
Overview of

Decision Diagrams for Optimization

J. N. Hooker
Carnegie Mellon University

IOS Conference

2016

Today’s Session

• Overview of decision diagrams for optimization

– JH

• Decisions diagrams for sequencing and

scheduling

– Andre Cire

• Decision diagram decompositions

– David Bergman

2

Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– Constraint programming

– Discrete optimization

3

Decision Diagrams

• Advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– New approach to solving dynamic programming models.

– Very effective parallel computation.

– Ideal for postoptimality anaylsis

• Disadvantage:

– Developed only for discrete, deterministic optimization.

– …so far.

4

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• A general-purpose solver that scales up

– Relaxed decision diagrams

– Restricted decision diagrams

– Dynamic programming model

– A new branching algorithm

– Computational performance

• Modeling the objective function

– Inventory management example

• References

5

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

6
Lee (1959), Akers (1978)

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

7Bryant (1986), etc.

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

– Easily generalized to multivalued decision diagrams

8

Reduced Decision Diagrams

• There is a unique reduced DD for any given constraint.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution,

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

01

Superimpose identical

subtrees…

1 1 1 0

x0

x2

x1

x2

x3

1 0

x3

1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 01 0

x0

x2

x1

x2

x3

1 0

x3

1 01 0

Superimpose identical

subtrees…

x0

x2

x1

x2

x3

1 0

x3

1 01 0

x0

x2

x1

x2

x3

1 0 01

x0

x2

x1

x2

x3

1 0 01

Superimpose identical

leaf nodes…

x0

x2

x1

x2

x3

1 0

x0

x2

x1

x2

x3

1 0 01

as generated by software

x0

x2

x1

x2

x3

1 0

Reduced Decision Diagrams

• Reduced DD for a knapsack constraint can be

surprisingly small…

The 0-1 inequality

has 117,520 minimal feasible solutions (or minimal covers)

But its reduced BDD has only 152 nodes…

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

300 300 285 285 265 265 230 230 190 200

400 200 400 200 400 200 400 200 400 2700

x x x x x x x x x x

x x x x x x x x x

         

        

Optimization with Exact Decision

Diagrams

22

• Decision diagrams can

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Find longest/shortest

path

Hadžić and JH (2006, 2007)

1

2 3

5 4

Stable Set Problem

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

Exact DD for

stable set

problem

1

2 3

5 4

x1 = 1x1 = 0

x4

x5

x1

x2

x3

1

2 3

5 4

x1 = 1x1 = 0

Paths from top

to bottom

correspond to

the 9 feasible

solutions x4

x5

x1

x2

x3

1

2 3

5 4

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0 0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

Optimal solution

is longest path

1

2 3

5 4

For objective

function,

associate

weights with

arcs

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0 0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0 0
Optimal solution

is longest path

1

2 3

5 4

20

40 50

30 10

Exact DD Compilation

• Build an exact DD by associating a state with each

node.

• Merge nodes with identical states.

30

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes

that correspond

to the same

state

{4}

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes

that correspond

to the same

state

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}




To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







Resulting DD is

not necessarily

reduced

(it is in this

case).

A General-Purpose Solver

• The decision diagram tends to grow exponentially.

• To build a practical solver:

– Use limited-width relaxed decision diagrams to bound the

objective value.

– Use limited-width restricted decision diagrams for primal

heuristic

– Use a recursive dynamic programming model.

– Use novel branching scheme within relaxed decision

diagrams.

Relaxed Decision Diagrams

• A relaxed DD represents a superset of feasible set.

– Shortest (longest) path length is a bound on optimal value.

– Size of DD is controlled.

– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007)

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

To build relaxed

DD, merge

some additional

nodes as we go

along

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45}  {4}
To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 11

solutions,

including 9

feasible

solutions

Width = 2

x1

x2

x3

x4

x5

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents

11 solutions,

including

9 feasible

solutions

Width = 2

Longest path

(90) gives

bound on

optimal value

(70)

20

40

0

0

050

10

0

0

0

1

2 3

5 4

20

40 50

30 10

50

30

0

0

Relaxed Decision Diagrams

• Original application: enhanced propagation in

constraint programming

– In multiple alldiff problem (graph coloring), reduced

1 million node search trees to 1 node.

49

Andersen, Hadžić, JH, Tiedemann (2007)

Relaxed Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

50Bergman, Ciré, van Hoeve, JH (2013)

Relaxed Decision Diagrams

– DDs vs. CPLEX

bound at root node

for max stable set

problem

– Using CPLEX

default cut

generation

– DD max width

of 1000.

– DDs require

about 5% the

time of CPLEX

51

Bergman, Ciré,

van Hoeve, JH (2013)

CPLEX bound

is better

DD bound

is better

Restricted Decision Diagrams

● A restricted DD represents a subset of the feasible set.

● Restricted DDs provide a basis for a primal heuristic.

– Shortest (longest) paths in the restricted DD provide good

feasible solutions.

– Generate a limited-width restricted DD by deleting nodes that

appear unpromising.

Bergman, Ciré, van Hoeve, Yunes (2014)

Set covering problem

1 2 3

1 4 5

2 4 6

1

1

1

x x x

x x x

x x x

  

  

  

52 feasible

solutions.

Minimum cover of 2,

e.g. x1, x2

Sets

1 2 3 4 5 6

A ● ● ●

B ● ● ●

C ● ● ●

Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have

length 2.

All are minimum covers.

Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have

length 2.

All are minimum covers.

In this case, restricted DD

delivers optimal solutions.

Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

IP

DD

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

IP

DD

IP

DD

Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t

solve the problem by dynamic programming.

Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t

solve the problem by dynamic programming.

● State variables are the same as in relaxed DD.

– Must also specify state merger rule.

– Much as one must linearize IP constraints, or perhaps add valid

inequalities.

Dynamic Programming Model

● Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

– State merger = union

● Max cut problem on a graph.

– State = marginal benefit of placing each remaining vertex on left

side of cut..

– State merger =

• Componentwise min if all components  0 or all  0; 0 otherwise

• Adjust incoming arc weights

● Max 2-SAT.

– Similar to max cut.

Branching Algorithm

• Solve optimization problem using a novel

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

61

Bergman, Ciré, van Hoeve, JH (2016)

• Solve optimization problem using a novel

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

– Advantage: a manageable number states may be

reachable in first few layers.

– …even if the state space is exponential.

– Alternative way of dealing with curse of dimensionality.

62

Branching Algorithm

Bergman, Ciré, van Hoeve, JH (2016)

1

2

3

4

5

6

Diagram is exact

down to here

Branching in a relaxed

decision diagram

63

Branching Algorithm

Branch on nodes

in this layer

Branching in a relaxed

decision diagram

64

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

65

1

2

3

4

5

6

Branching Algorithm

Second branch

Branching in a relaxed

decision diagram

66

1

2

3

4

5

6

Branching Algorithm

Third branch

Continue recursively

Branching in a relaxed

decision diagram

67

1

2

3

4

5

6

Branching Algorithm

• This is very different from state space relaxation.

– Problem is not solved by dynamic programming.

– Relaxation created by merging nodes of DD

– …rather than mapping into smaller state space.

– Relaxation is constructed dynamically

– …as relaxed DD is built.

– Relaxation uses same state variables as exact

formulation

– …which allows branching in relaxed DD

68

State Space Relaxation?

Christofides, Mingozzi, Toth (1981)

Computational performance

• Computational results…

– Applied to stable set, max cut, max 2-SAT.

– Superior to commercial MIP solver (CPLEX) on most

instances.

– Obtained best known solution on some max cut instances.

– Slightly slower than MIP on stable set with precomputed

clique cover model, but…

69

Bergman, Ciré, van Hoeve, JH (2016)

Max cut

on a graph

Avg. solution time

vs

graph density

30 vertices

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 s

o
lu

ti
o

n
 t
im

e
 (

s
e

c
)

Density of graph

CPLEX

MDDs

Computational performance

Max 2-SAT

Performance

profile

30 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

Max 2-SAT

Performance

profile

40 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

• Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Much better than mixed integer programming.

73

Computational performance

Computational performance

● In all computational comparisons so far…

– Problem is easily formulated for IP.

● DD-based optimization is most competitive when…

– Problem has a recursive dynamic programming model…

– and no convenient IP model.

● Such as…

– Sequencing and scheduling problems (next talk)

– DP problems with exponential state space

• New approach to “curse of dimensionality”

– Problems with nonconvex, nonseparable objective function…

• Weighted DD can represent any objective function

– Separable functions are the easiest, but any

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

75

Modeling the Objective Function

• Weighted DD can represent any objective function

– Separable functions are the easiest, but any

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

• Multiple encodings

– A given objective function can be encoded by multiple

assignments of costs to arcs.

– There is a unique canonical arc cost assignment.

– Which can reduce size of exact DD.

– Design state variables accordingly

76

Modeling the Objective Function

Modeling the Objective Function

Set covering with

separable cost

function

Easy. Just label arcs

with weights.

xi = 1 when we select set i

Weight 3 5 4 6

Nonseparable cost

function

Now what?

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs. 0

6

0 1

7

0

5

0 2 0 2

6 7

Modeling the Objective Function

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6
0 0 1

6 5

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

Nonseparable cost function

Now the tree can

be reduced.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6
0 0 1

6 5

Modeling the Objective Function

Nonseparable cost function

Now the tree can

be reduced.

Modeling the Objective Function

Nonseparable cost function

DD is larger than

reduced unweighted DD,

but still compact.

Modeling the Objective Function

Theorem. For a given variable ordering, a given

objective function is represented by a unique

weighted decision diagram with canonical costs.

Modeling the Objective Function

Inventory Management Example

• In each period i, we have:

– Demand di

– Unit production cost ci

– Warehouse space m

– Unit holding cost hi

• In each period, we decide:

– Production level xi

– Stock level si

• Objective:

– Meet demand each period while minimizing production and

holding costs.

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

Arcs leaving each node are

very similar.

• Transition to the same

states.

• Have the same costs,

up to an offset.

Reducing the Transition Graph

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

0 21

0 21

0 21

0

0

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Inventory Problem

1 2x  1 3x 
1 4x 

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

2

3

4 1
2 3 0

1

2

0 21

0 21

0 21

0

0

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

0

1

2 0
1 2 0

1

2

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   

0

1

2 0
1 2 0

1

2

New recursion:

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

()i i i ic m s h s 

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

()i i i ic m s h s 

5

10

3

6

0

0 21

0 21

0 21

0

0

4

2
0

6

3

0

10

5

6

0

10

0

4

0

0

3

0
5

0

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

()i i i ic m s h s 

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost

()i i i ic m s h s 

1 1 1 1 1 1() () ()i i i i i i i i ic s s h c d s m c m s
     

     

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Inventory Problem

These are canonical costs with

offset

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

 



1

1
min ()

i
i i

s
c s

4

 1 1 1min () ()
i

i i i i i i i i i
x

g h x c x m d c m x g
  



        

Inventory Problem

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

New recursion:

4

These are canonical costs with

offset  



1

1
min ()

i
i i

s
c s

 1 1 1min () ()
i

i i i i i i i i i
x

g h x c x m d c m x g
  



        

Inventory Problem

Now there is only one state per period.

New recursion:

12

0

13 14

10 9 8

6 7 8

4

0

0

12

20

26

30

• Broader applicability

– Stochastic dynamic programming

– Continuous global optimization

• Combination with other techniques

– Lagrangean relaxation.

– Column generation

– Logic-based Benders decomposition

– Solve separation problem

101

Current Research

References

2006

• T. Hadzic and J. N. Hooker. Discrete global optimization with binary decision diagrams. In

Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming,

and Computational Algebraic Geometry (GICOLAG), Vienna, 2006.

2007

• Tarik Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1

programming. In Proceedings of CPAIOR. LNCS 4510, pp. 84-98. Springer, 2007.

• Tarik Hadzic and J. N. Hooker. Postoptimality analysis for integer programming using binary

decision diagrams. December 2007, revised April 2008 (not submitted).

• M. Behle. Binary Decision Diagrams and Integer Programming. PhD thesis, Max Planck

Institute for Computer Science, 2007.

• H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store based on

multivalued decision diagrams. In Proceedings of CP. LNCS 4741, pp. 118-132. Springer,

2007.

2008

• T. Hadzic, J. N. Hooker, B. O'Sullivan, and P. Tiedemann. Approximate compilation of

constraints into multivalued decision diagrams. In Proceedings of CP. LNCS 5202, pp. 448-

462. Springer, 2008.

• T. Hadzic, J. N. Hooker, and P. Tiedemann. Propagating separable equalities in an MDD

store. In Proceedings of CPAIOR. LNCS 5015, pp. 318-322. Springer, 2008.

http://web.tepper.cmu.edu/jnh/bddvienna.pdf
http://web.tepper.cmu.edu/jnh/bdd-compile.pdf
http://web.tepper.cmu.edu/jnh/bdd.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2010/3200/pdf/Dissertation_2208_Behl_Mark_2007.pdf
http://web.tepper.cmu.edu/jnh/constraint-store.pdf
http://web.tepper.cmu.edu/jnh/nodesplitting.pdf
http://web.tepper.cmu.edu/jnh/equality.pdf

References

2010

• S. Hoda. Essays on Equilibrium Computation, MDD-based Constraint Programming and

Scheduling. PhD thesis, Carnegie Mellon University, 2010.

• S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based

Constraint Programming. In Proceedings of CP. LNCS 6308, pp. 266-280. Springer, 2010.

• T. Hadzic, E. O’Mahony, B. O’Sullivan, and M. Sellmann. Enhanced inference for the

market split problem. In Proceedings, International Conference on Tools for AI (ICTAI),

pages 716–723. IEEE, 2009.

2011

• D. Bergman, W.-J. van Hoeve, and J. N. Hooker. Manipulating MDD Relaxations for

Combinatorial Optimization. In Proceedings of CPAIOR. LNCS 6697, pp. 20-35. Springer,

2011.

2012

• A. A. Cire and W.-J. van Hoeve. MDD Propagation for Disjunctive Scheduling. In

Proceedings of ICAPS, pp. 11-19. AAAI Press, 2012.

• D. Bergman, A.A. Cire, W.-J. van Hoeve, and J.N. Hooker. Variable Ordering for the

Application of BDDs to the Maximum Independent Set Problem. In Proceedings of CPAIOR.

LNCS 7298, pp. 34-49. Springer, 2012.

http://tepper.cmu.edu/~/media/files/tepper/extranet/academic programs/phd/dissertations/hoda dissertation.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/mdd_cp2010.pdf
https://www.researchgate.net/publication/221417192_Enhanced_Inference_for_the_Market_Split_Problem
http://www.andrew.cmu.edu/user/vanhoeve/papers/relaxation_mdd.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4720
http://www.andrew.cmu.edu/user/vanhoeve/papers/VariableOrderingIS.pdf

References

2013

• A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing Problems.

Operations Research 61(6): 1411-1428, 2013.

• D. Bergman. New Techniques for Discrete Optimization. PhD thesis, Carnegie Mellon

University, 2013.

• J. N. Hooker. Decision Diagrams and Dynamic Programming. In Proceedings of CPAIOR.

LNCS 7874, pp. 94-110. Springer, 2013.

• B. Kell and W.-J. van Hoeve. An MDD Approach to Multidimensional Bin Packing. In

Proceedings of CPAIOR, LNCS 7874, pp. 128-143. Springer, 2013.

2014

• D. R. Morrison, E. C. Sewell, S. H. Jacobson , Characteristics of the maximal independent

set ZDD, Journal of Combinatorial Optimization 28 (1) 121-139, 2014

• D. R. Morrison, E. C. Sewell, S. H. Jacobson, Solving the Pricing Problem in a Generic

Branch-and-Price Algorithm using Zero-Suppressed Binary Decision Diagrams,

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Optimization Bounds from

Binary Decision Diagrams. INFORMS Journal on Computing 26(2): 253-258, 2014.

• A. A. Cire. Decision Diagrams for Optimization. PhD thesis, Carnegie Mellon University,

2014.

• D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD Propagation for Sequence Constraints.

JAIR, Volume 50, pages 697-722, 2014.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. BDD-Based Heuristics for Binary

Optimization. Journal of Heuristics 20(2): 211-234, 2014.

http://dx.doi.org/10.1287/opre.2013.1221
http://tepper.cmu.edu/~/media/files/tepper/extranet/academic programs/phd/dissertations/bergman dissertation.pdf
http://web.tepper.cmu.edu/jnh/DDandDP2.pdf
http://link.springer.com/chapter/10.1007/978-3-642-38171-3_9
http://link.springer.com/article/10.1007/s10878-014-9722-4
https://www.researchgate.net/profile/Sheldon_Jacobson/publication/259874859_Solving_the_Pricing_Problem_in_a_Generic_Branch-and-Price_Algorithm_using_Zero-Suppressed_Binary_Decision_Diagrams/links/54d4d4ac0cf2970e4e63b8b4.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/Bounds_from_BDDs.pdf
http://tepper.cmu.edu/~/media/files/tepper/extranet/academic programs/phd/dissertations/cire dissertation.pdf
http://www.jair.org/papers/paper4199.html
http://www.andrew.cmu.edu/user/vanhoeve/papers/bdd-restriction_final_draft.pdf
http://link.springer.com/article/10.1007/s10732-014-9238-1

References

2014

• D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat, and W.-J. van Hoeve.

Parallel Combinatorial Optimization with Decision Diagrams. In Proceedings of CPAIOR,

LNCS 8451, pp. 351-367. Springer, 2014.

• A. A. Cire and J. N. Hooker. The Separation Problem for Binary Decision Diagrams. In

Proceedings of the International Symposium on Artificial Intelligence and Mathematics

(ISAIM), 2014.]

2015

• D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian Bounds from Decision Diagrams.

Constraints 20(3): 346-361, 2015.

• B. Kell, A. Sabharwal, and W.-J. van Hoeve. BDD-Guided Clause Generation. In

Proceedings of CPAIOR, 2015.

2016

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, Decision Diagrams for

Optimization, Springer, to appear.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Discrete Optimization with

Decision Diagrams. INFORMS Journal on Computing 28: 47-66, 2016.

http://www.andrew.cmu.edu/user/vanhoeve/papers/DDX10.pdf
http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Boolean_Cire_Hooker.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/MDDlagrangian.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/cpaior15-bddclausegen.pdf
http://cpaior2015.uconn.edu/
http://www.andrew.cmu.edu/user/vanhoeve/papers/discrete_opt_with_DDs.pdf

