Consistency for Mixed-integer Programming

Danial Davarnia
Iowa State University

John Hooker
Carnegie Mellon University

INFORMS 2018

Consistency

- Consistency is a core concept of constraint programming.
 - Roughly speaking, consistent = partial assignments that violate no constraint are consistent with the constraint set.
 - They occur in some feasible solution.
 - Consistency ⇒ less backtracking
 - Sometimes no backtracking, depending on the type of consistency.

Consistency

- The concept of consistency never developed in the optimization literature.
 - Yet valid inequalities (cutting planes) reduce backtracking by achieving a greater degree of consistency
 - ...as well as by tightening a relaxation.

Consistency

- The concept of consistency never developed in the optimization literature.
 - Yet valid inequalities (cutting planes) reduce backtracking by achieving a greater degree of consistency
 - ...as well as by tightening a relaxation.
 - Goal: adapt consistency concepts to MIP
 - This can lead to new methods to reduce backtracking.
 - Can also help explain behavior of cuts.
 - Requires us to bridge two thought systems.

Projection

- Define consistency in terms of **projection**.
 - The projection of constraint set S onto J is

Projection

Example

Projection of D(S) onto $\{x_1\}$ is

$$D(S)|_{\{x_1\}} = \{1\}$$

Constraint set S

$$x_1 + x_2 \ge 1$$

$$x_1 - x_2 \ge 0$$

$$x_1, x_2 \in \{0, 1\}$$

Set
$$D(S)$$
 $\{(1,0),(1,1)\}$

- This is the workhorse of CP.
 - Constraint set S is domain consistent if

$$D_j = D(S)|_{\{j\}}, \ {\rm all} \ j$$
 Domain of variable x_j

 Every value in a variable's domain is consistent with the constraint set.

Example

Projection of D(S) onto $\{x_1\}$ is

$$D(S)|_{\{x_1\}} = \{1\}$$

Constraint set S

$$x_1 + x_2 \ge 1$$

$$x_1 - x_2 \ge 0$$

$$x_1, x_2 \in \{0, 1\}$$

Not domain consistent because

$$D_1 = \{0, 1\} \neq \{1\} = D(S)|_{\{x_1\}}$$

Domain consistency can reduce branching.

$$x_1 + x_{100} \ge 1$$

 $x_1 - x_{100} \ge 0$
other constraints
 $x_j \in \{0, 1\}$, all j

 $x_1 = 0$

subtree with 299 nodes but no feasible solution

Domain consistency can reduce branching.

By achieving domain consistency, we avoid searching 299 nodes.

$$x_1 + x_{100} \ge 1$$

$$x_1 - x_{100} \ge 0$$
other constraints
$$x_1 \in \{0\} \quad x_j \in \{0, 1\}, \ j > 1$$

$$x_1 = 1$$

subtree with 299 nodes but no feasible solution

- There is no backtracking if we achieve domain consistency at every node of the search tree.
 - Since this is hard, CP generally achieves domain consistency for individual constraints.
 - Or approximates domain consistency.

Full Consistency

- Strongest form of consistency:
 - Constraint set S is consistent if

$$D_J(S) = D(S)|_J, \text{ all } J \subseteq N$$

$$\{x_1, ..., x_n\}$$

Set of satisfying assignments to x_J

Satisfying = violates no constraints in S

Or: every inconsistent partial assignment is **explicitly ruled out** by some constraint.

A partial assignment can **violate** a constraint only if it **assigns values to all the variables** in the constraint.

We assume S contains all domain constraints $x_i \in D_i$

Full Consistency

Example

Constraint set S

$$x_1 + x_2 \ge 1$$

$$x_1 - x_2 \ge 0$$

$$x_1, x_2 \in \{0, 1\}$$

Not consistent because

$$D_{\{x_1\}}(S) = \{0, 1\} \neq \{1\} = D(S)|_{\{x_1\}}$$

The partial assignment $x_1 = 0$ is **inconsistent** but satisfies S: no constraint explicitly **rules it out**.

In fact, the partial assignment fails to fix all the variables in any constraint and so must satisfy S.

- Weaker type of consistency that can avoid backtracking if it is achieved at the root node only:
 - Constraint set S is k-consistent if

$$D_J(S) = D_{J \cup \{x_j\}}(S)|_J,$$

all $J \subseteq N$ with $|J| = k - 1$, all $x_j \in N \setminus J$

Or: every satisfying partial assignment to k-1 variables can be extended to any k-th variable and still satisfy S.

Example

$$\begin{aligned}
 x_1 + x_2 &+ x_4 \ge 1 \\
 x_1 - x_2 + x_3 &\ge 0 \\
 x_1 &- x_4 \ge 0 \\
 x_j \in \{0, 1\}
 \end{aligned}$$

• 1-consistent: trivial

Example

$$\begin{aligned}
 x_1 + x_2 &+ x_4 \ge 1 \\
 x_1 - x_2 + x_3 &\ge 0 \\
 x_1 &- x_4 \ge 0 \\
 x_j \in \{0, 1\}
 \end{aligned}$$

- 1-consistent: trivial
- 2-consistent: need only check x_1 , x_4

Example

$$\begin{aligned}
 x_1 + x_2 &+ x_4 \ge 1 \\
 x_1 - x_2 + x_3 &\ge 0 \\
 x_1 &- x_4 \ge 0 \\
 x_j \in \{0, 1\}
 \end{aligned}$$

- 1-consistent: trivial
- 2-consistent: need only check x_1 , x_4
- not 3-consistent:

$$(x_1,x_2) = (0,0)$$
 cannot be extended to $(x_1,x_2,x_4) = (0,0,?)$

- Dependency graph
 - Variables are connected by edges when they occur in a common constraint.
 - Also call primal graph.

$$\begin{array}{ll} x_1 + x_2 & + x_4 \ge 1 \\ x_1 - x_2 + x_3 & \ge 0 \\ x_1 & - x_4 \ge 0 \\ x_j \in \{0, 1\} \end{array}$$

Dependency graph for ordering 1,2,3,4

- Dependency graph
 - Variables are connected by edges when they occur in a common constraint.
 - Also call primal graph.

$$\begin{array}{ll} x_1 + x_2 & + x_4 \ge 1 \\ x_1 - x_2 + x_3 & \ge 0 \\ x_1 & - x_4 \ge 0 \\ x_j \in \{0, 1\} \end{array}$$

Dependency graph for ordering 1,2,3,4

Width of the graph is the maximum in-degree (here, 2)

A constraint set is strongly k-consistent if it is i-consistent for i = 1,...,k.

Theorem (Freuder). If a feasible problem is **strongly k-consistent**, and the **width** of its dependency graph is **less than k** with respect to some ordering of the variables, then branching in that order **avoids backtracking**.

- The example doesn't meet the conditions of the theorem.
 - Width = 2, not strongly 3-consistent.
 - Backtracking is possible, and it occurs when we set

$$(x_1, x_2, x_3, x_4) = (0, 0, 0, ?)$$

$$\begin{array}{ccc} x_1 + x_2 & + x_4 \ge 1 \\ x_1 - x_2 + x_3 & \ge 0 \\ x_1 & - x_4 \ge 0 \\ x_j \in \{0, 1\} \end{array}$$

• A feasible solution is $(x_1, x_2, x_3, x_4) = (1,0,0,0)$.

- Suppose we add a constraint:
 - This is strongly 3-consistent.
 - New constraint rules out the only partial solution that couldn't be extended: $(x_1,x_2) = (0,0)$

$$\begin{aligned}
 x_1 + x_2 &+ x_4 \ge 1 & (a) \\
 x_1 - x_2 + x_3 & \ge 0 & (b) \\
 x_1 &- x_4 \ge 0 & (c) \\
 \hline
 x_1 + x_2 & \ge 1 & (d) \\
 x_j \in \{0, 1\} & \end{aligned}$$

- Now it meets the conditions of the theorem.
 - No backtracking occurs.
 - For example, $(x_1, x_2, x_3, x_4) = (0, 1, 1, 0)$.

- Two interpretations of the new constraint
 - Rank 1 Chvátal cut
 - Cuts off part of LP relaxation

 $\begin{array}{cccc}
x_1 + x_2 & + x_4 \ge 1 & (a) \\
x_1 - x_2 + x_3 & \ge 0 & (b) \\
x_1 & - x_4 \ge 0 & (c) \\
\hline
x_1 + x_2 & \ge 1 & (d) \\
\hline
x_j \in \{0, 1\}
\end{array}$

- Resolvent of (a) and (c)
 - Cuts off an inconsistent partial assignment.
 - In this case, achieves strong 3-consistency.

- Problem: k-consistency is very hard to achieve.
- Possible solution: Use LP-consistency
 - A new form of consistency that takes advantage of the LP relaxation.
 - Intermediate concept between a satisfying partial assignment and a consistent partial assignment.
 - Even a weak form of LP-consistency avoids backtracking
 - It is much easier to achieve than k-consistency.
 - Yields a different kind of cut.

- LP consistency applies to IP constraint sets.
 - For simplicity, assume variables are 0-1
- Definitions
 - Let $S = \{Ax \ge b, x \in \mathbb{Z}^n\}$
 - Let the LP relaxation be $S_{LP} = \{Ax \geq b, x \in \mathbb{R}^n\}$
 - We assume $Ax \geq b$ contains $0 \leq x_j \leq 1$, all j

- LP-consistent partial assignment
 - 0-1 partial assignment $x_J = v_J$ is **LP-consistent** with S if $S_{LP} \cup \{x_J = v_J\}$ is feasible.
 - Unlike the traditional concept of a consistent assignment, this is easily checked by solving an LP.
 - A consistent partial assignment is necessarily LP-consistent.

- LP-consistent partial assignment
 - 0-1 partial assignment $x_J = v_J$ is **LP-consistent** with S if $S_{LP} \cup \{x_J = v_J\}$ is feasible.
 - Unlike the traditional concept of a consistent assignment, this is easily checked by solving an LP.
 - A consistent partial assignment is necessarily LP-consistent.
- LP-consistency
 - A 0-1 constraint set S is LP-consistent if every LP-consistent partial assignment is consistent:

$$L_J(S) = D(S)|_J$$

Set of 0-1 assignments to x_J that are LP-consistent with S

Relationship with convex hull description

Theorem. A feasible 0-1 constraint set S is LP-consistent if S_{IP} describes the convex hull of S.

 The converse does not hold, but we will see that even a weak version of LP-consistency allows one to avoid backtracking.

Example

$$S = \left\{ x_1 + x_2 \le 1, \ x_2 + x_3 \le 1, \ x_j \in \{0, 1\} \right\}$$

S_{LP} describes convex hull of S.

So S is LP-consistent.

Example

$$S' = \left\{ x_1 + 2x_2 + x_3 \le 2, \ x_j \in \{0, 1\} \right\}$$

 S'_{LP} does not describe convex hull of S.

But S' is LP-consistent.

Example

$$S' = \left\{ x_1 + 2x_2 + x_3 \le 2, \ x_j \in \{0, 1\} \right\}$$

This inequality is the **sum** of the 2 facet-defining inequalities and so is "weaker."

Yet it cuts off more infeasible **0-1 points** than either facet-defining inequality.

LP-consistency leads to inequalities that cut off more infeasible 0-1 points & so reduce backtracking.

- Relationship with Chvátal closure
 - Let S_C = set of **clausal inequalities** in Chvátal closure of S.

Theorem. If S is LP-consistent, a 0-1 partial assignment is consistent with S if and only if it satisfies S_C .

 Achieving LP-consistency has same power as deriving all rank 1 clausal Chvátal cuts.

$$x_1 + (1 - x_2) + x_3 \ge 1$$

is clausal because it represents the logical clause

$$x_1 \vee \neg x_2 \vee x_3$$

Example

$$S' = \left\{ x_1 + 2x_2 + x_3 \le 2, \ x_j \in \{0, 1\} \right\}$$
$$S'_{C} = \left\{ (1 - x_1) + (1 - x_2) \ge 1, \ (1 - x_2) + (1 - x_3) \ge 1 \right\}$$

In this case, S_C' consists of the 2 facet-defining inequalities.

They identify precisely $(x_1,x_2)=(1,1)$ $(x_2,x_3)=(1,1)$ as the LP-inconsistent partial assignments.

- LP k-consistency is enough to avoid backtracking.
 - Fix the variable ordering, and let $J_k = \{x_1, ..., x_k\}$.
 - S is LP k-consistent if $L_{J_{k-1}}(S) = L_{J_k}(S)|_{J_{k-1}}$
 - Every 0-1 assignment to $(x_1,...,x_{k-1})$ that is LP-consistent with S can be extended to an assignment to $(x_1,...,x_k)$ that is LP-consistent with S.

- LP k-consistency is enough to avoid backtracking.
 - Fix the variable ordering, and let $J_k = \{x_1, ..., x_k\}$.
 - S is LP *k*-consistent if $L_{J_{k-1}}(S) = L_{J_k}(S)|_{J_{k-1}}$
 - Every 0-1 assignment to $(x_1,...,x_{k-1})$ that is LP-consistent with S can be extended to an assignment to $(x_1,...,x_k)$ that is LP-consistent with S.

Theorem. If *S* is LP *k*-consistent for k = 1,...,n and we branch in the order $x_1,...,x_n$, we can avoid backtracking by solving at most 2 LPs before each variable assignment.

If we have fixed
$$(x_1,...,x_{k-1}) = (v_1,...,v_{k-1})$$
, solve the LP $S_{\text{LP}} \cup \{(x_1,...,x_{k-1},x_k) = (v_1,...,v_{k-1},v_k)\}$ for $v_k = 0,1$. If feasible for v_k , set $x_k = v_k$.

Example

$$S = \left\{ 2x_1 + 4x_2 \ge -1, \ 2x_1 - 4x_2 \ge -3, \ x_j \in \{0, 1\} \right\}$$

 $x_1 = 0$ is LP-consistent with S, but neither $(x_1, x_2) = (0,0)$ nor $(x_1, x_2) = (0,1)$ is LP-consistent with S.

So S is **not** LP 2-consistent.

Setting $x_1 = 0$ will require backtracking.

Example

$$S = \left\{ 2x_1 + 4x_2 \ge -1, \ 2x_1 - 4x_2 \ge -3, \ x_j \in \{0, 1\} \right\}$$

One step of RLT (or lift-and-project) yields new constraint $x_1 \geq \frac{1}{2}$

Constraint set is now LP 2-consistent.

No backtracking.

- We can achieve LP k-consistency at any level k of the branching tree with 1 step of RLT or lift-and-project.
 - That is, lift into 1 higher dimension and project.
 - This allows us to avoid backtracking.

- We can achieve LP k-consistency at any level k of the branching tree with 1 step of RLT or lift-and-project.
 - That is, lift into 1 higher dimension and project.
 - This allows us to avoid backtracking.
- This gets computationally hard as k increases.
 - So achieve LP k-consistency at top few levels of the tree.
 - This yields sparse cuts.
 - Lift into several higher dimensions if desired, rather than 1.
 - To reduce future backtracking.

- Resulting cuts are different than in standard branch and cut
 - They contain variables that are already fixed
 - ...rather than variables not yet fixed.
 - They have a different purpose.
 - They are intended to cut off **inconsistent 0-1 partial assignments** rather than tighten LP relaxation.
 - Although they can do both, just as traditional cuts can do both.