Achieving Consistency with Cutting Planes

John Hooker Carnegie Mellon University

Joint work with Danial Davarnia & Atafeh Rajabalizadeh Iowa State University

INFORMS 2021

A Different Perspective on IP

- The concept of **consistency** from constraint programming can provide a **new perspective** on **cutting planes**.
 - We can view cutting planes as excluding infeasible partial assignments rather than fractional LP solutions.
 - A partial assignment assigns integer values to only **some** of the variables.

A Different Perspective on IP

- The concept of **consistency** from constraint programming can provide a **new perspective** on **cutting planes**.
 - We can view cutting planes as excluding infeasible partial assignments rather than fractional LP solutions.
 - A partial assignment assigns integer values to only **some** of the variables.
 - Cutting planes can reduce backtracking even when there are no bounds from an LP relaxation.
 - This could have **computational** implications.
 - ...and provide additional insight into IP.

- **Consistency** is a core concept of constraint programming.
 - Roughly speaking,

Partial assignments that violate no single constraint are **feasible** (are part of some feasible solution)

- − Consistency ⇒ no backtracking
 - A node in a branching tree corresponds to a partial assignment.
 - If it violates no constraint, we can proceed to a feasible solution without backtracking.

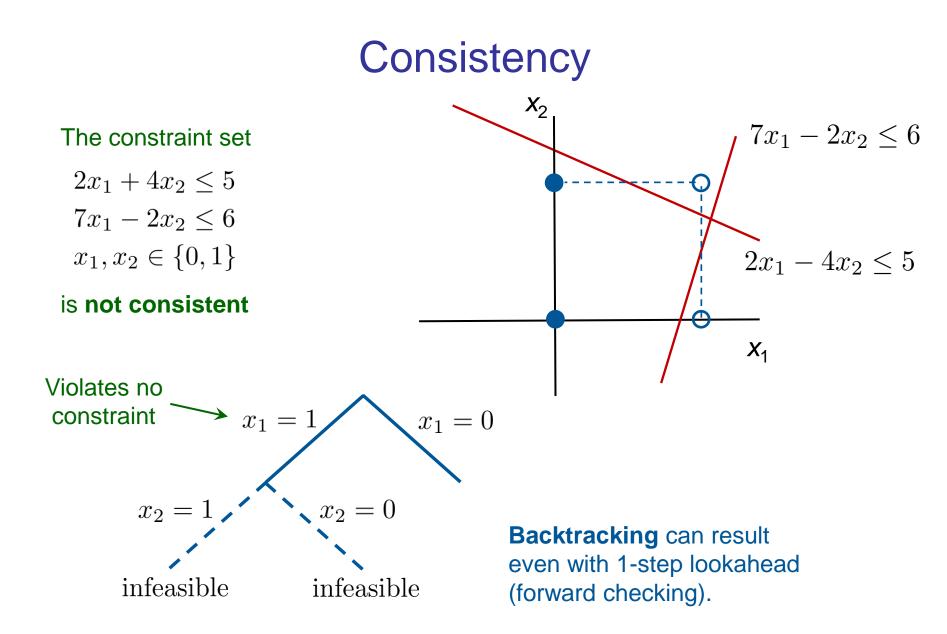
The constraint set

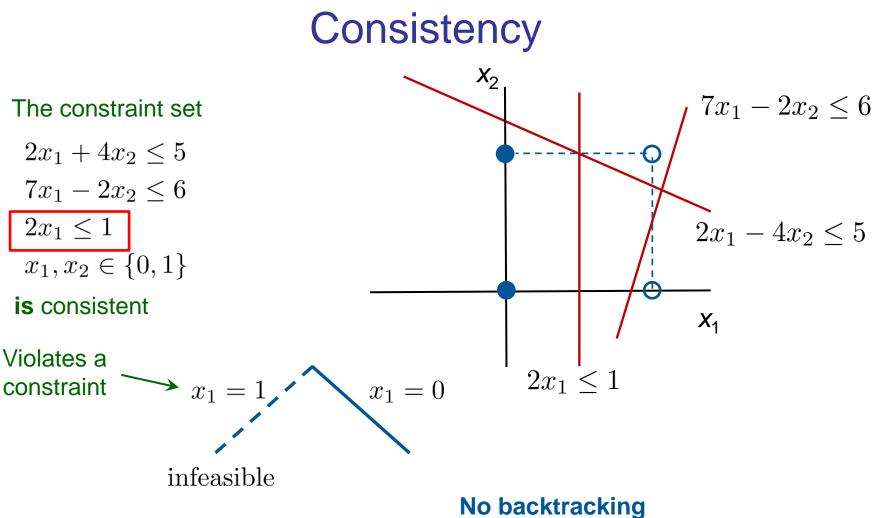
 $2x_1 + 4x_2 \le 5$ $7x_1 - 2x_2 \le 6$ $x_1, x_2 \in \{0, 1\}$

is **not consistent** because the partial assignment $x_1 = 1$ violates no single constraint* but is infeasible. x_{2} $7x_{1} - 2x_{2} \le 6$ $2x_{1} - 4x_{2} \le 5$ x_{1}

Consistency is a **much stronger** condition on a constraint set than feasibility.

*A partial assignment must fix all variables in a constraint to violate it





with forward checking

Don't take the $x_1 = 1$ branch

- Full consistency is very hard to achieve, but...
 - Various forms of **partial consistency** can reduce backtracking.
 - Especially domain consistency.
 - This is the workhorse of constraint programming,
 - ...analogous to cutting planes in IP.

- The concept of consistency **never developed** in the optimization literature.
 - Even though it is closely related to the amount of backtracking...
 - ...and cutting planes can reduce backtracking by achieving a greater degree of consistency
 - ...as well as by **tightening a relaxation**.

- Goal: Explore the role of consistency in IP.
 - Understand connection between cutting planes and consistency.
 - Develop LP consistency a form of consistency suitable for IP.
 - Use partial LP consistency to reduce backtracking.
 - Bridge the two thought systems (CP and IP).

- Consistency allows us to check whether a partial assignment is feasible...
 - By checking whether it is feasible in a relaxation of the constraint set.
 - ...a relaxation that makes this **easy to check**.
 - The relaxation consists of constraints that contain only the variables in the partial assignment.

- Consistency allows us to check whether a partial assignment is feasible...
 - By checking whether it is feasible in a relaxation of the constraint set.
 - ...a relaxation that makes this **easy to check**.
 - The relaxation consists of constraints that contain only the variables in the partial assignment.

We can check if $x_1 = 1$ is feasible in the **consistent** constraint set

$$2x_1 + 4x_2 \le 5$$

$$7x_1 - 2x_2 \le 6$$

$$2x_1 \le 1$$

$$x_1, x_2 \in \{0, 1\}$$

- Consistency allows us to check whether a partial assignment is feasible...
 - By checking whether it is feasible in a relaxation of the constraint set.
 - ...a relaxation that makes this **easy to check**.
 - The relaxation consists of constraints that contain only the variables in the partial assignment.

We can check if $x_1 = 1$ is feasible in the **consistent** constraint set

$$2x_1 + 4x_2 \le 5$$

$$7x_1 - 2x_2 \le 6$$

$$2x_1 \le 1$$

$$x_1, x_2 \in \{0, 1\}$$

By checking whether it is feasible in the **relaxation**

$$2x_1 \le 1 x_1, x_2 \in \{0, 1\}$$

- Consistency allows us to check whether a partial assignment is feasible...
 - By checking whether it is feasible in a relaxation of the constraint set.
 - ...a relaxation that makes this **easy to check**.
 - The relaxation consists of constraints that contain only the variables in the partial assignment.

We can check if $x_1 = 1$ is feasible in the **consistent** constraint set

$$2x_1 + 4x_2 \le 5$$

$$7x_1 - 2x_2 \le 6$$

$$2x_1 \le 1$$

$$x_1, x_2 \in \{0, 1\}$$

By checking whether it is feasible in the **relaxation**

$$2x_1 \le 1 x_1, x_2 \in \{0, 1\}$$

It is obviously infeasible.

LP-Consistency

 We want to do the same for IP using the LP relaxation

An IP constraint set is **LP-consistent** if any integer partial assignment feasible in its LP relaxation is feasible in the IP.

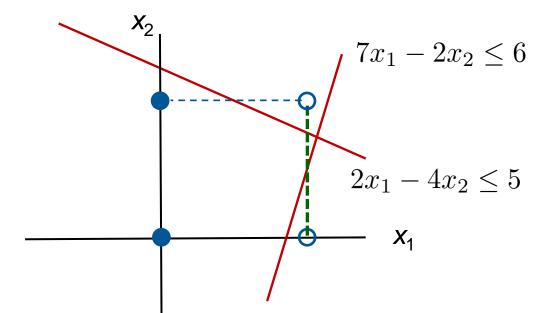
- Given LP-consistency, we can avoid backtracking by solving LPs
 - Check whether the partial assignment at a node is feasible in the LP relaxation.
 - This is easy just solve the LP that results from adding the partial assignment to the constraint set.

LP-Consistency

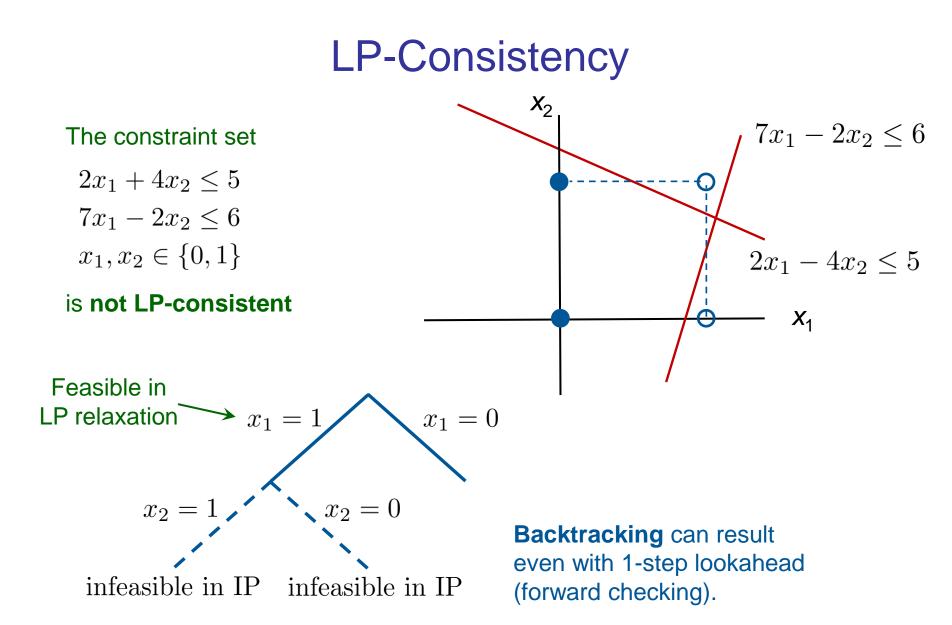
The constraint set

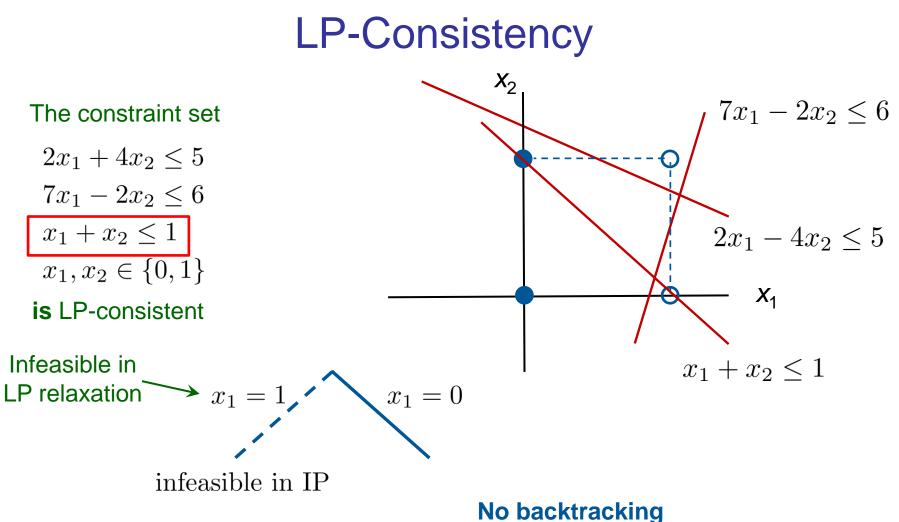
 $2x_1 + 4x_2 \le 5$ $7x_1 - 2x_2 \le 6$ $x_1, x_2 \in \{0, 1\}$

is **not LP-consistent** because the partial assignment $x_1 = 1$ is feasible in the LP relaxation but is infeasible in the IP.



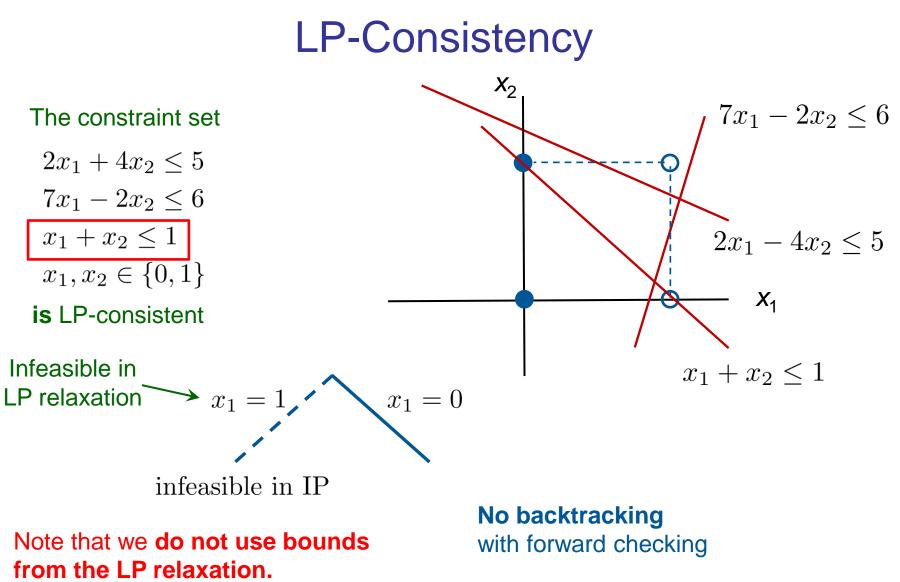
LP-consistency is a **much stronger** condition on a constraint set than feasibility of the LP relaxation.





with forward checking

Don't take the $x_1 = 1$ branch



We only use the LP to identify infeasible partial assignments.

Don't take the $x_1 = 1$ branch

LP-Consistency and C-G Cuts

- Can cutting planes achieve LP-consistency?
 - Certain Chvátal-Gomory cuts can achieve LP-consistency.
 - For this, we need the concept of a **clausal inequality**.
 - It is a 0-1 inequality that expresses a **logical clause**.

Logical clause	Clausal inequality
$\neg x_1 \lor \neg x_2$	$x_1 + x_2 \le 1$
$\neg x_1 \lor x_2$	$x_1 - x_2 \le 0$
$x_1 \lor x_2$	$-x_1 - x_2 \le -1$
$\neg x_1$	$x_1 \le 0$

LP-Consistency and C-G Cuts

Theorem. A 0-1 constraint set is **LP-consistent** if and only if any **implied clausal inequality** is a **rank 1 C-G cut**.

The LP-consistent constraint set

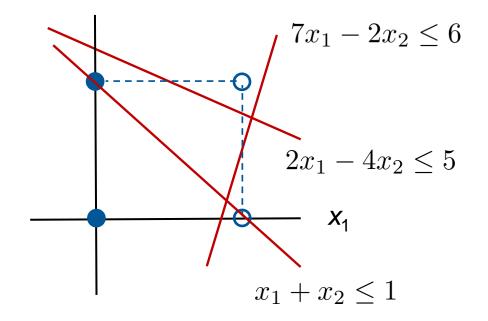
$$2x_1 + 4x_2 \le 5$$

$$7x_1 - 2x_2 \le 6$$

$$x_1 + x_2 \le 1$$

$$x_1, x_2 \in \{0, 1\}$$

implies the clausal inequality $x_1 \le 0$ which **is** a rank 1 C-G cut...



LP-Consistency and C-G Cuts

Theorem. A 0-1 constraint set is **LP-consistent** if and only if any **implied clausal inequality** is a **rank 1 C-G cut**.

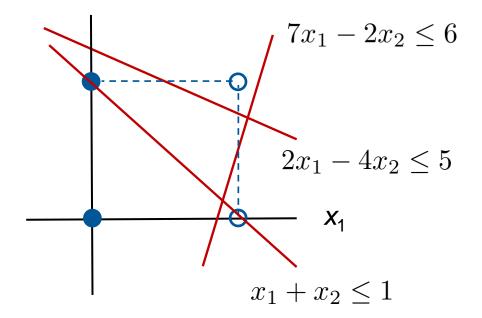
...as shown by linear combination and rounding:

$$2x_1 + 4x_2 \le 5 \qquad (0)$$

$$7x_1 - 2x_2 \le 6 \qquad (1/9)$$

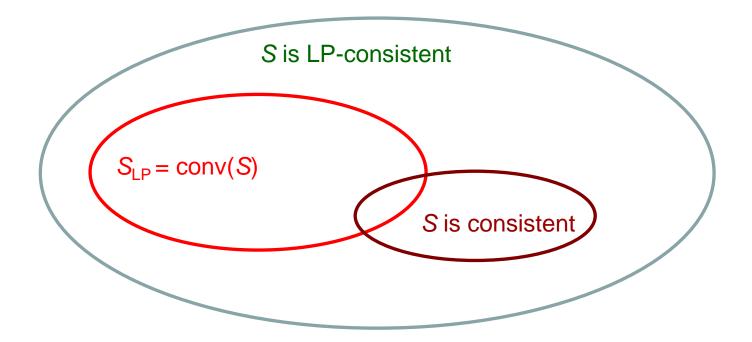
$$x_1 + x_2 \le 1 \qquad (2/9)$$

$$x_1 \le 8/9 \Rightarrow x_1 \le 0$$

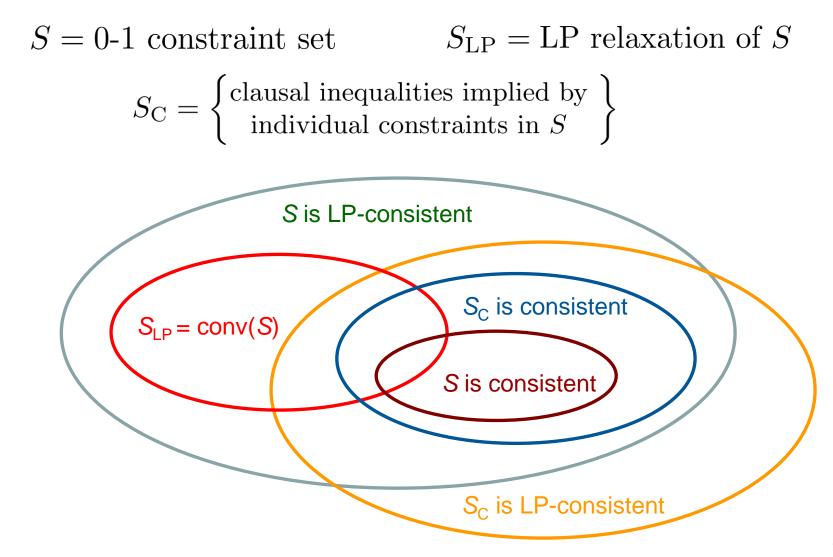


Consistency and the Convex Hull

S = 0-1 constraint set $S_{LP} = LP$ relaxation of S



Consistency and the Convex Hull



- Full LP-consistency is hard to achieve.
 - In principle, can achieve it by generating all rank 1 clausal C-G inequalities (from the Theorem).
 - This is not practical.
 - We define a form of **partial** LP-consistency.
 - Analogous to *k*-consistency in constraint programming.

- Full LP-consistency is hard to achieve.
 - In principle, can achieve it by generating all rank 1 clausal C-G inequalities (from the Theorem).
 - This is not practical.
 - We define a form of **partial** LP-consistency.
 - Analogous to *k*-consistency in constraint programming.

A 0-1 constraint set is **rank** *r* **LP-consistent over variable set** *J*... if any partial assignment to variables in *J* that is feasible in the LP relaxation... can be **extended** to *r* additional variables and still be feasible in the LP.

- Rank r LP-consistency reduces backtracking.
 - Roughly speaking, one can descend *r* more levels into the search tree without having to backtrack.

- Rank r LP-consistency reduces backtracking.
 - Roughly speaking, one can descend *r* more levels into the search tree without having to backtrack.
- We can achieve rank *r* LP-consistency over *J* with a restricted form of RLT.*

Theorem. Rank *r* LP-consistency can be achieved by a rank r' RLT algorithm** for a computable value of r', where r' may be substantially less than *r*.

*Reformulation and linearization technique.

**The RLT algorithm lifts into r' additional dimensions.

Let $S = \{Ax \le b, x \in \{0,1\}^n\}$ be a 0–1 constraint set. Apply RLT to S for a given $K \subset N \setminus J$ by generating the nonlinear system

$$(Ax - b) \prod_{j \in J_1} x_j \prod_{j \in J \setminus J_1} (1 - x_j) \le 0, \text{ all } J_1 \subseteq J$$

Linearize this system and project it onto J to obtain $\mathcal{R}_K(S_{\text{LP}})|_J$. Let $\mathcal{R}(S_{\text{LP}})|_J$ be the union of $\mathcal{R}_K(S_{\text{LP}})|_J$ over all K with |K| = r', and add the inequalities in $\mathcal{R}(S_{\text{LP}})|_J$ to S to obtain \hat{S} .

Theorem. Define

$$r = \min_{K \subseteq N \setminus J} \left\{ |K| \mid S_{\mathrm{LP}} \cup \{ x_{J \cup K} = v_{J \cup K} \} \text{ is infeasible for all } v_K \in \{0, 1\}^{|K|} \right\}$$

with minimizer K_{\min} . Let K^* consist of the elements k of K_{\min} such that $S_{\text{LP}} \cup \{x_{J\cup\{k\}} = v_{J\cup\{k\}}\}$ is infeasible for exactly one 0–1 value assignment v_k . Then \hat{S} is rank r LP-consistent over J if we set

$$r' = \max\{r - |K^*|, 1\}$$

Consider the constraint set S:

$$\begin{array}{ll} 2x_1 + 2x_2 &\leq 3\\ 2x_1 &+ 2x_3 &\leq 3\\ 2x_1 - 2x_2 - 2x_3 - 2x_4 &\leq 1\\ 2x_1 - 2x_2 - 2x_3 + 2x_4 &\leq 3\\ x_j \in \{0,1\}, \text{ all } j \end{array}$$

 $x_1 = 1$ is feasible in S_{LP} but not in S. Setting $x_1 = 1$ results in backtracking.

Consider the constraint set S:

$$\begin{array}{ll} 2x_1 + 2x_2 &\leq 3\\ 2x_1 &+ 2x_3 &\leq 3\\ 2x_1 - 2x_2 - 2x_3 - 2x_4 &\leq 1\\ 2x_1 - 2x_2 - 2x_3 + 2x_4 &\leq 3\\ x_j \in \{0,1\}, \text{ all } j \end{array}$$

 $x_1 = 1$ is feasible in S_{LP} but not in S. Setting $x_1 = 1$ results in backtracking.

Here r = 3 and r' = 1. We apply RLT with $J = \{1\}$ and r' = 1 and thereby achieve rank 3 LP-consistency over $\{1\}$.

This means we can move **3 levels deeper** into the tree without backtracking, by applying only a **rank 1** RLT algorithm.

Consider the constraint set S:

$$\begin{array}{l} 2x_1 + 2x_2 &\leq 3\\ 2x_1 &+ 2x_3 &\leq 3\\ 2x_1 - 2x_2 - 2x_3 - 2x_4 &\leq 1\\ 2x_1 - 2x_2 - 2x_3 + 2x_4 &\leq 3\\ x_j \in \{0, 1\}, \text{ all } j \end{array}$$

 $x_1 = 1$ is feasible in S_{LP} but not in S. Setting $x_1 = 1$ results in backtracking.

Here r = 3 and r' = 1. We apply RLT with $J = \{1\}$ and r' = 1 and thereby achieve rank 3 LP-consistency over $\{1\}$.

This means we can move **3 levels deeper** into the tree without backtracking, by applying only a **rank 1** RLT algorithm.

Since there are 4 variables, we can now solve the problem **without backtracking** by checking which branches are feasible in the LP relaxation.

Consistency Cuts

- There is no need to use **all** the inequalities generated by RLT.
 - At each node of the search tree, we use a cut generating LP to identify one RLT inequality that makes the LP relaxation at the current node infeasible.
 - If such an inequality exists, of course.
 - We call this inequality a **consistency cut**.

- At this stage, no attempt to incorporate consistency cuts into a state-of-the-art solver.
- Only a preliminary comparison of consistency RLT cuts with separating RLT cuts.
 - Use rank 1 RLT only.
 - No other cutting planes, for direct comparison.
 - Solve with CPLEX 12.8
 - Fixed branching order, no presolve.
 - Random and MIPLIB instances
 - Small, dense random instances.
 - MIPLIB instances hard enough for meaningful comparison, easy enough for manageable search tree.

- At this stage, no attempt to incorporate consistency cuts into a state-of-the-art solver.
- Only a preliminary comparison of consistency RLT cuts with separating RLT cuts.
 - Use rank 1 RLT only.
 - No other cutting planes, for direct comparison.
 - Solve with CPLEX 12.8
 - Fixed branching order, no presolve.
 - Random and MIPLIB instances
 - Small, dense random instances.
 - MIPLIB instances hard enough for meaningful comparison, easy enough for manageable search tree.
 - Bounds on objective function.
 - Since consistency cuts detect infeasibility.

Random instances

Separating RLT cuts vs. consistency cuts Each number is an average over 5 instances

Rows	Cols	Nodes		Time	Time (sec)	
		$\operatorname{Sep}\operatorname{RLT}$	Consis	Sep RLT	Consis	
30	30	2824	299	579	202	
35	35	4136	408	1550	$\boldsymbol{522}$	
45	45	23058	$\boldsymbol{7768}$	16993	10276	
50	40	16981	1198	11672	$\boldsymbol{2822}$	
60	50	*	47936	*	151401	

*Memory exceeded in 4 of 5 instances

MIPLIB instances

Separating RLT cuts vs. consistency cuts

Instance	Rows	Cols	Nodes		Nodes Time (sec)	
			$\operatorname{Sep}\operatorname{RLT}$	Consis	$\operatorname{Sep}\operatorname{RLT}$	Consis
p0040	23	40	50	30	27	31
stein15inf	37	15	75	20	3	2
bm23	20	27	178	38	19	14
sentoy	30	60	258	29	152	80
pipex	41	48	762	547	${\bf 1362}$	1415
p0201	133	201	847	533	519	514
f2gap40400	40	400	861	780	662	304
stein27	118	27	4099	3900	2242	1715
p0033	15	33	22581	321	4761	180
enigma	42	100	40218	27960	423	118
mod008inf	7	319	57495	65	35656	684
lseu	28	89	247795	234450	4196	3096

Research Issues

- Are there **other general-purpose schemes** for achieving LP consistency with cutting planes?
 - Or perhaps other types of consistency.
- To what extent do cutting planes for particular problem classes achieve consistency?
 - Clique cuts, covers, TSP cuts, etc.
- Can LP consistency yield **new approaches** to solving particular problem classes?
 - Using new families of specialized consistency cuts.

References

- D. Davarnia and J. N. Hooker, <u>Consistency for 0-1 programming</u>, in L.-M. Rousseau and K. Stergiou, eds., *CPAIOR 2019 Proceedings*, 225-240.
- D. Davarnia, A. Rajabalizadeh, and J. N. Hooker, <u>Achieving</u> <u>consistency with cutting planes</u>, 2021, submitted.