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Consistency

« Consistency Is a core concept of constraint
programming.
— Roughly speaking, consistent = partial assignments

that violate no constraint are consistent with the
constraint set.

— They occur in some feasible solution.

— Consistency = less backtracking

— Sometimes no backtracking, depending on the type of
consistency.



Consistency

* The concept of consistency never developed in
the optimization literature.

— Yet valid inequalities (cutting planes) reduce
backtracking by achieving a greater degree of
consistency

— ...as well as by tightening a relaxation.



Consistency

« The concept of consistency never developed in
the optimization literature.
— Yet valid inequalities (cutting planes) reduce

backtracking by achieving a greater degree of
consistency

— ...as well as by tightening a relaxation.
— Goal: adapt consistency concepts to MIP
— This can lead to new methods to reduce backtracking.
— Can also help explain behavior of cuts.
— Requires us to bridge two thought systems.



Projection

* Define consistency in terms of projection.
— The projection of constraint set S onto J is

D(S)|y={zs| xS}

Subset of Tuple of XS
for X; € J

Set of tuples



Projection

Example
X2
—D ®
(1,1)
S 10V x,

Projection of D(S)
onto {X,} IS

D(S)‘{m} — {1}

Constraint set S

x1+ T2 > 1
1 — T2 20
x1,x € {0,1}

Set D(S)

1(1,0), (1, 1)}



Domain Consistency

 This iIs the workhorse of CP.
e Constraintset S is domain consistent if

Domain of

variable X

« Every value in a variable’s domain is consistent
with the constraint set.



Domain Consistency

Constraint set S

T +x2 > 1
L1 — T2 Z 0
X2 Tr1,T2 € {0,1}

Example

—D a1 1). Not domain consistent

because
Dy ={0,1} # {1} = D(9)| (21}

(1,00Y X1

Projection of D(S)
onto {x,}Is

D(S)|z,y = {1}



Domain Consistency

X1+ X100 = 1
21 — 100 = 0
other constraints
z; €{0,1}, all j

531/ \— 1

subtree with 29 nodes
but no feasible solution

Domain consistency
can reduce branching.
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Domain Consistency

Domain consistency
can reduce branching.

By achieving domain /
consistency, we avoid
searching 2°° nodes.
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1+ T100 = 1
x1 — T100 = 0
other constraints

r < {O}

CL‘jE{O,l},j>1

£C1:1

subtree with 29 nodes
but no feasible solution



Domain Consistency

* Thereis no backtracking if we achieve domain
consistency at every node of the search tree.

— Since this is hard, CP generally achieves domain
consistency for individual constraints.

— Or approximates domain consistency.
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Full Consistency

« Strongest form of consistency:
« Constraint set S is consistent if

D,(S) = D(S)ly, all J € Ne_

/ {Xg5 -y X}

Set of satisfying Or: every inconsistent
assignments to X, partial assignment is
explicitly ruled out
Satisfying = violates by some constraint.

no constraints in S

Al ) . We assume S contains
A partial assignment can violate all domain constraints

a constraint only if it assigns values x; €D,
to all the variables in the constraint.
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Full Consistency

Example

Constraint set S
1 —I— 9 Z 1

1 — I9 Z 0
T1,T2 € {071}

Not consistent because

Di3,3(5) = 10,1} # {1} = D(S) {21}

The partial
assignment x, =0
IS inconsistent
but satisfies S:
no constraint explicitly
rules it out.

In fact, the partial
assignment fails to fix
all the variables
In any constraint
and so must satisfy S.
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k-consistency

« Weaker type of consistency that can avoid
backtracking if it is achieved at the root node only:
— Constraint set S is k-consistent if

D;(S) = Dy (5)] 7,
all J C N with |J| =k 1, all z; € N\ J

Or: every satisfying partial assignment to k — 1 variables
can be extended to any k-th variable and still satisfy S.

14



k-consistency

Example
1+ o +x4>1
r1— T2+ x3 >0
T — x4 >0
T € {O, ].}

e 1-consistent: trivial

Slide 15



k-consistency

Example
1+ o +x4>1
r1— T2+ x3 >0
T — x4 >0
T € {O, ].}

e 1-consistent: trivial

« 2-consistent: need only check x4, x,
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k-consistency

Example
1+ o +x4>1
Tr1 — T2+ I3 >0
T — x4 >0
T € {O, ].}

* 1-consistent: trivial
« 2-consistent: need only check x4, x,

* not 3-consistent:
(X1,X5) = (0,0) cannot be extended to (x4,X,,X,) = (0,0,?)
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k-consistency

* Dependency graph

— Variables are connected by edges when they
Occur in a common constraint.

— Also call primal graph.

X3

Slide 18
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X4

T1+ xo +x4>1
T1— T2+ T3 >0
T —x4>0
S {0, 1}
Dependency graph

for ordering 1,2,3,4



k-consistency

* Dependency graph

— Variables are connected by edges when they
Occur in a common constraint.

— Also call primal graph.

X1

N
v

Xo

o
Q
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X4

T1+ xo +x4>1
T1— T2+ T3 >0
T —x4>0
S {0, 1}
Dependency graph

for ordering 1,2,3,4

Width of the graph is
the maximum in-degree
(here, 2)



k-consistency

« Aconstraint set is strongly k-consistent if it is
I-consistent fori1=1,... k.

Theorem (Freuder). If a feasible problem is strongly
k-consistent, and the width of its dependency graph is
less than k with respect to some ordering of the variables,
then branching in that order avoids backtracking.

Slide 20



k-consistency

* The example doesn’t meet the conditions of the theorem.

« Width = 2, not strongly 3-consistent.

1+ x9 +x4>1
 Backtracking is possible, and it Ty — X2+ X3 >0
occurs when we set T —24 20
zj €{0,1}

(X1,X5,X3,X,4) = (0,0,0,7?)

* A feasible solution is (x,X,,X3,X,) = (1,0,0,0).
/ I

X3

v
Xo

> x, Width=2
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k-consistency

« Suppose we add a constraint:
* This is strongly 3-consistent.

* New constraint rules out the only
partial solution that couldn’t be
extended: (X;,X,) = (0,0)

xr1 -+ X9 +x4>1

Tr] —To+ T3 >0 (b)
T —24>0 (¢
T1+ T2 >1 (d)
x; €0, 1y

* Now it meets the conditions of the theorem.

* No backtracking occurs.

» For example, (X;,X,,X3,X,) = (0,1,1,0).

Slide 22




k-consistency

« Two Interpretations of the
new constraint

— Rank 1 Chvatal cut

« Cuts off part of LP relaxation

— Resolvent of (a) and (c)

r1+ To +x24>1 (a)
r1 — To + X3 >0 (b)
T —24>0 (c)
T1+ T2 >1 (d)
x; €0, 1y

« Cuts off an inconsistent partial assignment.

* In this case, achieves strong 3-consistency.

r1VaaV xq4 (a)
Resolution: T V-oxzy ()
T1V T2 (d)

Slide 23




k-consistency

* Problem: k-consistency is very hard to achieve.

* Possible solution: Use LP-consistency
— A new form of consistency that takes advantage of the
LP relaxation.

— Intermediate concept between a satisfying partial
assignment and a consistent partial assignment.

— Even a weak form of LP-consistency avoids backtracking
— Itis much easier to achieve than k-consistency.
— Yields a different kind of cut.
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LP-consistency

« LP consistency applies to IP constraint sets.
« For simplicity, assume variables are 0-1
 Definitions
— Let S={Az>0b, z €Z"}
— Let the LP relaxation be Spp = {Ax > b, z € R"}
— We assume Ax > b contains 0 <z; <1, all j
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LP-consistency

» LP-consistent partial assignment
e 0-1 partial assignment z; = vy Is LP-consistent with S
If SppU{z; =0y} Isfeasible.

* Unlike the traditional concept of a consistent assignment,
this is easily checked by solving an LP.

* Aconsistent partial assignment is necessarily LP-consistent.

26



LP-consistency

» LP-consistent partial assignment

e 0-1 partial assignment z; = vy Is LP-consistent with S
If SppU{z; =0y} Isfeasible.

* Unlike the traditional concept of a consistent assignment,
this is easily checked by solving an LP.

* Aconsistent partial assignment is necessarily LP-consistent.

* LP-consistency

— AO0-1 constraint set S is LP-consistent if every
LP-consistent partial assignment is consistent:

Set of 0-1 assignments to X;
that are LP-consistent with S
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LP-consistency

* Relationship with convex hull description

Theorem. A feasible 0-1 constraint set S is LP-consistent
If S, describes the convex hull of S.

« The converse does not hold, but we will see that even a
weak version of LP-consistency allows one to avoid
backtracking.
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LP-consistency

Example

S:{m1+x2§1, To +x3 <1, xje{(),l}}

X3

S, describes
convex hull of S.

So S is LP-consistent.
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LP-consistency

Example

S = {:131 + 229 + 23 <2, ;5 € {0,1}}

X3

S does not describe
convex hull of S.

But S’ is LP-consistent.

1+ 2209 + a3 < 2
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LP-consistency

Example
S = {:131 + 229+ 23 <2, x; € {0,1}}

This inequality is the sum X3
of the 2 facet-defining
inequalities and so is “weaker.”

r1 4+ 220 + 23 < 2

Yet it cuts off more infeasible
0-1 points than either
facet-defining inequality.

LP-consistency leads to
iInequalities that cut off
more infeasible 0-1 points
& so reduce backtracking. Xz
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LP-consistency

* Relationship with Chvatal closure
« Let S; = set of clausal inequalities in Chvétal closure of S.

Theorem. If S is LP-consistent, a 0-1 partial assignment
IS consistent with S if and only if it satisfies S.

* Achieving LP-consistency has same power as deriving
all rank 1 clausal Chvéatal cuts.

1+ (1 —22) +23>1
Is clausal because it represents the logical clause
xr1V x9 Vs

32



LP-consistency

Example

S’:{$1—|—2$2—|—x3§2, T E{O,l}}
Sg:{(1—x1)+(1—m2)21, (1—392)—|—(1—$3)21}

In this case,

S - consists of

the 2 facet-defining
Inequalities.

They identify precisely
(X1, %) = (1,1)

(X2,%3) = (1,1)

as the LP-inconsistent
partial assignments.

X3




LP k-consistency

« LP k-consistency is enough to avoid backtracking.

* Fix the variable ordering, and let J, = {Xy,...,X,}.
* SisLPk-consistentifLy, . (S)= Ly, (S)|s._,

« Every 0-1 assignment to (Xy,...,X,_;) that is LP-consistent
with S can be extended to an assignment to (Xq,...,Xy)
that is LP-consistent with S.

34



LP k-consistency

« LP k-consistency is enough to avoid backtracking.
* Fix the variable ordering, and let J, = {Xy,...,X,}.
* SisLPk-consistentifLy, . (S)= Ly, (S)|s._,

« Every 0-1 assignment to (Xy,...,X,_;) that is LP-consistent
with S can be extended to an assignment to (Xq,...,Xy)
that is LP-consistent with S.

Theorem. If Sis LP k-consistent for k = 1,...,n and we branch
In the order x4,...,X,, we can avoid backtracking by solving
at most 2 LPs before each variable assignment.

If we have fixed (Xy,...,X1) = (Vq,-.-,V|_1), SOlve the LP
Srp U {(3313 s 7Ik—1;$k) — (vla e 77)16—177)16)}

forv, = 0,1. If feasible for v,, set x, = v,. 35



LP k-consistency

Example

S = {235‘1 —|—4.§E‘2 2 —1, 2.581 — 433‘2 2 —3, €L j c {0, 1}}
X, = 0 Is LP-consistent 21 — dxy > —3
with S, but neither X, B
(X1,X5) = (0,0) nor
(X, %;) = (0,1) is ¢ ¢
LP-consistent with S. ><
So Sis not LP

2-consistent.

V
o

Setting x, = 0 will
require backtracking.



LP k-consistency

Example

S = {235‘1 —|—4.§E‘2 2 —1, 2.581 — 433‘2 2 —3, €L j = {0, 1}}

One step of RLT
(or lift-and-project)
yields new constraint

Constraint set iIs now
LP 2-consistent.

No backtracking.

>

=

oD

V
o

S
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LP k-consistency

« We can achieve LP k-consistency at any level k of the
branching tree with 1 step of RLT or lift-and-project.
That is, lift into 1 higher dimension and project.
This allows us to avoid backtracking.
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LP k-consistency

« We can achieve LP k-consistency at any level k of the
branching tree with 1 step of RLT or lift-and-project.
« Thatis, lift into 1 higher dimension and project.
* This allows us to avoid backtracking.

« This gets computationally hard as k increases.

« So achieve LP k-consistency at top few levels of the tree.
« This yields sparse cuts.

 Lift into several higher dimensions if desired, rather than 1.
« To reduce future backtracking.
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LP k-consistency

* Resulting cuts are different than in standard
branch and cut
« They contain variables that are already fixed
« ...rather than variables not yet fixed.

 They have a different purpose.

« They are intended to cut off inconsistent 0-1 partial
assignments rather than tighten LP relaxation.

« Although they can do both, just as traditional cuts can do both.

40



