Constraint Programming Techniques in MINLP

J. N. Hooker

MINLP Workshop Pittsburgh, June 2014

What can CP contribute to MINLP?

- Interval propagation (range reduction).
 - Already used in global optimization solvers.
- Focus on lesser-known techniques:
 - Domain filtering with Lagrange multipliers.
 - Efficient representation of **piecewise linear** functions.
 - Branching on multiple discrete values.
 - Bounds from quasi-relaxations.
 - Optimization/propagation in decision diagrams.
 - Management of **McCormick factors** with global constraints and semantic typing (*no time for this today*).

• All (successful) optimization method combine **search** with **relaxation** and **inference**.

- Math programming focuses on relaxation.
 - LP, Lagrangean, etc.
- Constraint programming (CP) focuses on inference.
 - Domain filtering, constraint propagation

• All (successful) optimization method combine **search** with **relaxation** and **inference**.

- Math programming focuses on relaxation.
 - LP, Lagrangean, etc.
- Constraint programming (CP) focuses on inference.
 - Domain filtering, constraint propagation
- Math programming uses inference...
 - To generate cutting planes, Benders cuts, etc.
 - But the purpose is to strengthen the **relaxation**.

• CP uses inference for **consistency maintenance**

- ...rather than to strengthen a relaxation.
- Greater consistency means **less backtracking** during search.

• The concept of consistency never developed in math programming, but it helps to explain search behavior.

- CP uses inference for consistency maintenance
 - ...rather than to strengthen a relaxation.
- Greater consistency means **less backtracking** during search.
 - The concept of consistency never developed in math programming, but it helps to explain search behavior.
- Several types of consistency
 - Domain consistency (generalized arc consistency)
 - Bounds consistency
 - Strong k-consistency
 - Etc. etc.

A constraint set is **domain consistent** if the domain of each variable x_i is the projection of the feasible set onto x_i .

 $x_1 + x_2 \ge 1$ $x_1 - x_2 \ge 0$ $x_1, x_2 \in \{0, 1\}$

A constraint set is **domain consistent** if the domain of each variable x_i is the projection of the feasible set onto x_i .

 $x_1 + x_2 \ge 1$ $x_1 - x_2 \ge 0$ $x_1, x_2 \in \{0, 1\}$

X₂

Slide 10

Bounds consistency

• A constraint set is **bounds consistent** if the domain of each variable *x_i* spans the **same interval** as the projection of the feasible set onto *x_i*.

 $2x_1 + x_2 = 9$ $X_1 \in \{1, 2, 3, 4\}$ $X_2 \in \{1, 5\}$

Not bounds consistent.

Consistency maintenance

• Domain or bounds consistency is normally achieved (if at all) for **one constraint at a time**.

- This can be NP-hard.
- But allows one to exploit **special structure** of constraints.
- Much as cutting planes exploit structure of certain classes of inequalities.

Consistency maintenance

• Domain or bounds consistency is normally achieved (if at all) for **one constraint at a time**.

- This can be NP-hard.
- But allows one to exploit **special structure** of constraints.
- Much as cutting planes exploit structure of certain classes of inequalities.
- Particularly effective when the model consists of **global constraints**.
 - ...which represent a set of simpler constraints.
 - Alldiff, cardinality, element, nvalues, sequence, circuit, path, regular, cumulative, stretch, etc.

Propagation

• Reduced domains are passed (**propagated**) to the next constraint.

- ...which may allow further reduction.
- Generally does not achieve consistency for entire constraint set.
- But it drastically reduces backtracking.

• Bounds obtained by achieving bound consistency can be propagated.

• This is important in global optimization (range reduction).

X₁

• Bounds obtained by achieving bound consistency can be propagated.

- This is important in global optimization (range reduction).

• Bounds obtained by achieving bound consistency can be propagated.

- This is important in global optimization (range reduction).
- Example: $4x_1x_2 = 1$ $2x_1 + x_2 \le 2$ $x_1 \in [0.125, 0.875]$ $x_2 \in [0.25, 1.75]$ Propagate to constraint 2: $x_1 \le 1 - \frac{x_2}{2} \le \frac{0.25}{2} = 0.875$ $x_2 \le 2 - 2x_1 \le 2 - 2 \cdot 0.125 = 1.75$

• Bounds obtained by achieving bound consistency can be propagated.

- This is important in global optimization (range reduction).
- Example: $4x_1x_2 = 1$ $2x_1 + x_2 \le 2$ $x_1 \in [0.146, 0.854]$ $x_2 \in [0.293, 1.707]$

Continuing, bounds asymptotically converge:

• Bounds obtained by achieving bound consistency can be propagated.

- This is important in global optimization (range reduction).
- Example: $4x_1x_2 = 1$ $2x_1 + x_2 \le 2$ $x_1 \in [0.146, 0.854]$ $x_2 \in [0.293, 1.707]$

Continuing, bounds asymptotically converge:

Solvers truncate the process.

k-consistency

• *k*-consistency is closely related to backtracking and the **dependency graph** of a constraint set.

• A constraint set is *k*-consistent if any assignment to k - 1 variables that violates no constraints can be extended to an assignment to *k* variables without violating any constraints.

k-consistency

• Example $x_1 + x_2 + x_4 \ge 1$ $x_1 - x_2 + x_3 \ge 0$ $x_1 - x_4 \ge 0$ $x_1 \in \{0,1\}$

- 2-consistent.
- not 3-consistent:

 $(x_1, x_2) = (0, 0)$ cannot be extended to $(x_1, x_2, x_4) = (0, 0, ?)$.

Dependency graph

• **Dependency graph**: variables are connected by edges when they occur in a common constraint.

$$\begin{array}{ll}
x_{1} + x_{2} &+ x_{4} \geq 1 \\
x_{1} - x_{2} + x_{3} &\geq 0 \\
x_{1} &- x_{4} \geq 0 \\
x_{j} \in \{0, 1\}
\end{array}$$

Dependency graph for the example.

Dependency graph

• **Dependency graph**: variables are connected by edges when they occur in a common constraint.

$$\begin{array}{ll}
x_{1} + x_{2} &+ x_{4} \ge 1 \\
x_{1} - x_{2} + x_{3} &\ge 0 \\
x_{1} &- x_{4} \ge 0 \\
x_{j} \in \{0, 1\}
\end{array}$$

For a given variable ordering, width of the graph is the maximum in-degree

Here, width = 2 for ordering 1,2,3,4

• A constraint set is **strongly** *k*-consistent if it is *i*-consistent for *i* = 1,...,*k*.

Theorem (Freuder). If the dependency graph has width < *k* for some variable ordering, then branching (in that order) solves a strongly *k*-consistent problem **without backtracking**.

- The example doesn't satisfy the conditions of the theorem.
 - Width = 2, not strongly 3-consistent.
 - Backtracking occurs when we set

 $(x_1, x_2, x_3, x_4) = (0, 0, 0, ?)$

 $\begin{array}{l}
x_1 + x_2 + x_4 \ge 1 \\
x_1 - x_2 + x_3 \ge 0 \\
x_1 - x_4 \ge 0 \\
x_j \in \{0, 1\}
\end{array}$

- Suppose we add two constraints:
 - This is strongly 3-consistent.
 - Backtracking does not occur.

$$\begin{array}{ll} x_{1} + x_{2} & + x_{4} \geq 1 \\ x_{1} - x_{2} + x_{3} & \geq 0 \\ x_{1} & - x_{4} \geq 0 \\ x_{1} + x_{2} & \geq 1 \\ x_{1} + x_{2} & \geq 1 \\ x_{1} & + x_{3} & \geq 1 \\ x_{j} \in \{0, 1\} \end{array}$$

- Suppose we add two constraints:
 - This is strongly 3-consistent.
 - Backtracking does not occur.
- These are valid cuts!
 - Cuts reduce backtracking by ^x_j increasing the degree of consistency as well as by strengthening the LP relaxation.

$$\begin{array}{ll}
x_{1} + x_{2} &+ x_{4} \geq 1 \\
x_{1} - x_{2} + x_{3} &\geq 0 \\
x_{1} &- x_{4} \geq 0 \\
x_{1} + x_{2} &\geq 1 \\
x_{1} &+ x_{3} &\geq 1 \\
x_{j} \in \{0, 1\}
\end{array}$$

Global optimization example

Interval propagation (range reduction)

Factor complex functions into elementary functions that have known linear relaxations (**McCormick factors**).

Write $4x_1x_2 = 1$ as 4y = 1 where $y = x_1x_2$.

This factors $4x_1x_2$ into linear function 4y and bilinear function x_1x_2 .

Linear function 4y is its own linear relaxation.

Factor complex functions into elementary functions that have known linear relaxations (**McCormick factors**).

Write $4x_1x_2 = 1$ as 4y = 1 where $y = x_1x_2$.

This factors $4x_1x_2$ into linear function 4y and bilinear function x_1x_2 .

Linear function 4y is its own linear relaxation.

Bilinear function $y = x_1 x_2$ has relaxation:

$$\begin{split} \underline{X}_2 X_1 + \underline{X}_1 X_2 - \underline{X}_1 \underline{X}_2 &\leq y \leq \underline{X}_2 X_1 + \overline{X}_1 X_2 - \overline{X}_1 \underline{X}_2 \\ \overline{X}_2 X_1 + \overline{X}_1 X_2 - \overline{X}_1 \overline{X}_2 &\leq y \leq \overline{X}_2 X_1 + \underline{X}_1 X_2 - \underline{X}_1 \overline{X}_2 \end{split}$$
where domain of x_j is $[\underline{X}_j, \overline{X}_j]$

The linear relaxation becomes:

$$\begin{array}{l} \min \ x_1 + x_2 \\ 4y = 1 \\ 2x_1 + x_2 \leq 2 \\ \underline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \underline{x}_2 \leq y \leq \underline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \underline{x}_2 \\ \overline{x}_2 x_1 + \overline{x}_1 x_2 - \overline{x}_1 \overline{x}_2 \leq y \leq \overline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \overline{x}_2 \\ \overline{x}_j x_1 + \overline{x}_1 x_2 - \overline{x}_1 \overline{x}_2 \leq y \leq \overline{x}_2 x_1 + \underline{x}_1 x_2 - \underline{x}_1 \overline{x}_2 \end{array}$$

*X*₁

Slide 37

- So far, this is all standard in global solvers.
- We can achieve stronger propagation with **filtering based on Lagrange multipliers**.
 - Reduced-cost variable fixing is a special case.

This yields a valid inequality for propagation:

In general, suppose we have a relaxation:

min f(x) $g(x) \ge 0$ $x \in S$ with optimal solution x^* , optimal value v^* , andLagrangean dual solution λ^* .

with $\lambda_i^* > 0$, and *U* an upper bound on the optimal value of the original problem (perhaps from an incumbent solution).

Then we have the inequality $g_i(x) \le \frac{U - v^*}{\lambda_i^*}$

...which can be propagated.

A special case applies to individual variables:

min f(x) $g(x) \ge 0$ has optimal solution x^* , optimal value v^* , and $x \in S$ reduced gradient r.

with $x_j^* = 0$, and *U* an upper bound on the optimal value of the original problem (perhaps from an incumbent solution).

Then we have the inequality $X_j \leq \frac{U - v^*}{r_j}$

...which fixes $x_j = 0$ if bound < 1 and x_j is integer (reduced cost variable fixing)

Slide 42

• Piecewise linear approximation is a powerful tool for nonlinear optimization.

• Particularly if nonlinearities are additively separable:

$$f(\mathbf{x}) = \sum_{j} f_{j}(\mathbf{x}_{j})$$

- However, MINLP models require auxiliary variables.
 - A serious limitation.

- CP approach adds no variables.
 - while providing convex hull relaxation (tight as any locally ideal MILP model)
- Use piecewise linear **global constraint** for $f_i(x_i)$:

piecewise (f_j, x_j, a, b)

• where breakpoints are $a = (a_1, \dots, a_n)$ with $f_j(a_i) = b_i$.

Convex hull can be computed very rapidly.

Easily extended to functions $f_j(x_i, x_k)$ By computing 3D convex hull.

- In general, branch on discrete values of a variable.
 - ...rather than introduce 0-1 variables to model discrete values.
- For a troublesome continuous variable, **discretize it** and branch.
 - Use many break points without increasing size of model.

- In general, branch on discrete values of a variable.
 - ...rather than introduce 0-1 variables to model discrete values.
- For a troublesome continuous variable, **discretize it** and branch.
 - Use many break points without increasing size of model.
- This may allow for a **convex** "relaxation" (actually, **quasi-relaxation**)
 - If the model becomes convex when discretized variables are fixed.
 - A quasi-relaxation is not a valid relaxation but yields a valid bound on the objective function.

Given problem

 $\min_{x\in\mathcal{S}}\{f(x)\}$

 $\min_{x \in S'} \{f'(x)\}$ is a **quasi-relaxation** if The problem for any $x \in S$, there is an $x' \in S'$ with $f'(x') \leq f(x)$.

A quasi-relaxation need not be a valid relaxation.

But its **optimal value** is a **valid lower bound** on the optimal value of the original problem.

Consider the problem min f(x) $g^{j}(x, y_{j}) \leq 0$, all j $x \in \mathbb{R}^{n}, y_{j}$ discrete

Relaxing the problem by making y_j continuous could result in a **nonconvex** problem.

Relaxing the problem by making y_j continuous could result in a **nonconvex** problem.

But suppose the problem becomes convex when each y_j is fixed to a **constant**.

Relaxing the problem by making y_j continuous could result in a **nonconvex** problem.

But suppose the problem becomes convex when each y_j is fixed to a **constant**.

Then we may be able to write a **convex quasi-relaxation**.

Slide 62

Consider the problem min
$$f(x)$$

 $g^{j}(x, y_{j}) \leq 0$, all j
 $x \in \mathbb{R}^{n}, y_{j}$ discrete

Theorem (JNH)

If f(x) is convex and each $g^{i}(x,y)$ is **semihomogeneous** and **convex** in x, and **concave** in scalar y_{j} , then we have a **convex quasi-relaxation**: min f(x) $g(x^{1}, y_{L}) + g(x^{2}, y_{U}) \le 0$ $\alpha x^{L} \le x^{1} \le \alpha x^{U}$ $(1-\alpha)x^{L} \le x^{2} \le (1-\alpha)x^{U}$ $x = x^{1} + x^{2}, \ \alpha \in [0,1]$

Consider the problem min f(x) $g^{j}(x, y_{j}) \leq 0$, all j $x \in \mathbb{R}^{n}, y_{j}$ discrete

Theorem (JNH)

If f(x) is convex and each $g^{i}(x,y)$ is **semihomogeneous** and **convex** in *x*, and **concave** in scalar y_{j} , then we have a **convex quasi-relaxation**:

$$\begin{array}{l} \min f(x) \\ g(x^{1}, y_{L}) + g(x^{2}, y_{U}) \leq 0 \\ \alpha x^{L} \leq x^{1} \leq \alpha x^{U} \\ (1 - \alpha) x^{L} \leq x^{2} \leq (1 - \alpha) x^{U} \\ x = x^{1} + x^{2}, \ \alpha \in [0, 1] \end{array} \\ g(\alpha x, y) \leq \alpha g(x, y) \text{ for all } x, y \text{ and } \alpha \in [0, 1], \\ g(0, y) = 0 \text{ for all } y \end{array}$$

Slide 64

Consider the problem min
$$f(x)$$

 $g^{j}(x, y_{j}) \leq 0$, all j
 $x \in \mathbb{R}^{n}, y_{j}$ discrete

Theorem (JNH)

If f(x) is convex and each $g^{j}(x,y)$ is **semihomogeneous** and **convex** in x, and **concave** in scalar y_{j} , then we have a **convex quasi-relaxation**: min f(x) $g(x^{1}, [\underline{y_{L}}]) + g(x^{2}, [\underline{y_{U}}]) \le 0$ $\alpha x^{L} \le x^{1} \le \alpha x^{U}$ $(1-\alpha)x^{L} \le x^{2} \le (1-\alpha)x^{U}$ $x = x^{1} + x^{2}, \ \alpha \in [0,1]$

Bounds on y

Consider the problem min
$$f(x)$$

 $g^{j}(x, y_{j}) \leq 0$, all j
 $x \in \mathbb{R}^{n}, y_{j}$ discrete

Theorem (JNH)

If f(x) is convex and each $g^{i}(x,y)$ is **semihomogeneous** and **convex** in x, and **concave** in scalar y_{j} , then we have a **convex quasi-relaxation**: min f(x) $g(x^{1}, y_{L}) + g(x^{2}, y_{U}) \le 0$ $\alpha |x^{L}| \le x^{1} \le \alpha |x^{U}|$ $(1 - \alpha) x^{L} \le x^{2} \le (1 - \alpha) x^{U}$ $x = x^{1} + x^{2}, \ \alpha \in [0, 1]$

Bounds on x

Example: Truss Structure Design

Select size of each bar (possibly zero) to support the load while minimizing weight. Bar sizes are **discrete**.

10-bar cantilever truss

Slide 67

Truss Structure Design

$$\min \sum_{i} h_{i}A_{i}$$
s.t.
$$\sum_{i} \cos \theta_{ij}S_{i} = p_{j}, \text{ all } j$$

$$\sum_{j} \cos \theta_{ij}d_{j} = v_{i}, \text{ all } i$$
Nonlinear,
nonconvex
$$\frac{E_{i}}{h_{i}}A_{i}v_{i} = s_{i}, \text{ all } i$$
Hooke's law
$$v_{i}^{L} \leq v_{i} \leq v_{i}^{U}, \text{ all } i$$

$$d_{j}^{L} \leq d_{j} \leq d_{j}^{U}, \text{ all } j$$

$$\bigvee_{k} (A_{i} = A_{ik})$$

Area must be one of several discrete values A_{ik}

Slide 68

Truss Structure Design

Can convert to MILP model by introducing new variables.

min
$$\sum_{i} h_{i} \sum_{k} A_{ik} y_{ik}$$

s.t. $\sum_{i} \cos \theta_{ij} s_{i} = p_{j}$, all j
 $\sum_{i} \cos \theta_{ij} d_{j} = \sum_{k} v_{ik}$, all i
 $\frac{E_{i}}{h_{i}} \sum_{k} A_{ik} v_{ik} = s_{i}$, all i
 $v_{i}^{L} \leq v_{i} \leq v_{i}^{U}$, all i
 $d_{j}^{L} \leq d_{j} \leq d_{j}^{U}$, all j
 $\sum_{k} y_{ik} = 1$, all i

min f(x) $g^{j}(x, y_{j}) \le 0$, all j $x \in \mathbb{R}^{n}, y_{j}$ discrete

 $\frac{E_i}{h_i} A_i V_i = S_i$ has the form $g(x, y_j) = 0$ with g semihomogeneous in x and concave (linear) in y_j because we can write it

$$\frac{E_i}{h_i}A_iV_i-S_i=0$$

with $x = (A_i, s_i), \quad y_j = v_i$.

Truss Structure Design

So we have a quasi-relaxation of the truss problem:

$$\min \sum_{i} h_{i} [A_{i}^{L} y_{i} + A_{i}^{U} (1 - y_{i})]$$
s.t.
$$\sum_{i} \cos \theta_{ij} s_{i} = p_{j}, \text{ all } j$$

$$\sum_{i} \cos \theta_{ij} d_{j} = v_{i0} + v_{i1}, \text{ all } i$$
Hooke's law is linearized
$$\frac{E_{i}}{h_{i}} (A_{i}^{L} v_{i0} + A_{i}^{U} v_{i1}) = s_{i}, \text{ all } i$$
Hooke's law is linearized
$$v_{i}^{L} y_{i} \leq v_{i0} \leq v_{i}^{U} y_{i}, \text{ all } i$$
Elongation bounds split into 2 sets of bounds
$$d_{j}^{L} \leq d_{j} \leq d_{j}^{U}, \text{ all } j$$

$$0 \leq y_{i} \leq 1, \text{ all } i$$

Truss Structure Design

Some computational results...

10-bar cantilever truss

Yunes, Aron, JNH (2010), based on Bollapragada, Ghattas, JNH (2001)

SIMPL = integrated solver that implements CP-style branching and quasi-relaxations

Computational results (seconds)

No. bars	Loads	BARON	CPLEX	SIMPL
10	1	5.3	0.40	0.08
10	1	3.8	0.26	0.07
10	1	8.1	0.83	0.49
10	1	8.8	1.2	0.63
10	2	24	4.9	1.84
10	2*	327	146	65
10	2*	2067	1087	651

Slide 73 *plus displacement bounds

25-bar problem 77, 777 ///

72-bar problem

Computational results (seconds)

No. bars	Loads	BARON	CPLEX	SIMPL
25	2	3,302	44	20
72	2	3,376	208	28
90	2	21,011	570	92
108	2	> 24 hr*	3208	1720
200	2	> 24 hr*	> 24 hr*	> 24 hr**

* no feasible solution found

** best feasible solution has cost 32,700

• A **decision diagram** can represent the feasible set of a discrete optimization problem.

- An optimal solution is a **shortest path** in the diagram.
- Linearity, convexity irrelevant.
- Provide enhanced propagation in a CP context.
- Proposal: **discretize** continuous variables and optimize over a decision diagram.
 - Branching in **relaxed** decision diagrams may permit **massive discretization**.
 - A "big data" technique.

• The knapsack constraint

 $300x_0 + 300x_1 + 285x_2 + 285x_3 + 265x_4 + 265x_5 + 230x_6 + 23x_7 + 190x_8 + 200x_9 + 400x_{10} + 200x_{11} + 400x_{12} + 200x_{13} + 400x_{14} + 200x_{15} + 400x_{16} + 200x_{17} + 400x_{18} \ge 2701$

has 117,520 minimal feasible solutions.

• But its reduced decision diagram has only 152 nodes...

A branch from layer *i* represents fixing x_i to 0 (dashed arc) or 1 (solid arc).

Paths to 1 correspond to feasible solutions.

Minimize cost subject to a bound on reliability (highly nonconvex)
– System of 5 bridges:

 $R = R_1 R_2 + (1 - R_2) R_3 R_4 + (1 - R_1) R_2 R_3 R_4 + R_1 (1 - R_2) (1 - R_3) R_4 R_5 + (1 - R_1) R_2 R_3 (1 - R_4) R_5$

The problem:

Set min desired reliability to $R_{\min} = 60\%$

Eliminate variables R_i , leaving one **continuous** variable R. **Discretize** R for the decision diagram.

Slide 81

Optimal solution

Decision diagram has 308 nodes, generated in 1.1 sec.

Computing optimal solution is trivial (shortest path).

Bonus: we get complete **postoptimality analysis** from decision diagram

$c_{opt} + \Delta$	x_1	x_2	x_3	x_4	x_5	R
50:	0	0	1	1	0	72
60:	1	1	0	0,2		79
85:	2					84
90:			2	3		86
95:		2			1	88
100:						95
120:						97
125:	3					
155:		3			2	
160:						98
170:						99
180:			3			
230:					3	

Hadzic and JNH (2006).

Nonlinear constraints are increasingly complex for larger networks.

Decision diagram has 1779 nodes, generated in 14.8 sec.

7 bridges

$c_{opt} + \Delta$	x_1	x_2	x_3	x_4	x_5	x_6	x_7	R	
9:	0	0	0	0	0	1	1	72.2	
11:			1		1		0		
12:	1			1		0			
13:		1				2		82.9	
14:					2		2		
15:			2	2					
16:	2								
17:					3	3		84.6	
18:		2		3				95.2	
19:			3				3		
20:	3								
22:								97.2	
23:		3							
27:								99.2	
34:								99.4	
40:								99.6	
43:								99.7	
47:								99.8	
54:								99.9	

Decision diagram has 69,457 nodes, generated in 2933 sec.

12 bridges

$c_{opt} + \Delta$	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}	x_{11}	x_{12}	R
180	1	0	2	3	0	0	0	2	0	0	0	0	80
185			3	2									82
190								3					
195													83
200										1			
205													86
210	2						1						
215													88
220										2			
225					1				1				
230	0		0			1,2					1		
235			1										
240		1		1			2			3	2	1	
250				0				0,1				2	
255													91
260	3								2				
265													93
270					2	3	3						
290											3		
300		2											
305									3				
310												3	
315					3								94
340													95
360		3											
365													96
380													97
430													98
485													99

Slide 84

Example: portfolio design

Example: portfolio design

10 securities, max 7 selected.

Decision diagram has 59,802 nodes, generated in 63 sec.

Trivial to compute yield/risk tradeoff.

$c_{opt} - \Delta$	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9	x_{10}
21797	6	0	7	0	3	7	6	0	3	7
21754						6	7			
21705				1					0	6
21683									2	
21678	7		6							
21673					5					
21670					4					
21663				2	0					
21647								2		
21642							5		1	
21630					2					
21624								1,3		
21604					1					
21599						5				
21572			5							
21567									4	
21562										5
21532	5									
21529							4			
21484									5	4
21467						4				
21456								4		
21412					6					
21404							3			
21370		1								
21351								5		
21330									6	
21312			4							
21232						3				
21215										3
21134					7					
21133		2								

• What if there are **many continuous variables**?

- Discretize them!
- Use limited-width **relaxed** decision diagram to obtain optimization bounds.
- Branch in relaxed decision diagram.
- So far, this method has been applied to IP:
 - Competitive with state-of-the-art IP solvers, or better.
 - Construction of relaxed decision diagram dynamically creates finer granularity for more promising discrete values.

Bergman, Cire, van Hoeve, JNH (2013)

McCormick factorization

• Can be managed with **global constraints + semantic typing**.

Cire, JNH, Yunes (2013).

Want to know more about CP and optimization?

- See this websites for links to tutorials (slides & videos): <u>http://web.tepper.cmu.edu/jnh/slides.html</u>
- See also:

<u>http://moya.bus.miami.edu/~tallys/integrated.php</u> (CP + optimization) <u>http://www.andrew.cmu.edu/user/vanhoeve/mdd/</u> (decision diagrams)