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Today’s Session

• Overview of decision diagrams for optimization

– JH

• Decisions diagrams for sequencing and 

scheduling

– Andre Cire

• Decision diagram decompositions

– David Bergman
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Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– Constraint programming

– Discrete optimization
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Decision Diagrams

• Advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– New approach to solving dynamic programming models.

– Very effective parallel computation.

– Ideal for postoptimality anaylsis

• Disadvantage:

– Developed only for discrete, deterministic optimization.

– …so far.
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Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• A general-purpose solver that scales up

– Relaxed decision diagrams

– Restricted decision diagrams

– Dynamic programming model

– A new branching algorithm

– Computational performance

• Modeling the objective function

– Inventory management example

• References
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Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

6
Lee (1959), Akers (1978)



Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

7Bryant (1986), etc.



Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

– Easily generalized to multivalued decision diagrams
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Reduced Decision Diagrams

• There is a unique reduced DD for any given constraint.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with 

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)
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Reduced Decision Diagrams

• Reduced DD for a knapsack constraint can be 

surprisingly small…

The 0-1 inequality

has 117,520 minimal feasible solutions (or minimal covers)

But its reduced BDD has only 152 nodes…

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

300 300 285 285 265 265 230 230 190 200

400 200 400 200 400 200 400 200 400 2700

x x x x x x x x x x

x x x x x x x x x

         

        





Optimization with Exact Decision 

Diagrams

22

• Decision diagrams can 

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Find longest/shortest 

path

Hadžić and JH (2006, 2007)
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Exact DD Compilation

• Build an exact DD by associating a state with each 

node.

• Merge nodes with identical states.

30
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A General-Purpose Solver

• The decision diagram tends to grow exponentially.

• To build a practical solver:

– Use limited-width relaxed decision diagrams to bound the 

objective value.

– Use limited-width restricted decision diagrams for primal 

heuristic

– Use a recursive dynamic programming model.

– Use novel branching scheme within relaxed decision 

diagrams.



Relaxed Decision Diagrams

• A relaxed DD represents a superset of feasible set.

– Shortest (longest) path length is a bound on optimal value.

– Size of DD is controlled.

– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007) 
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Relaxed Decision Diagrams

• Original application:  enhanced propagation in 

constraint programming

– In multiple alldiff problem (graph coloring), reduced 

1 million node search trees to 1 node.

49

Andersen, Hadžić, JH, Tiedemann (2007) 



Relaxed Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

50Bergman, Ciré, van Hoeve, JH (2013) 



Relaxed Decision Diagrams

– DDs vs. CPLEX

bound at root node

for max stable set 

problem

– Using CPLEX

default cut 

generation

– DD max width

of 1000.

– DDs require

about 5% the

time of CPLEX

51

Bergman, Ciré, 

van Hoeve, JH (2013) 

CPLEX bound 

is better

DD bound

is better



Restricted Decision Diagrams

● A restricted DD represents a subset of the feasible set.

● Restricted DDs provide a basis for a primal heuristic.

– Shortest (longest) paths in the restricted DD provide good 

feasible solutions.

– Generate a limited-width restricted DD by deleting nodes that 

appear unpromising.

Bergman, Ciré, van Hoeve, Yunes (2014) 



Set covering problem

1 2 3

1 4 5

2 4 6

1

1

1

x x x

x x x

x x x

  

  

  

52 feasible 

solutions.

Minimum cover of 2,

e.g. x1, x2

Sets

1 2 3 4 5 6

A ● ● ●

B ● ● ●

C ● ● ●



Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have 

length 2.

All are minimum covers.



Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have 

length 2.

All are minimum covers.

In this case, restricted DD 

delivers optimal solutions.



Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

IP

DD



Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

IP

DD

IP

DD



Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and 

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t 

solve the problem by dynamic programming.



Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and 

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t 

solve the problem by dynamic programming.

● State variables are the same as in relaxed DD.

– Must also specify state merger rule.

– Much as one must linearize IP constraints, or perhaps add valid 

inequalities.



Dynamic Programming Model

● Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

– State merger = union

● Max cut problem on a graph.

– State = marginal benefit of placing each remaining vertex on left 

side of cut..

– State merger =

• Componentwise min if all components  0 or all  0;  0 otherwise

• Adjust incoming arc weights

● Max 2-SAT.

– Similar to max cut.



Branching Algorithm

• Solve optimization problem using a novel 

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

61

Bergman, Ciré, van Hoeve, JH (2016) 



• Solve optimization problem using a novel 

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

– Advantage:  a manageable number states may be 

reachable in first few layers.

– …even if the state space is exponential.

– Alternative way of dealing with curse of dimensionality.

62

Branching Algorithm

Bergman, Ciré, van Hoeve, JH (2016) 
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Branch on nodes 

in this layer

Branching in a relaxed

decision diagram
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First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram
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Second branch

Branching in a relaxed

decision diagram
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Third branch

Continue recursively

Branching in a relaxed

decision diagram
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• This is very different from state space relaxation.

– Problem is not solved by dynamic programming.

– Relaxation created by merging nodes of DD

– …rather than mapping into smaller state space.

– Relaxation is constructed dynamically

– …as relaxed DD is built.

– Relaxation uses same state variables as exact 

formulation

– …which allows branching in relaxed DD

68

State Space Relaxation?

Christofides, Mingozzi, Toth (1981) 



Computational performance

• Computational results…

– Applied to stable set, max cut, max 2-SAT.

– Superior to commercial MIP solver (CPLEX) on most 

instances.

– Obtained best known solution on some max cut instances.

– Slightly slower than MIP on stable set with precomputed 

clique cover model, but…

69

Bergman, Ciré, van Hoeve, JH (2016) 
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• Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Much better than mixed integer programming.

73

Computational performance



Computational performance

● In all computational comparisons so far…

– Problem is easily formulated for IP.

● DD-based optimization is most competitive when…

– Problem has a recursive dynamic programming model…

– and no convenient IP model.

● Such as…

– Sequencing and scheduling problems (next talk)

– DP problems with exponential state space

• New approach to “curse of dimensionality”

– Problems with nonconvex, nonseparable objective function…



• Weighted DD can represent any objective function

– Separable functions are the easiest, but any 

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

75

Modeling the Objective Function



• Weighted DD can represent any objective function

– Separable functions are the easiest, but any 

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

• Multiple encodings

– A given objective function can be encoded by multiple 

assignments of costs to arcs.

– There is a unique canonical arc cost assignment.

– Which can reduce size of exact DD.

– Design state variables accordingly

76
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Modeling the Objective Function

Set covering with

separable cost 

function

Easy.  Just label arcs 

with weights.

xi = 1 when we select set i

Weight     3   5   4   6



Nonseparable cost 

function

Now what?

Modeling the Objective Function



Nonseparable cost function

Put costs on leaves

of branching tree.

Modeling the Objective Function



Nonseparable cost function
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But now we can’t

reduce the tree

to an efficient

decision diagram.
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Nonseparable cost function
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Nonseparable cost function

Now the tree can

be reduced.
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Nonseparable cost function

Now the tree can

be reduced.

Modeling the Objective Function



Nonseparable cost function

DD is larger than 

reduced unweighted DD,

but still compact.

Modeling the Objective Function



Theorem. For a given variable ordering, a given 

objective function is represented by a unique 

weighted decision diagram with canonical costs.

Modeling the Objective Function



Inventory Management Example

• In each period i, we have:

– Demand di

– Unit production cost  ci

– Warehouse space m

– Unit holding cost hi

• In each period, we decide:

– Production level xi

– Stock level si

• Objective:

– Meet demand each period while minimizing production and 

holding costs.
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Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   
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New recursion:
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.
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



     

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost
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Inventory Problem

These are canonical costs with 

offset
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New recursion:

4

These are canonical costs with 

offset  

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Inventory Problem

Now there is only one state per period.

New recursion:
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• Broader applicability

– Stochastic dynamic programming

– Continuous global optimization

• Combination with other techniques

– Lagrangean relaxation.

– Column generation

– Logic-based Benders decomposition

– Solve separation problem
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