
Slide 1

Constraint Programming

Techniques in MINLP

J. N. Hooker

MINLP Workshop
Pittsburgh, June 2014

What can CP contribute to MINLP?

• Interval propagation (range reduction).

• Already used in global optimization solvers.

• Focus on lesser-known techniques:

• Domain filtering with Lagrange multipliers.

• Efficient representation of piecewise linear functions.

• Branching on multiple discrete values.

• Bounds from quasi-relaxations.

• Optimization/propagation in decision diagrams.

• Management of McCormick factors with global

constraints and semantic typing (no time for this today).

Slide 2

Constraint Programming Perspective

• All (successful) optimization method combine search with

relaxation and inference.

• Math programming focuses on relaxation.

• LP, Lagrangean, etc.

• Constraint programming (CP) focuses on inference.

• Domain filtering, constraint propagation

Slide 3

Constraint Programming Perspective

• All (successful) optimization method combine search with

relaxation and inference.

• Math programming focuses on relaxation.

• LP, Lagrangean, etc.

• Constraint programming (CP) focuses on inference.

• Domain filtering, constraint propagation

• Math programming uses inference…

• To generate cutting planes, Benders cuts, etc.

• But the purpose is to strengthen the relaxation.

Slide 4

Constraint Programming Perspective

• CP uses inference for consistency maintenance

• …rather than to strengthen a relaxation.

• Greater consistency means less backtracking during

search.

• The concept of consistency never developed in math

programming, but it helps to explain search behavior.

Slide 5

Constraint Programming Perspective

• CP uses inference for consistency maintenance

• …rather than to strengthen a relaxation.

• Greater consistency means less backtracking during

search.

• The concept of consistency never developed in math

programming, but it helps to explain search behavior.

• Several types of consistency

• Domain consistency (generalized arc consistency)

• Bounds consistency

• Strong k-consistency

• Etc. etc.

 Slide 6

(1,0)

Domain consistency

A constraint set is

domain consistent

if the domain of each

variable xi is the

projection of the

feasible set onto xi.

 

1 2

1 2

1 2

1

0

, 0,1

x x

x x

x x

 

 



x1

x2

(1,1)

Slide 7

Domain consistency

A constraint set is

domain consistent

if the domain of each

variable xi is the

projection of the

feasible set onto xi.

Projection onto x2 = {0,1}

x1

x2

(1,0)

(1,1)

 

1 2

1 2

1 2

1

0

, 0,1

x x

x x

x x

 

 



Slide 8

Domain consistency

A constraint set is

domain consistent

if the domain of each

variable xi is the

projection of the

feasible set onto xi.

Projection onto x1 = {1}

x1

x2

(1,0)

(1,1)

 

1 2

1 2

1 2

1

0

, 0,1

x x

x x

x x

 

 



Projection onto x2 = {0,1}

Not domain

consistent.

Slide 9

Domain consistency

A constraint set is

domain consistent

if the domain of each

variable xi is the

projection of the

feasible set onto xi.

Projection onto x1 = {1}

x1

x2

(1,0)

(1,1)

   

1 2

1 2

1 2

1

0

, 0,11

x x

x

xx

x

 

 



Projection onto x2 = {0,1}

Achieve domain

consistency by

filtering 0 from

domain of x1.

Slide 10

Bounds consistency

• A constraint set is

bounds consistent

if the domain of each

variable xi spans the

same interval as the

projection of the

feasible set onto xi.

 
 

1 2

1

2

2 9

1,2,3,4

1,5

x x

x

x

 





(4,1)

x1

x2 (2,5)

Not bounds consistent.

Slide 11

Consistency maintenance

• Domain or bounds consistency is normally achieved

(if at all) for one constraint at a time.

• This can be NP-hard.

• But allows one to exploit special structure of

constraints.

• Much as cutting planes exploit structure of certain

classes of inequalities.

Slide 12

Consistency maintenance

• Domain or bounds consistency is normally achieved

(if at all) for one constraint at a time.

• This can be NP-hard.

• But allows one to exploit special structure of

constraints.

• Much as cutting planes exploit structure of certain

classes of inequalities.

• Particularly effective when the model consists of global

constraints.

• …which represent a set of simpler constraints.

• Alldiff, cardinality, element, nvalues, sequence, circuit,

path, regular, cumulative, stretch, etc.

 Slide 13

Propagation

• Reduced domains are passed (propagated) to the next

constraint.

• …which may allow further reduction.

• Generally does not achieve consistency for entire

constraint set.

• But it drastically reduces backtracking.

Slide 14

Bounds propagation

• Bounds obtained by achieving bound consistency can be

propagated.

• This is important in global optimization (range reduction).

x1

Slide 15

Bounds propagation

• Bounds obtained by achieving bound consistency can be

propagated.

• This is important in global optimization (range reduction).

• Example:

  
 

1 2

1 2

1

2

4 1

2 2

0.125,1

0.25, 2

x x

x x

x

x



 





x1

x2

Filter using constraint 1:

0 1
0

2

1

2

1 1
0.125

4 4 2
x

x
  



2

1

1 1
0.25

4 4 1
x

x
  



Slide 16

Bounds propagation

• Bounds obtained by achieving bound consistency can be

propagated.

• This is important in global optimization (range reduction).

• Example:

Propagate to

constraint 2:

 0 1
0

2

2
1

0.25
1 0.875

2 2

x
x    

2 12 2 2 2 0.125 1.75x x     

 
 

1 2

1 2

1

2

4 1

2 2

0.125,0.875

0.25, 1.75

x x

x x

x

x



 





x1

x2

Slide 17

Bounds propagation

• Bounds obtained by achieving bound consistency can be

propagated.

• This is important in global optimization (range reduction).

• Example:

Continuing, bounds asymptotically converge:

0 1

0

2  
 

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x



 





x1

x2

Slide 18

Bounds propagation

• Bounds obtained by achieving bound consistency can be

propagated.

• This is important in global optimization (range reduction).

• Example:

Continuing, bounds asymptotically converge:

Solvers truncate the process.

0 1
0

2  
 

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x



 





x1

x2

Slide 19

k-consistency

• k-consistency is closely related to backtracking and the

dependency graph of a constraint set.

• A constraint set is k-consistent if any assignment to k – 1

variables that violates no constraints can be extended to an

assignment to k variables without violating any constraints.

kj
x

Slide 20

k-consistency

• Example

• 2-consistent.

• not 3-consistent:

(x1,x2) = (0,0) cannot be extended to (x1,x2,x4) = (0,0,?).

 

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

  

  

 



Slide 21

Dependency graph

• Dependency graph: variables are connected by edges when

they occur in a common constraint.

 

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

  

  

 



x1

x2

x3 x4
Dependency graph

for the example.

Slide 22

Dependency graph

• Dependency graph: variables are connected by edges when

they occur in a common constraint.

 

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

  

  

 



For a given variable ordering,

width of the graph is the

maximum in-degree

Here, width = 2

for ordering 1,2,3,4

x1

x2

x3 x4

Slide 23

Backtracking

Theorem (Freuder). If the dependency graph has

width < k for some variable ordering, then branching

(in that order) solves a strongly k-consistent problem

without backtracking.

• A constraint set is strongly k-consistent if it is i-consistent

for i = 1,…,k.

Slide 24

Backtracking

• The example doesn’t satisfy the conditions of the theorem.

• Width = 2, not strongly 3-consistent.

• Backtracking occurs when we set

(x1,x2,x3,x4) = (0,0,0,?)

 

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

  

  

 



Slide 25

Backtracking

• Suppose we add two constraints:

• This is strongly 3-consistent.

• Backtracking does not occur.

 

1 2 4

1 2

1

3

4

1

1

2

3

1

1

1

0

0

0,1j

x x x

x x x

x x

x x

x

x

x

  

  



 

 





Slide 26

Backtracking

• Suppose we add two constraints:

• This is strongly 3-consistent.

• Backtracking does not occur.

• These are valid cuts!

• Cuts reduce backtracking by

increasing the degree of consistency

as well as by strengthening the LP relaxation.

 

1 2 4

1 2

1

3

4

1

1

2

3

1

1

1

0

0

0,1j

x x x

x x x

x x

x x

x

x

x

  

  



 

 





Slide 27

Slide 28

Feasible set

Global optimum

Local optimum

x1

x2

Global optimization example

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1], [0,2]

x x

x x

x x

x x





 

 

Slide 29

Interval propagation (range reduction)

Propagate intervals

[0,1], [0,2]

through constraints

to obtain

[1/8,7/8], [1/4,7/4]

x1

x2

Slide 30

Relaxation (function factorization)

Factor complex functions into elementary functions that have

known linear relaxations (McCormick factors).

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Slide 31

where domain of xj is [,]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have

known linear relaxations (McCormick factors).

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

     

     

Slide 32

The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Slide 33

Solve linear relaxation.

x1

x2

Relaxation (function factorization)

Slide 34

x1

x2

Since solution is infeasible,

split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x 

2 [0.25,1]x 

Slide 35

x1

x2

x1

x2

2 [1,1.75]x  2 [0.25,1]x 

Slide 36

Solution of

relaxation is

feasible,

value = 1.25

This becomes

incumbent

solution

x1

x2

x1

x2

2 [1,1.75]x  2 [0.25,1]x 

Slide 37

Solution of

relaxation is

feasible,

value = 1.25

This becomes

incumbent

solution

x1

x2

x1

x2

Solution of

relaxation is

not quite

feasible,

value = 1.854

2 [1,1.75]x  2 [0.25,1]x 

Domain filtering with Lagrange multipliers

• So far, this is all standard in global solvers.

• We can achieve stronger propagation with filtering based on

Lagrange multipliers.

• Reduced-cost variable fixing is a special case.

Slide 38

Slide 39

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Associated Lagrange

multiplier in solution of

relaxation is 2 = 1.1

Domain filtering with Lagrange multipliers

Slide 40

This yields a valid inequality for propagation:

Associated Lagrange

multiplier in solution of

relaxation is 2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x


   

Domain filtering with Lagrange multipliers

Value of

relaxation
Lagrange multiplier

Value of incumbent

solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j





 

     

     

  

Then we have the inequality

…which can be propagated.

min ()

() 0

f x

g x

x S





In general, suppose we have a relaxation:

with optimal solution x*, optimal value v*, and

Lagrangean dual solution *.

with i* > 0, and U an upper bound on the optimal value of the

original problem (perhaps from an incumbent solution).

Domain filtering with Lagrange multipliers

*

*
()i

i

U v
g x






Slide 41

Then we have the inequality

…which fixes xj = 0 if bound < 1 and xj is integer

(reduced cost variable fixing)

min ()

() 0

f x

g x

x S





A special case applies to individual variables:

has optimal solution x*, optimal value v*, and

reduced gradient r.

with xj* = 0, and U an upper bound on the optimal value of the

original problem (perhaps from an incumbent solution).

Domain filtering with Lagrange multipliers

*

j

j

U v
x

r




Slide 42

Piecewise linear functions

• Piecewise linear approximation is a powerful tool for nonlinear

optimization.

• Particularly if nonlinearities

are additively separable:

• However, MINLP models require auxiliary variables.

• A serious limitation.

() ()j j

j

f x f x

Slide 43

Piecewise linear functions

• CP approach adds no variables.

• while providing convex hull relaxation (tight as any locally ideal

MILP model)

• Use piecewise linear global constraint for fj(xj):

• where breakpoints are a = (a1,…an) with fj(ai) = bi.

 piecewise , , ,j jf x a b

Slide 44

a1 a2 a3 a4 a5 a6

xj

fj(xj)

b1

b2

b3

b4

b5

b6

Piecewise linear functions

Slide 45

Piecewise linear functions

Replace fj(xj) in model with z.

Add inequalities in (xj,z) that

describe convex hull.

Convex hull can be computed

very rapidly.

xj

z

Slide 46

Piecewise linear functions

xj

z

Suppose this is value of xj

in solution of current relaxation.

Slide 47

Piecewise linear functions

xj

z

Then branch…

Slide 48

…and update convex hull

relaxations.

Piecewise linear functions

Slide 49

…and update convex hull

relaxations.

Piecewise linear functions

Easily extended to functions fj(xi,xk)

By computing 3D convex hull.
Slide 50

Branching

• In general, branch on discrete values of a variable.

• …rather than introduce 0-1 variables to model discrete values.

• For a troublesome continuous variable, discretize it and branch.

• Use many break points without increasing size of model.

Slide 51

Branching

• In general, branch on discrete values of a variable.

• …rather than introduce 0-1 variables to model discrete values.

• For a troublesome continuous variable, discretize it and branch.

• Use many break points without increasing size of model.

• This may allow for a convex “relaxation” (actually, quasi-relaxation)

• If the model becomes convex when discretized variables are fixed.

• A quasi-relaxation is not a valid relaxation but yields a valid bound

on the objective function.

Slide 52

Branching

Discrete values

jy

Value in solution of current relaxation

Slide 53

Slide 54

Branching

Value in solution of current relaxation

Branch by splitting interval

Discrete values

jy

jy

Slide 55

Branching

Value in solution of current relaxation

Branch by splitting interval

Solution of next relaxation likely to be at an endpoint.

This branching intelligence unavailable in 0-1 model.

Discrete values

jy

jy

Slide 56

Quasi-relaxation

Given problem

The problem is a quasi-relaxation if

for any x  S, there is an x  S with f (x) ≤ f (x).

A quasi-relaxation need not be a valid relaxation.

But its optimal value is a valid lower bound on the optimal

value of the original problem.

 min ()

x S
f x



 min ()

x S
f x




Slide 57

Quasi-relaxation

Consider the problem

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 58

Quasi-relaxation

Consider the problem

Each g j is

a vector of

functions

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 59

Quasi-relaxation

Consider the problem

Each g j is

a vector of

functions

Each yj is

a scalar

variable

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 60

Quasi-relaxation

Consider the problem

Each g j is

a vector of

functions

Each yj is

a scalar

variable

Relaxing the problem by making yj continuous could result in a

nonconvex problem.

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 61

Quasi-relaxation

Consider the problem

Each g j is

a vector of

functions

Each yj is

a scalar

variable

Relaxing the problem by making yj continuous could result in a

nonconvex problem.

But suppose the problem becomes convex when each yj is fixed

to a constant.

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 62

Quasi-relaxation

Consider the problem

Each g j is

a vector of

functions

Each yj is

a scalar

variable

Relaxing the problem by making yj continuous could result in a

nonconvex problem.

But suppose the problem becomes convex when each yj is fixed

to a constant.

Then we may be able to write a convex quasi-relaxation.

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 63

Theorem (JNH)

If f(x) is convex and each gj(x,y) is semihomogeneous and convex

in x, and concave in scalar yj, then we have a convex quasi-relaxation:

Quasi-relaxation

1 2

1

2

1 2

min ()

(,) (,) 0

(1) (1)

, [0,1]

L U

L U

L U

f x

g x y g x y

x x x

x x x

x x x

 

 



 

 

   

  

Consider the problem

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 64

Quasi-relaxation

Consider the problem

(,) (,)g x y g x y  for all x, y and   [0,1],

(0,) 0g y  for all y

1 2

1

2

1 2

min ()

(,) (,) 0

(1) (1)

, [0,1]

L U

L U

L U

f x

g x y g x y

x x x

x x x

x x x

 

 



 

 

   

  

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Theorem (JNH)

If f(x) is convex and each gj(x,y) is semihomogeneous and convex

in x, and concave in scalar yj, then we have a convex quasi-relaxation:

Slide 65

Quasi-relaxation

Consider the problem

Bounds on y

1 2

1

2

1 2

min ()

(,) (,) 0

(1) (1)

, [0,1]

L U

L U

L U

f x

g x y g x y

x x x

x x x

x x x

 

 



 

 

   

  

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Theorem (JNH)

If f(x) is convex and each gj(x,y) is semihomogeneous and convex

in x, and concave in scalar yj, then we have a convex quasi-relaxation:

Slide 66

Quasi-relaxation

Consider the problem

Bounds on x

1 2

1

2

1 2

min ()

(,) (,) 0

(1) (1)

, [0,1]

L U

L U

L U

f x

g x y g x y

x x x

x x x

x x x

 

 



 

 

   

  

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Theorem (JNH)

If f(x) is convex and each gj(x,y) is semihomogeneous and convex

in x, and concave in scalar yj, then we have a convex quasi-relaxation:

Slide 67

2 deg. freedom
0 deg. freedom

Total 8 degrees of freedom
Load

Example: Truss Structure Design

Select size of each bar (possibly zero) to support the load while

minimizing weight. Bar sizes are discrete.

10-bar cantilever truss

min

. . cos , all

cos , all

, all

, all

, all

()\/

i i

i

ij i j

i

ij j i

j

i
i i i

i

L U

i i i

L U

j j j

k i ik

h A

s t s p j

d v i

E
Av s i

h

v v v i

d d d j

A A











 

 









Slide 68

Hooke’s law

Area must be one of several discrete values Aik

Nonlinear,

nonconvex

Truss Structure Design

Slide 69

Can convert to MILP model by introducing new variables.

0-1 variables indicating size

of bar i

Elongation variable

disaggregated by bar

size

Hooke’s law

becomes linear

min

. . cos , all

cos , all

, all

, all

, all

1, all

i ik ik

i k

ij i j

i

ij j ik

j k

i
ik ik i

ki

L U

i i i

L U

j j j

ik

k

h A y

s t s p j

d v i

E
A v s i

h

v v v i

d d d j

y i











 

 



 



 





Truss Structure Design

Slide 70

Quasi-relaxation

has the form g(x,yj) = 0 with g semihomogeneous in x and

concave (linear) in yj because we can write it

i
i i i

i

E
Av s

h


0i
i i i

i

E
Av s

h
 

with x = (Ai,si), yj = vi.

min ()

(,) 0, all

, discrete

j

j

n

j

f x

g x y j

x y





Slide 71

Hooke’s law is

linearized

Elongation bounds

split into 2 sets of

bounds

0 1

0 1

0

1

min [(1)]

. . cos , all

cos , all

() , all

, all

(1) (1), all

, all

0 1, all

L U

i i i i i

i

ij i j

i

ij j i i

j

L Ui
i i i i i

i

L U

i i i i i

L U

i i i i i

L U

j j j

i

h A y A y

s t s p j

d v v i

E
A v A v s i

h

v y v v y i

v y v v y i

d d d j

y i





 



 

 

 

   

 

 







Truss Structure Design

So we have a quasi-relaxation of the truss problem:

Slide 72

Load

Truss Structure Design

10-bar cantilever truss

Some computational results… Yunes, Aron, JNH (2010),

based on

Bollapragada, Ghattas, JNH (2001)

Slide 73

Truss Structure Design

Computational results (seconds)

SIMPL = integrated solver that

implements CP-style branching

and quasi-relaxations

No. bars Loads BARON CPLEX SIMPL

10 1 5.3 0.40 0.08

10 1 3.8 0.26 0.07

10 1 8.1 0.83 0.49

10 1 8.8 1.2 0.63

10 2 24 4.9 1.84

10 2* 327 146 65

10 2* 2067 1087 651

*plus displacement bounds

Slide 74

Truss Structure Design

25-bar problem

Slide 75

Truss Structure Design

72-bar problem

Slide 76

Truss Structure Design

Computational results (seconds)

No. bars Loads BARON CPLEX SIMPL

 25 2 3,302 44 20

 72 2 3,376 208 28

 90 2 21,011 570 92

108 2 > 24 hr* 3208 1720

200 2 > 24 hr* > 24 hr* > 24 hr**

* no feasible solution found

** best feasible solution has cost 32,700

Decision diagrams

• A decision diagram can represent the feasible set of a discrete

optimization problem.

• An optimal solution is a shortest path in the diagram.

• Linearity, convexity irrelevant.

• Provide enhanced propagation in a CP context.

• Proposal: discretize continuous variables and optimize over a decision

diagram.

• Branching in relaxed decision diagrams may permit massive

discretization.

• A “big data” technique.

Slide 77

• The knapsack constraint

has 117,520 minimal feasible solutions.

Decision diagrams

• But its reduced decision diagram has only 152 nodes…

Slide 78

Decision diagrams

A branch from layer i

represents fixing xi

to 0 (dashed arc)

or 1 (solid arc).

Paths to 1 correspond

to feasible solutions.

Slide 79

• Minimize cost subject to a bound on reliability (highly nonconvex)

– System of 5 bridges:

Example: network reliability

Slide 80

min

1 2 2 3 4 1 2 3 4

1 2 3 4 5 1 2 3 4 5

min

(1) (1)

(1)(1) (1) (1)

1 (1) , all

{0,1,2,3}

j

j j
j

x

j j

j

c x

R R

R R R R R R R R R R

R R R R R R R R R R

R r j

x



    

     

  





The problem:

Number of links at bridge j

Set min desired reliability to Rmin = 60%

Eliminate variables Ri, leaving one continuous variable R.

Discretize R for the decision diagram.

Reliability of one link for bridge j

Example: network reliability

Slide 81

Decision diagram has

308 nodes, generated

in 1.1 sec.

Computing optimal solution

is trivial (shortest path).

Bonus: we get complete

postoptimality analysis

from decision diagram

Example: network reliability

Optimal solution

Hadzic and JNH (2006).

Slide 82

Nonlinear constraints are

increasingly complex for

larger networks.

Decision diagram has

1779 nodes, generated

in 14.8 sec.

7 bridges

Example: network reliability

Slide 83

12 bridges

Decision diagram has

69,457 nodes, generated

in 2933 sec.

Example: network reliability

Slide 84

Expected yield rate

Number of blocks of

security i purchased

Maximum variance

Maximum investment 1 if xi > 0,

0 otherwise

(no need for

0-1 variables)
Maximum number of

securities in portfolio

Example: portfolio design

Slide 85

10 securities,

max 7 selected.

Decision diagram has

59,802 nodes, generated

in 63 sec.

Trivial to compute yield/risk

tradeoff.

Example: portfolio design

Hadzic and JNH (2006).

Slide 86

Decision diagrams

• What if there are many continuous variables?

• Discretize them!

• Use limited-width relaxed decision diagram to obtain

optimization bounds.

• Branch in relaxed decision diagram.

• So far, this method has been applied to IP:

• Competitive with state-of-the-art IP solvers, or better.

• Construction of relaxed decision diagram dynamically creates

finer granularity for more promising discrete values.

Bergman, Cire, van Hoeve, JNH (2013)

Slide 87

McCormick factorization

• Can be managed with global constraints + semantic typing.

Cire, JNH, Yunes (2013).

Want to know more about CP and optimization?

• See this websites for links to tutorials (slides & videos):

 http://web.tepper.cmu.edu/jnh/slides.html

• See also:

 http://moya.bus.miami.edu/~tallys/integrated.php (CP + optimization)

 http://www.andrew.cmu.edu/user/vanhoeve/mdd/ (decision diagrams)

Slide 89

http://web.tepper.cmu.edu/jnh/slides.html
http://moya.bus.miami.edu/~tallys/integrated.php
http://www.andrew.cmu.edu/user/vanhoeve/mdd/
http://www.andrew.cmu.edu/user/vanhoeve/mdd/
http://www.andrew.cmu.edu/user/vanhoeve/mdd/

