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What can CP contribute to MINLP? 

• Interval propagation (range reduction). 

• Already used in global optimization solvers. 

• Focus on lesser-known techniques: 

• Domain filtering with Lagrange multipliers.  

• Efficient representation of piecewise linear functions. 

• Branching on multiple discrete values. 

• Bounds from quasi-relaxations. 

• Optimization/propagation in decision diagrams. 

• Management of McCormick factors with global 

constraints and semantic typing (no time for this today). 
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Constraint Programming Perspective 

• All (successful) optimization method combine search with 

relaxation and inference. 

• Math programming focuses on relaxation. 

• LP, Lagrangean, etc. 

• Constraint programming (CP) focuses on inference. 

• Domain filtering, constraint propagation 
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Constraint Programming Perspective 

• All (successful) optimization method combine search with 

relaxation and inference. 

• Math programming focuses on relaxation. 

• LP, Lagrangean, etc. 

• Constraint programming (CP) focuses on inference. 

• Domain filtering, constraint propagation 

• Math programming uses inference… 

• To generate cutting planes, Benders cuts, etc. 

• But the purpose is to strengthen the relaxation. 
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Constraint Programming Perspective 

• CP uses inference for consistency maintenance 

• …rather than to strengthen a relaxation. 

• Greater consistency means less backtracking during 

search. 

• The concept of consistency never developed in math 

programming,  but it helps to explain search behavior. 
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Constraint Programming Perspective 

• CP uses inference for consistency maintenance 

• …rather than to strengthen a relaxation. 

• Greater consistency means less backtracking during 

search. 

• The concept of consistency never developed in math 

programming,  but it helps to explain search behavior. 

• Several types of consistency 

• Domain consistency (generalized arc consistency) 

• Bounds consistency 

• Strong k-consistency 

• Etc. etc. 
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(1,0) 

Domain consistency 

A constraint set is 

domain consistent  

if the domain of each 

variable xi is the 

projection of the 

feasible set onto xi. 
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Domain consistency 

A constraint set is 

domain consistent  

if the domain of each 

variable xi is the 

projection of the 

feasible set onto xi. 

Projection onto x2 = {0,1} 
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Domain consistency 

A constraint set is 

domain consistent  

if the domain of each 

variable xi is the 

projection of the 

feasible set onto xi. 

Projection onto x1 = {1} 

x1 

x2 

(1,0) 

(1,1) 

 
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Projection onto x2 = {0,1} 

Not domain 

consistent. 

Slide 9 



Domain consistency 

A constraint set is 

domain consistent  

if the domain of each 

variable xi is the 

projection of the 

feasible set onto xi. 

Projection onto x1 = {1} 

x1 

x2 

(1,0) 

(1,1) 

   
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, 0,11
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x

xx

x

 

 



Projection onto x2 = {0,1} 

Achieve domain 

consistency by 

filtering 0 from 

domain of x1. 
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Bounds consistency 

• A constraint set is 

bounds consistent  

if the domain of each 

variable xi spans the 

same interval as the 

projection of the 

feasible set onto xi. 

 

 
 
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(4,1) 

x1 

x2 (2,5) 

Not bounds consistent. 
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Consistency maintenance 

• Domain or bounds consistency is normally achieved  

(if at all) for one constraint at a time. 

• This can be NP-hard. 

• But allows one to exploit special structure of 

constraints. 

• Much as cutting planes exploit structure of certain 

classes of inequalities. 
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Consistency maintenance 

• Domain or bounds consistency is normally achieved  

(if at all) for one constraint at a time. 

• This can be NP-hard. 

• But allows one to exploit special structure of 

constraints. 

• Much as cutting planes exploit structure of certain 

classes of inequalities. 

• Particularly effective when the model consists of global 

constraints. 

• …which represent a set of simpler constraints. 

• Alldiff, cardinality, element, nvalues, sequence, circuit, 

path, regular, cumulative, stretch, etc. 
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Propagation 

• Reduced domains are passed (propagated) to the next 

constraint. 

• …which may allow further reduction. 

• Generally does not achieve consistency for entire 

constraint set. 

• But it drastically reduces backtracking. 
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Bounds propagation 

• Bounds obtained by achieving bound consistency can be 

propagated. 

• This is important in global optimization (range reduction). 

x1 
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Bounds propagation 

• Bounds obtained by achieving bound consistency can be 

propagated. 

• This is important in global optimization (range reduction). 

• Example: 
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Filter using constraint 1: 
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Bounds propagation 

• Bounds obtained by achieving bound consistency can be 

propagated. 

• This is important in global optimization (range reduction). 

• Example: 

 

 

Propagate to  

constraint 2: 
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Bounds propagation 

• Bounds obtained by achieving bound consistency can be 

propagated. 

• This is important in global optimization (range reduction). 

• Example: 

 

 

Continuing, bounds asymptotically converge: 
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Bounds propagation 

• Bounds obtained by achieving bound consistency can be  

propagated. 

• This is important in global optimization (range reduction). 

• Example: 

 

 

Continuing, bounds asymptotically converge: 

 

Solvers truncate the process. 

 

 

 

0 1 
0 

2  
 

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x



 





x1 

x2 

Slide 19 



k-consistency 

• k-consistency is closely related to backtracking and the 

dependency graph of a constraint set. 

• A constraint set is k-consistent if any assignment to k  – 1 

variables that violates no constraints can be extended to an 

assignment to k variables without violating any constraints. 

 

kj
x
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k-consistency 

• Example 

 

 

 

• 2-consistent. 

• not 3-consistent:  

(x1,x2) = (0,0) cannot be extended to (x1,x2,x4) = (0,0,?). 

 
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Dependency graph 

• Dependency graph:  variables are connected by edges when 

they occur in a common constraint. 

 

 

 
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Dependency graph 

for the example. 
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Dependency graph 

• Dependency graph:  variables are connected by edges when 

they occur in a common constraint. 

 

 

 
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For a given variable ordering, 

width of the graph is the 

maximum in-degree  

 

Here, width = 2  

for ordering 1,2,3,4 

x1 

x2 

x3 x4 
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Backtracking 

Theorem (Freuder).  If the dependency graph has 

width < k for some variable ordering, then branching  

(in that order) solves a strongly k-consistent problem 

without backtracking. 

 

• A constraint set is strongly k-consistent if it is i-consistent  

for i = 1,…,k. 
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Backtracking 

• The example doesn’t satisfy the conditions of the theorem. 

• Width = 2, not strongly 3-consistent. 

• Backtracking occurs when we set 

(x1,x2,x3,x4) = (0,0,0,?) 

 

 

 
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Backtracking 

• Suppose we add two constraints: 

• This is strongly 3-consistent. 

• Backtracking does not occur. 

 

 
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Backtracking 

• Suppose we add two constraints: 

• This is strongly 3-consistent. 

• Backtracking does not occur. 

• These are valid cuts! 

•  Cuts reduce backtracking by  

increasing the degree of consistency  

as well as by strengthening the LP relaxation. 
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Feasible set 

Global optimum 

Local optimum 

x1 

x2 

Global optimization example 

1 2
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1 2
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max
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 
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Interval propagation (range reduction) 

Propagate intervals  

[0,1], [0,2]  

through constraints  

to obtain  

[1/8,7/8], [1/4,7/4]  

x1 

x2 
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Relaxation (function factorization) 

Factor complex functions into elementary functions that have 

known linear relaxations (McCormick factors). 

Write 4x1x2 = 1 as 4y = 1 where y = x1x2. 

This factors 4x1x2 into linear function 4y and bilinear function x1x2. 

Linear function 4y is its own linear relaxation. 
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where domain of xj is  [ , ]j jx x

Relaxation (function factorization) 

Factor complex functions into elementary functions that have 

known linear relaxations (McCormick factors). 

Write 4x1x2 = 1 as 4y = 1 where y = x1x2. 

This factors 4x1x2 into linear function 4y and bilinear function x1x2. 

Linear function 4y is its own linear relaxation. 

Bilinear function y = x1x2 has relaxation: 

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

     

     



Slide 32 

The linear relaxation becomes: 

Relaxation (function factorization) 

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j
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x x x j





 

     

     

  
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Solve linear relaxation. 

x1 

x2 

Relaxation (function factorization) 
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x1 

x2 

Since solution is infeasible, 

split an interval and branch. 

Solve linear relaxation. 

Relaxation (function factorization) 

2 [1,1.75]x 

2 [0.25,1]x 
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x1 

x2 

x1 

x2 

2 [1,1.75]x  2 [0.25,1]x 
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Solution of 

relaxation is 

feasible,  

value = 1.25 

This becomes 

incumbent 

solution 

x1 

x2 

x1 

x2 

2 [1,1.75]x  2 [0.25,1]x 
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Solution of 

relaxation is 

feasible,  

value = 1.25 

This becomes 

incumbent 

solution 

x1 

x2 

x1 

x2 

Solution of 

relaxation is 

not quite 

feasible,  

value = 1.854 

2 [1,1.75]x  2 [0.25,1]x 



Domain filtering with Lagrange multipliers 

• So far, this is all standard in global solvers. 

• We can achieve stronger propagation with filtering based on 

Lagrange multipliers. 

• Reduced-cost variable fixing is a special case. 
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1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2
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

 

     

     

  

Associated Lagrange 

multiplier in solution of 

relaxation is 2 = 1.1 

Domain filtering with Lagrange multipliers 
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This yields a valid inequality for propagation: 

Associated Lagrange 

multiplier in solution of 

relaxation is 2 = 1.1 

1 2

1.854 1.25
2 2 1.451

1.1
x x


   

Domain filtering with Lagrange multipliers 

Value of 

relaxation 
Lagrange multiplier 

Value of incumbent 

solution 
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1 2

2 1 1 2 1 2 2 1 1 2 1 2
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min
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x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  



Then we have the inequality 

 

…which can be propagated. 

min ( )

( ) 0

f x

g x

x S





In general, suppose we have a relaxation: 

with optimal solution x*, optimal value v*, and  

Lagrangean dual solution *. 

with i* > 0, and U an upper bound on the optimal value of the 

original problem (perhaps from an incumbent solution). 

Domain filtering with Lagrange multipliers 

*

*
( )i

i

U v
g x





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Then we have the inequality 

 

…which fixes xj = 0 if bound < 1 and xj is integer  

(reduced cost variable fixing) 

min ( )

( ) 0

f x

g x

x S





A special case applies to individual variables: 

has optimal solution x*, optimal value v*, and  

reduced gradient r. 

with xj* = 0, and U an upper bound on the optimal value of the 

original problem (perhaps from an incumbent solution). 

Domain filtering with Lagrange multipliers 

*

j

j

U v
x

r



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Piecewise linear functions 

• Piecewise linear approximation is a powerful tool for nonlinear 

optimization. 

• Particularly if nonlinearities  

are additively separable: 

• However, MINLP models require auxiliary variables. 

•  A serious limitation. 

 

( ) ( )j j

j

f x f x
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Piecewise linear functions 

• CP approach adds no variables. 

• while providing convex hull relaxation (tight as any locally ideal 

MILP model) 

• Use piecewise linear global constraint for fj(xj): 

 

• where breakpoints are a = (a1,…an) with fj(ai) = bi. 

 

 piecewise , , ,j jf x a b
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a1 a2 a3 a4 a5 a6 

xj 

fj(xj) 

b1 

b2 

b3 

b4 

b5 

b6 

Piecewise linear functions 
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Piecewise linear functions 

Replace fj(xj) in model with z. 

Add inequalities in (xj,z) that 

describe convex hull. 

Convex hull can be computed  

very rapidly. 

xj 

z 
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Piecewise linear functions 

xj 

z 

Suppose this is value of xj  

in solution of current relaxation. 
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Piecewise linear functions 

xj 

z 

Then branch… 
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…and update convex hull 

relaxations. 

Piecewise linear functions 
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…and update convex hull 

relaxations. 

Piecewise linear functions 

Easily extended to functions  fj(xi,xk) 

By computing 3D convex hull. 
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Branching 

• In general, branch on discrete values of a variable. 

• …rather than introduce 0-1 variables to model discrete values. 

• For a troublesome continuous variable, discretize it and branch. 

• Use many break points without increasing size of model. 
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Branching 

• In general, branch on discrete values of a variable. 

• …rather than introduce 0-1 variables to model discrete values. 

• For a troublesome continuous variable, discretize it and branch. 

• Use many break points without increasing size of model. 

• This may allow for a convex “relaxation” (actually, quasi-relaxation) 

• If the model becomes convex when discretized variables are fixed. 

• A quasi-relaxation is not a valid relaxation but yields a valid bound 

on the objective function. 
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Branching 

Discrete values 

jy

Value in solution of current relaxation 
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Branching 

Value in solution of current relaxation 

Branch by splitting interval 

Discrete values 

jy

jy
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Branching 

Value in solution of current relaxation 

Branch by splitting interval 

Solution of next relaxation likely to be at an endpoint.  

This branching intelligence unavailable in 0-1 model. 

Discrete values 

jy

jy
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Quasi-relaxation 

Given problem  

 

The problem                          is a quasi-relaxation if 

for any  x  S,  there is an x  S  with  f (x) ≤ f (x).     

 

A quasi-relaxation need not be a valid relaxation. 

But its optimal value is a valid lower bound on the optimal 

value of the original problem. 

 

 

 min ( )

 

x S
f x



 min ( )

 

x S
f x



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Quasi-relaxation 

Consider the problem 

 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y




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Quasi-relaxation 

Consider the problem 

 

Each  g j  is 

a vector of 

functions 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y




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Quasi-relaxation 

Consider the problem 

 

Each  g j  is 

a vector of 

functions 

Each  yj  is  

a scalar 

variable 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y




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Quasi-relaxation 

Consider the problem 

 

Each  g j  is 

a vector of 

functions 

Each  yj  is  

a scalar 

variable 

Relaxing the problem by making yj continuous could result in a 

nonconvex problem. 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y




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Quasi-relaxation 

Consider the problem 

 

Each  g j  is 

a vector of 

functions 

Each  yj  is  

a scalar 

variable 

Relaxing the problem by making yj continuous could result in a 

nonconvex problem. 

But suppose the problem becomes convex when each yj is fixed 

to a constant. 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y




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Quasi-relaxation 

Consider the problem 

 

Each  g j  is 

a vector of 

functions 

Each  yj  is  

a scalar 

variable 

Relaxing the problem by making yj continuous could result in a 

nonconvex problem. 

But suppose the problem becomes convex when each yj is fixed 

to a constant. 

Then we may be able to write a convex quasi-relaxation. 

 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y




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Theorem (JNH) 

If f(x) is convex and each gj(x,y) is semihomogeneous and convex  

in x, and concave in scalar yj, then we have a convex quasi-relaxation: 

 

Quasi-relaxation 

1 2

1

2

1 2

min  ( )

( , ) ( , ) 0

(1 ) (1 )

,  [0,1] 

L U

L U

L U

f x

g x y g x y

x x x

x x x

x x x

 

 



 

 

   

  

Consider the problem 

 

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y







Slide 64 

Quasi-relaxation 

Consider the problem 

 

( , ) ( , )g x y g x y  for all x, y and   [0,1],  

(0, ) 0g y  for all y 

1 2

1

2

1 2

min  ( )

( , ) ( , ) 0

(1 ) (1 )

,  [0,1] 

L U

L U

L U

f x

g x y g x y

x x x

x x x

x x x

 

 



 

 

   

  

min  ( )

( , ) 0, all  

,  discrete

j

j

n

j

f x

g x y j

x y





Theorem (JNH) 

If f(x) is convex and each gj(x,y) is semihomogeneous and convex  

in x, and concave in scalar yj, then we have a convex quasi-relaxation: 
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Quasi-relaxation 

Consider the problem 

 

Bounds on y 

1 2

1

2

1 2
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 

 
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Theorem (JNH) 

If f(x) is convex and each gj(x,y) is semihomogeneous and convex  

in x, and concave in scalar yj, then we have a convex quasi-relaxation: 
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Quasi-relaxation 

Consider the problem 

 

Bounds on x 
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

Theorem (JNH) 

If f(x) is convex and each gj(x,y) is semihomogeneous and convex  

in x, and concave in scalar yj, then we have a convex quasi-relaxation: 
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2 deg. freedom 
0 deg. freedom 

Total 8 degrees of freedom 
Load 

Example: Truss Structure Design 

Select size of each bar (possibly zero) to support the load while 

minimizing weight.  Bar sizes are discrete. 

10-bar cantilever truss 
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Hooke’s law 

Area must be one of several discrete values Aik 

Nonlinear, 

nonconvex 

Truss Structure Design 
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Can convert to MILP model by introducing new variables. 

0-1 variables indicating size 

of bar i 

Elongation variable 

disaggregated by bar 

size 

Hooke’s law 

becomes linear 

min
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Truss Structure Design 
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Quasi-relaxation 

has the form g(x,yj) = 0 with g semihomogeneous in x and 

concave (linear) in yj because we can write it 

i
i i i

i

E
Av s

h


0i
i i i

i

E
Av s

h
 

 

with  x = (Ai,si),   yj = vi. 

min  ( )

( , ) 0, all  
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x y
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Hooke’s law is  

linearized 

Elongation bounds 

split into 2 sets of 

bounds 

0 1
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Truss Structure Design 

So we have a quasi-relaxation of the truss problem: 



Slide 72 

Load 

Truss Structure Design 

10-bar cantilever truss 

Some computational results… Yunes, Aron, JNH (2010),  

based on   

Bollapragada, Ghattas, JNH (2001) 
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Truss Structure Design 

Computational results (seconds) 

SIMPL = integrated solver that 

implements CP-style branching 

and quasi-relaxations 

No.  bars Loads BARON CPLEX SIMPL 

10 1        5.3         0.40        0.08 

10 1        3.8         0.26        0.07 

10 1        8.1         0.83        0.49 

10 1        8.8         1.2        0.63 

10 2         24         4.9        1.84 

10  2*       327     146      65 

10  2*     2067   1087    651 

*plus displacement bounds 
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Truss Structure Design 

25-bar problem 
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Truss Structure Design 

72-bar problem 
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Truss Structure Design 

Computational results (seconds) 

No.  bars Loads BARON CPLEX SIMPL 

  25 2       3,302           44          20 

  72 2       3,376         208          28 

  90 2     21,011         570          92 

108 2    > 24 hr*       3208      1720 

200 2    > 24 hr*    > 24 hr*  > 24 hr** 

* no feasible solution found 

** best feasible solution has cost 32,700 



Decision diagrams 

• A decision diagram can represent the feasible set of a discrete 

optimization problem. 

• An optimal solution is a shortest path in the diagram. 

• Linearity, convexity irrelevant. 

• Provide enhanced propagation in a CP context. 

• Proposal:  discretize continuous variables and optimize over a decision 

diagram. 

• Branching in relaxed decision diagrams may permit massive 

discretization. 

• A “big data” technique. 
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• The knapsack constraint 

has 117,520 minimal feasible solutions. 

Decision diagrams 

• But its reduced decision diagram has only 152 nodes… 
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Decision diagrams 

A branch from layer i 

represents fixing xi  

to 0 (dashed arc)  

or 1 (solid arc). 

Paths to 1 correspond 

to feasible solutions. 
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• Minimize cost subject to a bound on reliability (highly nonconvex) 

– System of 5 bridges: 

Example: network reliability 
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min
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  





The problem: 

Number of links at bridge j 

Set min desired reliability to Rmin = 60% 

Eliminate variables Ri, leaving one continuous variable R. 

Discretize R for the decision diagram. 

Reliability of one link for bridge j 

Example: network reliability 
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Decision diagram has  

308 nodes, generated  

in 1.1 sec. 

Computing optimal solution 

is trivial (shortest path). 

Bonus: we get complete 

postoptimality analysis 

from decision diagram 

Example: network reliability 

Optimal solution 

Hadzic and JNH (2006). 
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Nonlinear constraints are 

increasingly complex for 

larger networks. 

Decision diagram has  

1779 nodes, generated  

in 14.8 sec. 

7 bridges 

Example: network reliability 
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12 bridges 

Decision diagram has  

69,457 nodes, generated  

in 2933 sec. 

Example: network reliability 
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Expected yield rate 

Number of blocks of 

security i purchased 

Maximum variance 

Maximum investment 1 if xi > 0,  

0 otherwise 

(no need for  

0-1 variables) 
Maximum number of 

securities in portfolio 

Example: portfolio design 
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10 securities,  

max 7 selected. 

Decision diagram has  

59,802 nodes, generated  

in 63 sec. 

Trivial to compute yield/risk 

tradeoff. 

Example: portfolio design 

Hadzic and JNH (2006). 
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Decision diagrams 

• What if there are many continuous variables? 

• Discretize them! 

• Use limited-width relaxed decision diagram to obtain 

optimization bounds. 

• Branch in relaxed decision diagram. 

• So far, this method has been applied to IP: 

• Competitive with state-of-the-art IP solvers, or better. 

• Construction of relaxed decision diagram dynamically creates  

finer granularity for more promising discrete values. 

Bergman, Cire, van Hoeve, JNH (2013) 

Slide 87 



McCormick factorization 

• Can be managed with global constraints + semantic typing. 

Cire, JNH, Yunes (2013). 



Want to know more about CP and optimization? 

• See this websites for links to tutorials (slides & videos): 

   http://web.tepper.cmu.edu/jnh/slides.html 

• See also: 

   http://moya.bus.miami.edu/~tallys/integrated.php (CP + optimization) 

   http://www.andrew.cmu.edu/user/vanhoeve/mdd/ (decision diagrams) 
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