2 on hk implies (40). So by construction of
the resolution algorithm, S ′ contains a clause that implies (40), contrary to hypothesis.

The proof of the theorem shows that it su�ces in principle to generate resolvents
only of pairs of clauses.
Resolution can be generalized so as to obtain all valid constraints in the form of 0–1

knapsack constraints (discussed in Section 4.3 below) for a system of such constraints
[31]. Barth [6] specialized this approach to obtain constraint generation techniques
for extended clauses of the form

∑
j∈J xj¿k. These inequalities seem to be a useful

compromise between 0–1 inequalities and logical clauses, because they retain some of
the expressiveness of the former and are yet amenable to logic processing.

4.2. Constraint propagation

Unit resolution, also known as forward chaining, provides as fast and very useful
constraint propagation algorithm for logical clauses. It is the same as full resolution
except that one of the parents of a resolvent is always a unit clause. For example, unit
resolution �xes y1 to true in the following clause set:

y3;

y2 ∨ ¬y3;

y1 ∨ ¬y2 ∨ ¬y3:

420 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Fig. 6. A unit resolution algorithm for extended clauses.

Unit resolution is incomplete (i.e., does not derive all valid constraints), as can be seen
in the example,

y1 ∨ y2 ∨ y3;

y1 ∨ ¬y2 ∨ y3;

y1 ∨ y2 ∨ ¬y3;

y1 ∨ ¬y2 ∨ ¬y3:

Full resolution �xes y1 to true, but unit resolution does nothing because there are unit
clauses to start with. Unit resolution is e�cient, however, as it runs in O(nL) time, if
there are L literals, and it tends to be very fast in practice.
Unit resolution is easily generalized to broader classes of formulas. It is adapted to

extended clauses in Fig. 6. A version for multivalent clauses and all-di�erent constraints
appears in Fig. 7.
Unit resolution is a complete inference algorithm for certain classes of clauses, such

as Horn clauses, renamable Horn clauses, extended Horn clauses, etc. [14–16,58,64].
No known structural property of a clause set is necessary and su�cient for the com-
pleteness of unit resolution.
Unit resolution has the same inferential power as linear programming in the following

sense. Suppose that the clauses of S are written as a system Ay¿a of 0–1 inequalities

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 421

Fig. 7. A unit resolution algorithm for multivalent clauses.

422 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

in the usual fashion, i.e., a clause
∨

j∈J Lj is written
∑

j∈J yj(Lj)¿1, where yj(Lj) is
yj if Lj = yj and is 1− yj if Lj = ¬yj.

Theorem 8 (Blair et al. [10]). Unit resolution �nds a contradiction in the clause set
S if and only if the linear relaxation of the corresponding system Ay¿a of 0–1
inequalities is infeasible.

Ay¿a is infeasible when unit resolution �nds a contradiction because unit resolution
(unlike resolution in general) simply adds the inequality representations of clauses. So
deriving the empty clause is equivalent to obtaining 0¿1 from a nonnegative linear
combination of Ay¿a. Conversely, if unit resolution detects no contradiction, then
the inequalities that represent the remaining clauses can be satis�ed by setting each
yj = 1=2.
Although LP duplicates the e�ect of unit resolution, the latter is preferable for logic

processing because it is much faster.

4.3. Knapsack constraints

The familiar 0–1 knapsack constraint dy¿�, where each yj ∈ {0; 1}, can also be
regarded as a logical formula that is true when the sum over bj for which yj is true is
at least �. Boolean functions of this form are called threshold functions and are studied
in the electrical engineering literature [60]. They are di�cult to process logically, but
they can be used to generate logic constraints in the form of clauses and extended
clauses, which are easily manipulated. For example, the logical clauses implied by
a knapsack constraint are identical to the well-known “covering inequalities” for the
constraint, and their derivation is straightforward (e.g., [24]).
It may be more e�ective, however, to infer extended clauses. Although it is hard to

derive all the extended clauses that are implied by a constraint, it is easy to derive
all 1-cuts. Consider a 0–1 inequality dy¿� for which it is assumed, without loss of
generality, that d1¿d2¿ · · ·¿dn ¿ 0; if dj ¡ 0, reverse its sign and add dj to �. A
1-cut for dy¿� is one of the form

y1 + y2 + · · ·+ yj¿k: (43)

The algorithm of Fig. 8, presented in [37], derives all valid 1-cuts. By way of example,
the knapsack constraint

13y1 + 9y2 + 8y3 + 6y4 + 5y5 + 3y6¿30

gives rise to the 1-cuts,

y1 + y2¿1;

y1 + y2 + y3¿2;

y1 + y2 + y3 + y4 + y5¿3:

The �rst cut could be deleted if desired, because it is redundant of the second. 1-cuts
and related cuts are discussed further in [37].

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 423

Fig. 8. An algorithm for generating all 1-cuts for a knapsack constraint dy¿� in which
d1¿d2¿ · · ·¿dn ¿ 0.

4.4. Structural logic constraints

An intuitive understanding of a problem can suggest logic constraints even when
no further valid inequalities are easily identi�ed. Such constraints may be nonvalid as
well as valid, as proposed by [38] in connection with the process synthesis example
discussed in Section 6.2. Structural constraints have also been derived for truss de-
sign problems [11], matching problems [33], and a series of standard 0–1 problems
discussed by Wilson [75].
A valid logic constraint was de�ned above for a set of formulas. It can be de�ned

for an MLLP model (1) as a formula q(y; h) that is true for every (x; y; h) that is
feasible in (1). For example, ¬y3 is a valid logic constraint for the problem

min x1 + x2

s:t: y1 → (x1¿1)

y2 → (x2¿1)

y3 → (x1 + x260)

x1; x2¿0;

∣∣∣∣∣∣∣∣∣∣
y1 ∨ y2

(44)

but is not implied by the formula y1 ∨ y2.
Logic constraints can be de�ned in a more general sense that permits them to be

nonvalid. Let (y; h) be feasible in (1) if (x; y; h) is feasible in (1) for some x. Let
(y′; h′) dominate (y; h) if for any (x; y; h) that is feasible in (1), there is a feasible
(x′; y′; h′) for which cx′6cx. Then q(y; h) might be called a quasi-valid logic constraint
if any feasible (y; h) that makes q(y; h) false is dominated by a feasible (y′; h′) that
makes q(y′; h′) true. A quasi-valid constraint may be added to (1) without changing
the optimal solution, but it may exclude feasible solutions.
For example, the formulas ¬y1 and ¬y2 are quasi-valid logic constraints for (44).

They are nonvalid because they exclude the feasible points (1,0,0), (1,1,0).

424 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

5. A generic branching algorithm

A generic branching algorithm for MLLP appears in Fig. 9. For simplicity, it assumes
that the propositions pj in (1) are atomic propositions yj, which is the case for all
the problems solved in the next section. When branching �xes yj to true or false, the
formula yj or ¬yj is added to the set Q of logical formulas qi(y; h). When hj is
�xed to v, the domain Dj of hj is reduced to {v}. Again for simplicity, it is assumed
that one branches on hj by setting it to one value at a time, but one could branch by
partitioning its domain into subsets containing more than one element.
Logic processing is applied to Q at each node. It may change the content of Q or

remove elements from some Dj’s. Linear relaxations of formulas in Q are added to
the set L of linear inequalities, if desired.
If Q or L is infeasible, the algorithm backtracks. Otherwise, the solution �x of the

LP relaxation will in general satisfy certain constraint sets Ajx¿aj and not others. If
proposition yj is not already �xed to true or false, it is temporarily assumed true if �x sat-
is�es Ajx¿aj and false otherwise. If an un�xed yj corresponds to an empty constraint
set, it can be given a default temporary value that applies until it is �xed otherwise. If
the values of the yj’s and hj’s, including the temporary values, make the formulas in
Q true, �x is a feasible solution. Otherwise optimal separating inequalities are added to
L if desired. If there are no separating inequalities, a variable is chosen for branching.
Traditional branch-and-cut for mixed 0–1 problems can be seen as a special case of

the algorithm of Fig. 9 by formally expressing the problem as follows:

min cx

s:t: Ax¿a;

06xj61; j = 1; : : : ; r;

yj → (xj = 1); j = 1; : : : ; r;

¬yj → (xj = 0); j = 1; : : : ; r:

∣∣∣∣∣∣∣∣∣∣∣
Here branching on the yj’s is equivalent to branching on the 0–1 variables x1; : : : ; xr .
General MILP problems can be written,

min cx

Ax¿a;

06hj6mj; j = 1; : : : ; r;

s:t: (hj = k)→ (xj¿k); k = 0; : : : ; mj; j = 1; : : : ; r;

(h′j = k)→ (xj6k); k = 0; : : : ; mj; j = 1; : : : ; r;

∣∣∣∣∣∣∣∣

mj∨
k=0

(hj = k ∧ h′j = k);

j = 1; : : : ; r:

One can branch on the alternatives xj6k − 1; xj¿k by setting h′j = k − 1 and then
hj = k.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 425

Fig. 9. A generic branching algorithm for MLLP.

426 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

6. Some examples

Examples from four application areas are formulated and solved. The aim is to
illustrate how to choose between a traditional integer programming approach and other
MLLP options for a given problem. An attempt was made to choose problems with
the
avor or complexity of real applications, although the warehouse location problem
is somewhat stylized.
Each problem is formulated as an MLLP without any integer variables and as a

traditional MILP. Both are solved with the generic algorithm of Fig. 9, which in the
case of an MILP reduces to traditional branch-and-cut. The simplest possible algorithm
is used in either case, in order to isolate the e�ect of the speci�c MLLP features
illustrated by each problem.
For logic-based models, the generic algorithm of Fig. 9 is
eshed out as follows.

The search tree is traversed in depth-search manner, so that memory requirements
for the tree are modest. The branching rule is to branch on the �rst propositional
variable in the �rst unsatis�ed logical formula. Logic processing consists of the unit
resolution algorithms of Figs. 6 and 7. The logical formulas were represented in the
same data structure used to provide inequality constraints to CPLEX. The relaxation
of logical formulas varies from case to case, as described below. The code is written
in C and compiled with the Sun C compiler version 1.1 with optimization. The tests
were conducted on a SPARC Station 330 running SUN OS version 4.1.1 and with xx
megabytes memory. The LP relaxations were solved by CPLEX version 3.0.
The MILP algorithm is a straightforward branch-and-bound procedure. The branching

rule is to branch on a variable whose value in the relaxation is nearest 1=2. The LP
relaxations were solved with the same CPLEX routine.
Run times and node counts for version 2.1 of the CPLEX MILP code are also

reported. It is argued in [35], however, that comparison with a commercial code may
provide limited insight. The many features of a commercial code make it di�cult to
isolate which are responsible for performance di�erences.

6.1. A
ow shop problem

A scheduling problem that frequently occurs in chemical processing is a
ow shop
problem with zero-wait transfer. There are several jobs, each representing a batch of
some reagent. Each job is processed on several machines (reactors). The machines are
always visited in the same order, but a given job may skip some of the machines.
When a job’s processing is completed on one machine, it must move immediately to
the next machine in its sequence. The objective is to minimize makespan.
Let Ji be the set of machines on which job i is processed, and dij the processing

time for job i on machine j. If ti is the start time for job i, the job is completed at
time

ti +
∑
j∈Ji

dij:

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 427

It is necessary to make sure that two jobs i; k are not scheduled to be in process at
the same time on the same machine j ∈ Ji ∩ Jk . The �nish time of job i on machine
j is ti + Dij, where

Dij =
∑
j′∈Ji
j′6j

dij′ ;

and its start time is ti+Dij −dij. To avoid clashes one must say that for each machine
j on which jobs i; k are processed, job k starts after job i has �nished, or vice versa.
Thus for each pair (i; k),

(ti + Dij6tk + Dkj − dkj; j ∈ Ji ∩ Jk) ∨ (tk + Dkj6ti + Dij − dij; j ∈ Ji ∩ Jk):

The inequalities is either disjunct are the same except for the right-hand side. It is
therefore necessary to write only one disjunction in each disjunct, using the tightest
right-hand side. An MLLP model is

min T

s:t: ti¿0; T¿ti +
∑
j∈Ji

dij; all i

yik → (tk − ti¿rik)

∣∣∣∣∣∣∣ yik ∨ yki; all i; k; i 6= k;
(45)

where

rik = max
j∈Ji∩Jk

{Dij − Djk + dkj}:
A traditional MILP model can be formulated with big-M constraints.

min T

s:t: ti¿0; T¿ti +
∑
j∈Ji

dij; all i;

tk − ti¿rik −M (1− yik); all i; k; i 6= k;

ti − tk¿rki −Myik all i; k; i 6= k;

yik ∈ {0; 1}; all i; k:

(46)

The problem can also be solved by solving m traveling salesman problems, where m
is the number of jobs [47].
In this case one can anticipate that the logic-based formulation (45) is best, for two

reasons: (a) the MILP representation of the disjunctions is not integral, and (b) the
linear relaxation of 0–1 scheduling constraints is weak (as discussed in Section 3.1),
so that there is little to be lost in forfeiting it. If there are m jobs and n machines,
eliminating integer variables reduces the number of variables in the LP relaxation from
2m+ mn to 2m.
The nonintegrality of the MILP representation follows from Corollary 1, which

implies that it is integral if and only if

max{tk − ti | ti − tk¿rki; (0; 0)6(ti; tk)6(mi; mk)}= rki −Mki;

max{ti − tk | tk − ti¿rik ; (0; 0)6(ti; tk)6(mi; mk)}= rik −Mik :
(47)

428 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Table 1
Computational results for
ow shop problems with zero-time transfer, showing number of nodes in the search
tree, time in seconds, and seconds per node

Number of MLLP MILP CPLEX

Jobs Machines Nodes Time Per Nodes Time Per Nodes Time Per
node node node

6 5 407 2.7 0.0066 689 10.1 0.0147 527 8.1 0.0154
7 5 1951 15.7 0.0080 3171 52.2 0.0165 2647 51.0 0.0193
8 5 14573 129.0 0.0089 24181 546.4 0.0226 16591 413.9 0.0249

Fig. 10. A 4-component separation network.

De�ning Mki;Mik by (15) yields (Mki;Mik) = (rki +mk; rik +mi). Also it is easy to see
that the two maxima in (47) are respectively equal to −rki and −rik . So (47) implies
that the MILP representation is integral if and only if (rki; rik) = (mk; mi), which does
not occur in practice.
Three
ow shop problems that represent process scheduling problems in a chemical

plant [54] were solved, and the results appear in Table 1. The logic-based approach
generated about 60% as many nodes as MILP and used less than half as much time
per node. It ran 3–4 times as fast as MILP on these problems.

6.2. A processing network design problem

Another common problem in chemical engineering is the design (“synthesis”) of
processing networks. For instance, one may wish to separate the components (A,B,C,D)
of a mixture by passing it through various distillation units, as illustrated in Fig. 10.
Each unit separates the input mixture into two streams as indicated. The volumes of
the outputs are �xed proportions of the input. Clearly, some of the units in the network

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 429

of Fig. 10 are redundant. The problem is to choose units and
ow volumes so as to
minimize �xed and variable costs, subject to capacity and volume constraints. Such
problems can involve processes other than distillation and are often complicated by
recycling of streams and waste heat, the latter typically resulting in a nonlinear model
that is not discussed here. In some problems the volume of streams into and out of
the network are semicontinuous variables.
Let E be the set of directed arcs in the network. The network contains a set I of unit

nodes, which represent processing units, and a set J of structural nodes, at which no
unit is present and
ow is conserved. The
ow on arc (i; j) is xij and incurs a unit cost
of cij, typically negative on output
ows to indicate revenue. The �xed cost of unit i
is fi and its capacity is ki. Flow xij on arc (i; j) is �ij times the total input to unit i.
If proposition yi is true when unit i is installed, an MLLP model can be written as

min
∑
(i; j)∈E

cijxij +
∑

i

zi

s:t:
∑
(i; j)∈E

xij =
∑
(j; k)∈E

xjk ; j ∈ J;

xij = �ij

∑
(k; i)∈E

xki; (i; j) ∈ E; i ∈ I;

06xij6ki; (i; j) ∈ E;

yi → (zi = fi); i ∈ I;

y′
i →




zi = 0∑
(i; j)∈E

xij = 0


 ; i ∈ I:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yi ∨ y′
i ; i ∈ I;

An MILP model is

min
∑
(i; j)∈E

cijxij +
∑

i

fiyi

s:t:
∑
(i; j)∈E

xij =
∑
(j; k)∈E

xjk ; j ∈ J;

xij = �ij

∑
(k; i)∈E

xki; (i; j) ∈ E; i ∈ I;

06
∑
(i; j)∈E

xij6kiyi; i ∈ I;

yi ∈ {0; 1}; i ∈ I:

(48)

Semicontinuous variables xij are given the logical representation,

a06xij6bT ;

yt → (xij¿at);

y′
t → (xij6bt−1);

∣∣∣∣∣∣∣∣
yt ∨ y′

t ; t = 1; : : : ; T;
(49)

and the MILP representation (2).

430 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Elementary inequalities can be generated for the disjunctions yi∨y′
i in (48). Because

of upper and lower bounds on the variables, the corresponding constraint sets can be
written as

yi → (zi¿fi);

y′
i →




−zi¿0

−
∑
(i; j)∈E

xij¿0


:

This expands into two disjunctions that can be relaxed:

(zi¿fi) ∨ (−zi¿0); (50)

(zi¿fi) ∨
(
−
∑
(i; j)∈E

xij¿0
)
: (51)

Because fi is an upper bound on zi, the elementary inequality (11) for (50) is simply
0¿0, which is useless. But the elementary inequality for (51) is

zi
fi
¿
1
Mi

∑
(i; j)∈E

xij; (52)

where Mi is an upper bound on the
ow out of unit i. This inequality is easily seen
to de�ne a facet of the convex hull of the disjunction.
There are also some useful quasi-valid logic constraints. Note in Fig. 10 that one

should not install a distillation unit unless at least one adjacent upstream unit is
installed, and all adjacent downstream units are installed. For example, unit 3 should
not be installed unless unit 1 is installed, nor should unit 5 be installed unless both
units 8 and 10 are present. This produces the logic constraints

y3 → y1; y5 → (y8; y10);

which can be written as three clauses,

y1 ∨ ¬y3; ¬y5 ∨ y8; ¬y5 ∨ y10: (53)

These constraints are nonvalid because there is nothing infeasible about installing a
unit that carries no
ow. One might suspect that a branch-and-bound search would
not consider such spurious solutions, so that the constraints (53) would have no e�ect.
Experience reported in [38,52], however, shows that they can be very e�ective, a fact
that is con�rmed here.
Although the linear relaxation of the MILP model can be duplicated with elementary

inequalities, and quasi-valid logic constraints are available, there is reason to believe a
logic-based approach is slightly worse than MILP. Once valid inequalities are added,
the logic-based LP is actually slightly larger than the MILP model. The nonvalid logic
constraints, although logically inspired, can be added to an MILP model. Furthermore,
Theorem 4 implies that the 0–1 formulation of the disjunction yi ∨ y′

i is integral. It is

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 431

Table 2
Node counts and computation times in seconds for separation network synthesis problems

Problem MLLP MLLP MLLP MILP CPLEX MLLP MLLP MILP CPLEX

+dual +elem +elem. +elem. +logic +logic
ineq. ineq. ineq. ineq. constr. constr.

+logic +logic
constr. constr.

+logic
relax.

Node count
5-component sep. 61 21 15 17 11 9 3 3 7
+ 4 unit restr. 15 49 29 13 3 3 4
6-component sep. 1659 105 97 191 94 63 97 33 40
+ 5 unit restr. 9 163 56 5 3 3 15

Seconds
5-component sep. 0.91 3.39 0.41 0.31 0.33 0.35 0.40 0.18 0.40
+ 4 unit restr. 0.45 1.01 0.82 0.52 0.42 0.23 0.28
6-component sep. 33.3 26.5 2.3 5.6 3.5 2.6 8.1 3.3 3.5
+ 5 unit restr. 0.8 5.9 2.0 0.6 0.9 0.4 1.4

easily checked that if 0–1 variables y1; y2 correspond to the two disjuncts yi; y′
i , then

y12(y2) = y21(y1) = 0.
Some of the synthesis problems are modi�ed by �xing the number of units to be

installed:∑
i

yi = k:

To generate elementary inequalities, the formula is written as two inequalities:∑
i

yi¿k;
∑

i

y′
i¿k:

Elementary inequalities of the form (12) for these are respectively,∑
i

zi=fi¿k;
∑
ij

xij=Mi6n− k;

where n is the number of potential units.
Experimental results for two 5-component and two 6-component problems studied in

[52] are displayed in Table 2. The second 5-component problem �xes the total number
of units to 4, and the second 6-component problem �xes it to 5. The solution methods
are grouped by the strength of the formulation. The problems are �rst solved with pure
MLLP branching, without any relaxation of the disjunctive constraints. The very poor
results in the �rst column of the table indicate the importance of using relaxations.
The next column illustrates the expense of generating dual inequalities, as discussed in
Section 3.2.

432 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Table 3
Node counts and computation times in seconds for 10-process and 38-process network synthesis problems

Problem Nodes Seconds

MLLP MILP CPLEX MLLP MILP CPLEX

10 processes, version 1 5 29 24 0.24 0.82 0.65
10 processes, version 2 13 35 52 0.41 0.88 1.47
38 processes, version 1 729 1083 677 199 376 178
38 processes, version 2 1907 3237 868 559 1173 271
38 processes, version 3 1161 1999 345 306 836 104
38 processes, version 4 1901 2861 747 514 1093 229
38 processes, version 5 1081 1561 296 287 551 89

The next three columns of the table compare MLLP, MILP and CPLEX using
relaxations that have the strength of the traditional continuous relaxation of the original
problem; in the MLLP case, this requires the elementary inequalities (52). The next
column adds the logic constraints described above to the MLLP model but not their
relaxations. The last three columns add logic constraints to the MILP and CPLEX
models and elementary relaxations of them to the MLLP model.
The results suggest that adding nonvalid logic constraints can bring a substantial

improvement in an MILP context. They also reduce the number of nodes generated
by the CPLEX MILP routine, which indicates that their employment does not merely
duplicate the action of the CPLEX preprocessor. Experiments reported in [52] provide
a similar indication for the OSL preprocessor. As predicted, MILP is slightly better
than a logic-based approach.
The use of propositional variables is highly advantageous, however, for represent-

ing semi-continuous variables are added to the problem. As noted earlier, the 0–1
representation is nonintegral, and any continuous relaxation of it is useless.
The 10-process and a 38-process problem described in [57] were solved. All the

valid constraints described above were used, except that relaxations for the nonva-
lid logic constraints were omitted from the logic-based model. The results appear in
Table 3. The 10-process problem has 3 semicontinuous variables, and the 38-process
problem has 7. Di�erent versions of the problem were obtained by varying the time
horizon and the placement of intervals.
The results show that a logical representation of semicontinuity roughly halves the

computation time, even though semicontinuity accounts for only about half the discrete
variables. A reasonable approach for these problems would therefore be to use the
traditional approach for everything except the semicontinuous variables. The MLLP
framework provides this kind of
exibility.
The CPLEX preprocessor eliminated most of the rows and columns of the 38-process

problems (but not the 10-process problems) and therefore obtained superior perfor-
mance on these problems. It is impossible to analyze this result without detailed knowl-
edge of the preprocessor. Perhaps the operation that proved so e�ective could be added
to the MLLP algorithm.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 433

6.3. A warehouse location problem

A simple warehouse location problem is to choose a set of warehouses of limited
capacity so as to serve a set of demand points while minimizing �xed and transport
costs. Let

xij=
ow from warehouse i to demand point j.
fi= �xed cost of warehouse i.
ki= capacity of warehouse i.
dj= demand at point j.
cij= unit transport cost from i to j.
An MLLP model can be written as

min
∑

i

zi +
∑
ij

cijxij

s:t:
∑
j

xij6ki; all i;

∑
i

xij¿dj; all j;

zi; xij¿0; all i; j;

yi → (zi = fi); all i;

y′
i →

(∑
j

xij = 0

)
; all i:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yi ∨ y′
i ; all i;

The traditional MILP model is

min
∑

i

fiyi +
∑
ij

cijxij

s:t:
∑
j

xij6kiyi; all i;

∑
i

xij¿dj; all j;

xij¿0; all i; j;

yi ∈ {0; 1}; all i:

The formulation of elementary inequalities for the disjunctive constraints yi ∨ y′
i is

the same as in the network synthesis problems. The fact that total installed warehouse
capacity must accommodate total demand gives rise to the valid knapsack constraint,∑

i

kiyi¿
∑
j

dj: (54)

It can be viewed as a logical formula whose elementary relaxation can be added to
the LP model:∑

i

ki(zi=fi)¿
∑
j

dj:

434 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Table 4
Node counts, computation times in seconds, and seconds per node for warehouse location problems

Problem No. Cap. Nodes Seconds Seconds per node

whse ratio MLLP MILP CPLEX MLLP MILP CPLEX MLLP MILP CPLEX

CAP41 16 1.37 57 81 62 8.6 8.8 5.5 0.15 0.11 0.09
CAP41 16 1.29 59 81 57 8.9 8.6 5.5 0.15 0.11 0.10
CAP43 16 1.29 61 83 42 9.1 8.9 4.4 0.15 0.11 0.10
CAP44 16 1.37 43 61 40 7.1 6.8 4.3 0.17 0.11 0.11
CAP51 16 2.75 1239 1429 1134 172 135 92 0.14 0.09 0.08
CAP61 16 3.86 2147 2631 3017 266 237 235 0.12 0.09 0.08
CAP71 16 16.00 3481 4495 8830 409 398 658 0.12 0.09 0.07
1 10 6.12 61 147 31 1.21 0.70 0.57 0.020 0.015 0.018
2 10 5.10 63 45 25 1.34 0.67 0.52 0.021 0.015 0.021
3 10 4.08 71 73 59 1.54 1.14 1.17 0.022 0.016 0.020
4 10 3.06 49 173 138 1.11 2.61 2.50 0.023 0.015 0.018
5 10 2.04 19 31 27 0.45 0.45 0.55 0.024 0.015 0.020
6 10 1.02 3 21 20 0.16 0.30 0.32 0.053 0.014 0.016

1-cuts can be derived from (54) as described in Section 4.3, and their elementary
relaxations added to the LP.
The 0–1 representation is again integral. The MLLP is also a little larger than

the MILP model, because it contains elementary inequalities for the disjunctions, and
furthermore because the MILP model combines the capacity constraints with the big-M
constraints. The 1-cuts can be used in the MILP as well as the logic model. One would
therefore expect an MILP formulation to have a small advantage.
Seven warehouse location problems from [8] were solved, and the results appear

in Table 4. Each problem has 50 demand points with a total demand of 58,268. The
number of warehouses is shown. Each warehouse has the same capacity, and the ratio
of total warehouse capacity to total demand is shown as “Cap. ratio.”
The 1-cuts were used in the MLLP model but not the MILP model. They result in a

20–30% reduction in the number of nodes but contributed to a 30–50% increase in the
amount of time per node, because of they enlarge the LP model. The net result is that
MLLP is slightly slower than MILP. The 1-cuts are therefore useful, but as predicted,
one should use them in a traditional MILP relaxation.
Problems 1–6 in Table 4 were solved to test the hypothesis that 1-cuts have greater

e�ect when the problem is more tightly constrained, as roughly indicated by the ratio
of total warehouse capacity to total demand. The problems are identical except for the
warehouse capacity. There are 7 demand points with demands 4,5,6,7,8,9,10. The data
tend to con�rm the hypothesis.

6.4. The progressive party problem

The �nal problem to be considered is a scheduling problem posed by a “progressive
party” that was organized at a yachting rally in England. The problem gained some
notoriety when a group of mathematical programmers and constraint programmers

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 435

found it to be intractable for the former and soluble by the latter, albeit with some
manual intervention [62].
In a progressive party, the object is for the crews of a
eet of yachts to visit a

subset of yachts and mingle with the other crews. The visiting crews move to di�erent
boats at the end of each phase of the party. Presumably to simplify the provision of
refreshments and so forth, the number of host yachts should be small.
The problem can be more precisely de�ned as follows. A set I of boats is given.

Each boat i occupied by a crew of ci persons and has space for Ki persons on board.
The problem is to minimize the number of host boats. Each crew i visits a di�erent host
boat hit in each period t, unless it is itself a host, indicated by the truth of proposition
�i. In the latter case hit = i for all t. To encourage mingling, no pair of visiting crews
are permitted to meet more than once. The proposition mijt is true when non-host crews
i and j visit the same boat in period t.
For checking capacity constraints it is convenient to de�ne a proposition vijt that is

true when hit = j. The only propositions that enforce linear inequality constraints are
the �i’s, which force zi = 1 when true.
An MLLP model can be written as follows. The objective function counts the number

of host boats:

min
∑
i∈I

zi

s:t: zi¿0; i ∈ I;

�i → (zi¿1); i ∈ I;

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

vijt ≡ (hit = j); i; j ∈ I; t ∈ T; (a)

�i ∨ alldi�(hi1; : : : ; hi|T |); i ∈ I; (b)

�i ≡ (hit = i); i ∈ I; t ∈ T; (c)∑
i∈I
i 6=j

civijt6Kj − cj; i ∈ I; t ∈ T; (d)

�i ∨ �j ∨ mijt ∨ (hit 6= hjt);

i; j ∈ I; i¡ j; t ∈ T; (e)∑
t∈T

mijt61; i; j ∈ I; i¡ j; (f)

hit ∈ {1; : : : ; |I |}; i ∈ I; t ∈ T:

(55)

Formula (a) de�nes vijt . Formula (b) says that crew i should visit a di�erent boat in
each period unless it is a host crew. Formula (c) causes a crew to remain on its own
boat if and only if it are a host crew. Knapsack constraint (d) is the boat capacity
constraint. Formula (e) says that if crews i and j are both visiting crews (i.e., �i and
�j are false), then either mijt is true or hit 6= hjt ; i.e., mijt is true if the two crews
visit the same boat in period t. The next formula (f) says that a pair of visiting crews
should not meet more than once.
The entire model has O(|I |2|T |) variables and constraints. The LP is trivial, as it

consists only of an objective function and constraints of the form zi¿1. The LP will
become more interesting when inequalities are added to strengthen the relaxation.

436 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

Formulation of an MILP model is more di�cult. The most challenging constraint
is the one that requires visiting crews to meet at most once. Smith et al. [62] remark
that if this is formulated using the variables vijt ; O(|I |4|T |2) constraints are generated.
Because this is impractical, they introduce O(|I |3|T |) variables yijkt , which take the
value 1 when crews j; k meet on boat i in period t. But because there are 29 boats in
the problem, this results in an enormous number of binary variables.
A more compact MILP model is suggested here. It reinterprets the multivalent

variables hit as numeric variables and enforces the all-di�erent constraints with big-M
constraints. The variables hit need not be explicitly constrained to be integral, because
the remaining constraints enforce integrality. The model has O(|I |2|T |) integer variables
and constraints, many fewer than the model of [62].
The objective function (a) in the model below again counts the number of host

boats. Constraints (b) and (c) require a crew to remain on their own boat if and only
if they are a host crew. Constraints (d)–(f) use a disjunctive mechanism to relate vijt
to hit . They say that if hit = j (i.e., ¬ �ijt and ¬ �ijt , which say that hit is neither less
than nor greater than j), then vijt = 1. Constraint (h) plays the role of the all-di�erent
constraint. Constraints (i)–(k) again use a disjunctive mechanism to say that if i and j
are visiting crews and hit = hjt , then mijt = 1:

min
∑
i∈I

�i (a)

s:t: �j + (1− vijt)¿1; i; j ∈ I; t ∈ T; (b)

(1− �i) + viit¿1; i ∈ I; t ∈ T; (c)

vijt + �ijt + �ijt¿1; i; j ∈ I; t ∈ T; (d)

−hit + j¿1− |I |(1− �ijt); i; j ∈ I; t ∈ T; (e)

hit − j¿1− |I |(1− �ijt); i; j ∈ I; t ∈ T; (f)∑
i∈I
i 6=J

civijt6Kj − cj; j ∈ I; t ∈ T; (g)

∑
t∈T

vijt61; i; j ∈ I; i 6= j; (h)

�i + �j + mijt + �ijt + ijt¿1; i; j ∈ I; i¡ j; t ∈ T; (i)

−hit + hjt¿1− |I |(1− �ijt) i; j ∈ I; i¡ j; t ∈ T; (j)

hit − hjt¿1− |I |(1− ijt) i; j ∈ I; i¡ j; t ∈ T; (k)∑
t∈T

mijt61; i; j ∈ I; i¡ j; (l)

16hit6|I |; �i; vijt ; �ijt ; �ijt ; mijt ; �ijt ; ijt ∈ {0; 1}; all i; j; t:

(56)

An alternate form of this model replaces constraints (d)–(f) with the constraints

hit =
∑
j

jvijt ;

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 437

Table 5
Node counts, computation times in seconds, and seconds per node for the progressive party problem

Boats Periods Nodes Seconds Seconds per mode

MLLP CPLEX MLLP CPLEX MLLP CPLEX

5 2 171 1136 0.98 197.0 0.006 0.173
6 2 239 5433 1.41 1708 0.006 0.314
6 3 37 366 0.25 162.8 0.007 0.445
7 3 71 44 0.52 44.6 0.007 1.014
8 3 209 2307 1.63 3113 0.008 1.349
8 4 167 582 1.35 887.5 0.008 1.525
10 3 1143,973 20,000a 12,259 54,150a 0.011 2.708
10 4 28,923 20,000a 319 43,223a 0.011 2.161
aComputation was terminated after 20,000 nodes, without �nding an integer solution.

resulting in a somewhat smaller formulation. In preliminary computational tests, this
sometimes improved and sometimes worsened solution time.
The logic-based formulation was augmented with a simple logic constraint that

requires the number of host boats to be no less than the number of periods:∑
i∈I

�i¿|T |: (57)

This was represented by an elementary inequality in the LP relaxation at each node.
As in the warehouse location problem, there is a valid knapsack constraint that ensures
there is enough capacity to meet total demand:∑

i∈I

Ki�i¿
∑
i∈I

ci: (58)

An elementary inequality for this was added to the LP relaxation. 1-cuts were also
generated for (58) and their relaxations added to the LP. Elementary inequalities
were not generated for the knapsack constraints (55d). The logic processing was
achieved by a section of code that in e�ect implements the unit resolution algorithms of
Figs. 6 and 7.
The MILP model was also augmented with the logic constraints (57). There was no

need to add (58) because it is a linear combination of the other constraints.
The logic-based model (55) is not only simpler but has a substantial computational

advantage. This is primarily because of the huge number of discrete variables, which
are more e�ciently processed in the logical part of the problem.
The computational results appear in Table 5.Due to the di�culty of the problem, only

the CPLEX implementation of MILP was used. It was run with a feature that identi�es
specially ordered sets (sosscan), because MLLP’s processing of propositional variables
that are not associated with linear constraint sets can be viewed as incorporating the
advantage of using type 1 specially ordered sets.
The original problem described in [62] had 29 boats and 6 periods and was solved

by the ILOG Solver, but only after specifying exactly which boats were to serve

438 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

as hosts, and even then only after manual intervention. Smith et al. [62] report that
XPRESSMP solved an MILP model of the problem with 15 boats and 4 periods, but
only after specifying that only boats 1–8 (in descending order of Ki−ci) could serve as
hosts and only crews 5–15 could visit other boats (the optimal solution uses 5 hosts).
The problems were solved here without any manual intervention. When the problem
contains |I | boats, they are the |I | largest boats as measured by Ki − ci.
Both solution methods could no doubt be improved with more intelligent branching

and other devices. But the underlying computational advantage of a logical represen-
tation is clear and is due primarily to a much smaller LP relaxation and the speed of
logic processing.

7. Conclusions

We conclude that the larger repertory of modeling and solution options in MLLP can,
if judiciously chosen, provide a more
exible modeling environment than
MILP alone, without sacri�cing solution e�ciency and in some cases substantially
improving it.
We attempt here to collect some rough guidelines for choosing the options, based

on computational experience to date. The basic issue addressed is what part of the
constraint set should be given a logical formulation, and what part should be embedded
in the linear model with the help of integer variables. It is assumed throughout that
constraints with purely continuous variables appear in the continuous portion of the
model.
Because the formulas pj of (1) all have the form yj in the problems solved, the

discussion here assumes that they have this form. In general some propositions yj

enforce one or more linear inequality constraints when they are true, and others do
not. It is convenient to refer to the former as linked and the latter as unlinked.

• As a general rule, constraints should receive the most convenient formulation, un-
less one of the considerations to follow indicates otherwise. For example, a 0–1
knapsack constraint ax¿� (where some coe�cients aj are other than 0; 1;−1) should
be written as a 0–1 inequality. Constraints with a logical
avor, however, should
normally be appear in logical form. These might include disjunctions, implications,
etc.

• Constraints that contain primarily unlinked propositions in their logical form should
normally be written in that form. It is likely that logic processing is as useful as
solving the linear relaxation of the 0–1 formulation; it is equivalent when the logical
formulas are clauses. The advantage of a logical formulation can be
substantial when there are a large number of unlinked propositions, as illustrated
by the progressive party problem.

• For constraints that contain primarily linked propositions in their logical formulation,
the best treatment depends on the nature of the relaxation.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 439

◦ If there is no good linear relaxation, as in the case of the
ow job scheduling
disjunctions and the semicontinuous variables discussed earlier, then the constraints
should receive a logical formulation. In this case the overhead of using integer
variables is unjusti�ed.

◦ If a good linear relaxation exists, the following considerations apply. If the contin-
uous relaxation of the 0–1 formulation can be duplicated or improved upon using
a small number of (strengthened) elementary cuts or other cuts, then the logical
formulation should be used, and the cuts added to the LP. Examples of this were
given in Sections 3.3 and 3.4. If the cuts required to duplicate the continuous
relaxation are too numerous or unavailable, then the constraints should receive a
traditional 0–1 formulation. This was the situation in the warehouse location and
process network design problems (aside from the semicontinuous variables in the
latter).

◦ It may be advantageous to use both a logical and a 0–1 formulation, so as to
apply logic processing to the former and obtain a relaxation from the latter.

◦ If the 0–1 representation is nonintegral, this argues against it, because branching
may continue unnecessarily. The
ow shop problems and semicontinuous variables
serve as examples.

• Any logic cuts (valid or nonvalid) that can be identi�ed are probably useful. Exam-
ples of these include the nonvalid cuts generated for the network design problems and
the 1-cuts used in the warehouse and party problems. Logic cuts can be represented
in logical form, 0–1 form, or both, depending on factors already discussed.

• Optimal separating cuts have not been tested computationally, but the success of
separating cuts and lift-and-project cuts (to which they are analogous) suggests that
they could be useful. It may also be bene�cial to use Benders cuts, which can be
generalized to a logic-based setting [34].

• It may be possible to construct useful linear relaxations of common logical
formulas that contain multivalued discrete variables (other than integer variables),
such as all-di�erent constraints. This issue is now under investigation.
A software package based on MLLP would probably require more expertise that

existing ones based on MILP. Ultimately, however, a large class of combinatorial
problems may always require a certain amount of expertise for their solution. The
issue is how much user intervention is appropriate. It seems unreasonable to restrict
oneself to automatic routines in general-purpose solvers when some simple additional
devices may obtain solutions that are otherwise out of reach. At the other extreme, it is
impractical to invest in every new problem the years of research e�ort that have been
lavished on traveling salesman and job shop scheduling problems. MLLP is designed
to present a compromise between these two extremes.

References

[1] A. Aiba, K. Sakai, Y. Sato, D.J. Hawley, R. Hasegawa, Constraint logic programming language CAL,
Fifth Generation Computer Systems, Springer, Tokyo, 1988.

440 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

[2] E. Balas, Disjunctive programming: cutting planes from logical conditions, in: O.L. Mangasarian,
R.R. Meyer, S.M. Robinson (Eds.), Nonlinear Programming, vol 2, Academic Press, New York, 1975,
pp. 279–312.

[3] E. Balas, A note on duality in disjunctive programming, J. Optim. Theory Appl. 21 (1977) 523–527.
[4] E. Balas, Disjunctive programming, Ann. Discrete Math. 5 (1979) 3–51.
[5] E. Balas, S. Ceria, G. Cornu�ejols, Mixed 0–1 programming by lift-and-project in a branch and cut

framework, Management Sci. 42 (1996) 1229–1246.
[6] P. Barth, Logic-Based 0–1 Constraint Programming, Kluwer Academic Publishers, Boston, 1995
[7] N. Beaumont, An algorithm for disjunctive programs, European J. Oper. Res. 48 (1990) 362–371.
[8] J.E. Beasley, An algorithm for solving large capacitated warehouse location problems, European

J. Oper. Res. 3 (1988) 314–325.
[9] C. Blair, Two rules for deducing valid inequalities for 0–1 problems, SIAM J. Appl. Math. 31 (1976)

614–617.
[10] C. Blair, R.G. Jeroslow, J.K. Lowe, Some results and experiments in programming techniques for

propositional logic, Comput. Oper. Res. 13 (1988) 633–645.
[11] S. Bollapragada, O. Ghattas, J.N. Hooker, Optimal design of truss structures by mixed logical and linear

programming, to appear in Operations Research.
[12] I. Bratko, PROLOG Programming for Arti�cial Intelligence, International Computer Science,

Addison-Wesley, Reading, MA, 1986.
[13] BULL Corporation, CHARME VI User’s Guide and Reference Manual, Arti�cial Intelligence

Development Centre, BULL S.A., France, 1990.
[14] V. Chandru, C.R. Coullard, P.L. Hammer, M. Montañez, X. Sun, On renamable Horn and generalized

Horn functions, Ann. Math. AI 1 (1990) 33–48.
[15] V. Chandru, J.N. Hooker, Extended Horn clauses in propositional logic, J. ACM 38 (1991) 205–221.
[16] V. Chandru, J.N. Hooker, Detecting embedded Horn structure in propositional logic, Inform. Process.

Lett. 42 (1992) 109–111.
[17] A. Colmerauer, An introduction to Prolog III, Comm. ACM 33 (1990) 52–68.
[18] A. Colmerauer, H. Kanouia, R. Pasero, P. Roussel, Un syst�eme de communication homme-machine en

fran�cais, Technical Report, Universit�e d’Aix-Marseilles II, Groupe intelligence arti�cielle, 1973.
[19] M.C. Cooper, An optimal k-consistency algorithm, Artif. Intell. 41 (1989) 89–95.
[20] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, F. Bertier, The constraint

programming language CHIP, Proceedings on the International Conference on Fifth Generation
Computer Systems FGCS-88, Tokyo, December 1988.

[21] A. Drexl, C. Jordan, A comparison of logic and mixed-integer programming solvers for batch sequencing
with sequence-dependent setups, INFORMS J. Comput., to appear.

[22] E.C. Freuder, Exploiting structure in constraint satisfaction problems, in: B. Mayoh, E. Tyugu,
J. Penjam (Eds.), Constraint Programming, Springer, Berlin, 1993, pp. 50–74.

[23] F. Glover, Surrogate constraint duality in mathematical programming, Oper. Res. 23 434–451.
[24] F. Granot, P.L. Hammer, On the use of boolean functions in 0–1 linear programming, Methods Oper.

Res. (1971) 154–184.
[25] A. Haken, The intractability of resolution, Theoret. Comput. Sci. 39 (1985) 297–308.
[26] P.L. Hammer, S. Rudeanu, Boolean Methods in Operations Research and Related Areas, Springer,

Berlin, 1968.
[27] J.N. Hooker, Resolution vs. cutting plane solution of inference problems: some computational

experience, Oper. Res. Lett. 7 (1988) 1–7.
[28] J.N. Hooker, Generalized resolution and cutting planes, Ann. Oper. Res. 12 (1988) 217–239.
[29] J.N. Hooker, A quantitative approach to logical inference, Decision Support Systems 4 (1988) 45–69.
[30] J.N. Hooker, Input proofs and rank one cutting planes, ORSA J. Comput. 1 (1989) 137–145.
[31] J.N. Hooker, Generalized resolution for 0–1 linear inequalities, Ann. Math. AI 6 (1992) 271–286.
[32] J.N. Hooker, Logical inference and polyhedral projection, Proceedings, Computer Science Logic

Workshop (CSL’91), Lecture Notes in Computer Science, vol. 626, Springer, Berlin, 1992,
pp. 184–200.

[33] J.N. Hooker, Logic-based methods for optimization, in: A. Borning (Ed.), Principles and Practice
of Constraint Programming, Lecture Notes in Computer Science, vol. 874, Springer, Berlin, 1994,
pp. 336–349.

J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442 441

[34] J.N. Hooker, Logic-based Benders decomposition, available at http:==www.gsia.cmu.edu=afs=andrew=
gsia=jh38=jnh.html, 1995.

[35] J.N. Hooker, Testing heuristics: we have it all wrong, J. Heuristics 1 (1995) 33–42.
[36] J.N. Hooker, Constraint satisfaction methods for generating valid cuts, in: D.L. Woodru�, ed., Advances

in Computational and Stochastic Optimization, Logic Programming and Heuristic Search, Kluwer (1997)
pp. 1–30. edu=afs=andrew=gsia=jh38=jnh.html.

[37] J.N. Hooker, N.R. Natraj, Solving 0–1 optimization problems with k-tree relaxation, in preparation.
[38] J.N. Hooker, H. Yan, I. Grossmann, R. Raman, Logic cuts for processing networks with �xed charges,

Comput. Oper. Res. 21 (1994) 265–279.
[39] J. Ja�ar, J.-L. Lassez, Constraint logic programming, Proceedings of the 14th ACM Symposium on

Principles of Programming Languages, M�unchen, ACM, New York, 1987, pp. 111–119.
[40] J. Ja�ar, J.-L. Lassez, From uni�cation to constraints, Logic programming 87, Proceedings of the Sixth

Conference, Springer, Berlin, 1987, pp. 1–18.
[41] R.E. Jeroslow, Representability in mixed integer programming, I: characterization results, Discrete Appl.

Math. 17 (1987) 223–243.
[42] R.E. Jeroslow, Logic-Based Decision Support: Mixed Integer Model Formulation, Annals of Discrete

Mathematics, vol. 40, North-Holland, Amsterdam, 1989.
[43] R.E. Jeroslow, J.K. Lowe, Modeling with integer variables, Math. Programm. Stud. 22 (1984)

167–184.
[44] R.A. Kowalski, Predicate logic as programming language, Proceedings of the IFIP Congress,

North-Holland, Amsterdam, 1974, pp. 569–574.
[45] K. McAloon, C. Tretko�, 2LP: linear programming and logic programming, in: P. van Hentenryck,

V. Saraswat (Eds.), Principles and Practice of Constraint Programming, MIT Press, Cambridge, MA,
1995, pp. 99–114.

[46] K. McAloon, C. Tretko�, Optimization and Computational Logic, Wiley, New York, in preparation.
[47] J. Piehler, Ein Beitrag zum Reihenfolgeproblem, Unternehmenforschung 4 (1960) 138–142.
[48] J.-F. Puget, A C++ implementation of CLP, Technical Report 94-01, ILOG S.A., Gentilly, France,

1994.
[49] W.V. Quine, The problem of simplifying truth functions, Amer. Math. Mon. 59 (1952) 521–531.
[50] W.V. Quine, A way to simplify truth functions, Amer. Math. Mon. 62 (1955) 627–631.
[51] R. Raman, I.E. Grossmann, Relation between MILP modeling and logical inference for chemical process

synthesis, Comput. Chem. Eng. 15 (1991) 73–84.
[52] R. Raman, I.E. Grossmann, Symbolic integration of logic in MILP branch and bound methods for the

synthesis of process networks, Ann. Oper. Res. 42 (1993) 169–191.
[53] R. Raman, I.E. Grossmann, Symbolic integration of logic in mixed-integer linear programming

techniques for process synthesis, Comput. Chem. Eng. 17 (1993) 909–927.
[54] R. Raman, I.E. Grossmann, Modeling and computational techniques for logic based integer

programming, Comput. Chem. Eng. 18 (1994) 563–578.
[55] C. Remy, Programming by constraints, Micro Systemes 104 (1990) 147–150.
[56] J.A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1965) 23–41.
[57] N.V. Sahinidis, I.E. Grossmann, R.E. Fornari, M. Chathrathi, Optimization model for long range

planning in the chemical industry, Comput. Chem. Eng. 13 (1989) 1049–1063.
[58] J.S. Schlipf, F.S. Annexstein, J.V. Franco, R.P. Swamination, On �nding solutions for extended Horn

formulas, Inform. Process. Lett. 54 (1995) 133–137.
[59] D. Sciamma, J. Gay, A. Guillard, CHARME: a constraint oriented approach to scheduling and resource

allocation, Arti�cial Intelligence in the Paci�c Rim, Proceedings of the Paci�c Rim International
Conference on Arti�cial Intelligent, Nagoya, Japan, 1990, pp. 71–76.

[60] C.-L. Sheng, Threshold Logic, Academic Press, New York, 1969.
[61] H. Simonis, M. Dincbas, Propositional calculus problems in CHIP, in: F. Benhamou, A. Colmerauer

(Eds.), Constraint Logic Programming: Selected Research, MIT Press, Cambridge, MA, 1993,
pp. 269–285.

[62] B.M. Smith, S.C. Brailsford, P.M. Hubbard, H.P. Williams, The progressive party problem: Integer linear
programming and constraint programming compared, in: U. Montanari, F. Rossi (Eds.), Proceedings of
Principles and Practice of Constraint Programming, Cassis, France, Springer, Berlin, 1995, pp. 36–52.

[63] L. Sterling, E. Shapiro, The Art of Prolog: Advanced Programming Techniques, MIT Press, Cambridge,
MA, 1986.

442 J.N. Hooker, M.A. Osorio /Discrete Applied Mathematics 96–97 (1999) 395–442

[64] R.P. Swaminathan, D.K. Wagner, The arborescence-realization problem, Discrete Appl. Math. 59 (1995)
267–283.

[65] E. Tsang, Foundations of Constraint Satisfaction, Academic Press, London, 1993.
[66] M. Turkay, I.E. Grossmann, Logic-based MINLP algorithms for the optimal synthesis of process

networks, Comput. Chem. Eng. 20 (1996) 959–978.
[67] P. Van Hentenryck, Constraint Satisfaction in Logic Programming, MIT Press, Cambridge, MA, 1988.
[68] H.P. Williams, Fourier-Motzkin elimination extension to integer programming problems, J. Combin.

Theory 21 (1976) 118–123.
[69] H.P. Williams, Logical problems and integer programming, Bull. Inst. Math. Implications 13 (1977)

18–20.
[70] H.P. Williams, Linear and integer programming applied to the propositional calculus, Int. J. Systems

Res. Inform. Sci. 2 (1987) 81–100.
[71] H.P. Williams, An alternative explanation of disjunctive formulations, European J. Oper. Res. 72 (1994)

200–203.
[72] H.P. Williams, Logic applied to integer programming and integer programming applied to logic,

European J. Oper. Res. 81 (1995) 605–616.
[73] J.M. Wilson, Compact normal forms in propositional logic and integer programming formulations,

Comput. Oper. Res. 90 (1990) 309–314.
[74] J.M. Wilson, Generating cuts in integer programming with families of specially ordered sets, European

J. Oper. Res. 46 (1990) 101–108.
[75] J.M. Wilson, A note on logic cuts and valid inequalities for certain standard (0–1) integer programs,

manuscript, Loughborough University Business School, Loughborough, Leicestershire LZE11 3TU, UK,
1995.

