
Decision Diagrams:

Tutorial

John Hooker
Carnegie Mellon University

CP Summer School

Cork, Ireland, June 2016

Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on problem solving

– Constraint programming

– Discrete optimization

2

• CP solver

– Build on existing solver.

– Use relaxed DDs for enhanced propagation.

– Plug in DDs as additional global constraints.

• Discrete optimization solver

– Obtain bounds from relaxed DDs.

– Use restricted DDs for primal heuristic.

– Use dynamic programming formulation of problem.

– Branch inside relaxed DD.

Elements of a DD-based Solver

Decision Diagrams

• Advantages for constraint programming:

– Stronger propagation, filtering.

– Easily added to existing solver.

• Advantages for optimization:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– New approach to solving dynamic programming models.

– Very effective parallel computation.

– Ideal for postoptimality anaylsis

• Disadvantage:

– Developed only for discrete, deterministic optimization.

– …so far.
4

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Relaxed decision diagrams

– Relaxation by node merger

– Relaxation by node splitting

• Propagation in relaxed diagrams

• Restricted decision diagrams

• Dynamic programming model

• Branching in a relaxed DD

• Modeling the objective function

– Inventory management example

• Nonserial decision diagrams

• References 5

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

6
Lee (1959), Akers (1978)

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

7Bryant (1986), etc.

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Historically used for circuit design & verification

– Easily generalized to multivalued decision diagrams

8

Reduced Decision Diagrams

• There is a unique reduced DD representing any given

Boolean function.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution,

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

01

Superimpose identical

subtrees…

1 1 1 0

x0

x2

x1

x2

x3

1 0

x3

1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 01 0

x0

x2

x1

x2

x3

1 0

x3

1 01 0

Superimpose identical

subtrees…

x0

x2

x1

x2

x3

1 0

x3

1 01 0

x0

x2

x1

x2

x3

1 0 01

x0

x2

x1

x2

x3

1 0 01

Superimpose identical

leaf nodes…

x0

x2

x1

x2

x3

1 0

x0

x2

x1

x2

x3

1 0 01

as generated by software

x0

x2

x1

x2

x3

1 0

Reduced Decision Diagrams

• Reduced DD for a knapsack constraint can be

surprisingly small…

The 0-1 inequality

has 117,520 maximal feasible solutions (or minimal covers)

But its reduced BDD has only 152 nodes…

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

300 300 285 285 265 265 230 230 190 200

400 200 400 200 400 200 400 200 400 2700

x x x x x x x x x x

x x x x x x x x x

         

        

Optimization with Exact Decision

Diagrams

22

• Decision diagrams can

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Find longest/shortest

path

Hadžić and JH (2006, 2007)

1

2 3

5 4

Stable Set Problem

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

Exact DD for

stable set

problem

1

2 3

5 4

x1 = 1x1 = 0

x4

x5

x1

x2

x3

1

2 3

5 4

x1 = 1x1 = 0

Paths from top

to bottom

correspond to

the 9 feasible

solutions x4

x5

x1

x2

x3

1

2 3

5 4

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

Optimal solution

is longest path

1

2 3

5 4

For objective

function,

associate

weights with

arcs

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

Optimal solution

is longest path

1

2 3

5 4

20

40 50

30 10

Exact DD Compilation

• Build an exact DD by associating a state with each

node.

• Merge nodes with identical states.

30

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes

that correspond

to the same

state

{4}

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes

that correspond

to the same

state

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}




To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







Resulting DD is

not necessarily

reduced

(it is in this

case).

Relaxed Decision Diagrams

• A relaxed DD represents a superset of feasible set.

– Shortest (longest) path length is a bound on optimal value.

– Size of DD is controlled.

– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007)

Relaxation by Node Merger

• One way to relax a DD is to merge nodes during

top-down compilation.

– Make sure state of merged node excludes no feasible solutions.

Hoda, van Hoeve, JH (2010)

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

To build relaxed

DD, merge

some additional

nodes as we go

along

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45}  {4}
To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 11

solutions,

including 9

feasible

solutions

Width = 2

x1

x2

x3

x4

x5

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents

11 solutions,

including

9 feasible

solutions

Width = 2

Longest path

(90) gives

bound on

optimal value

(70)

20

40

0

0

050

10

0

0

0

1

2 3

5 4

20

40 50

30 10

50

30

0

0

Relaxation by Node Splitting

• Alternate relaxation method: node refinement

during top-down compilation

– Start with DD of width 1 representing Cartesian product of

variable domains.

– Split nodes so as to remove some infeasible paths.

49

Andersen, Hadžić, JH, Tiedemann (2007)

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Start with DD of

width 1

32 solutions,

9 of which are

feasible

Aim for

width = 2

{345}

{2345}

{12345}

{34}{2345}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Start with DD of

width 1

Examine states

that result from

arcs leaving top

node.

Aim for

width = 2

{345}

{2345}

{12345}

{34}{2345}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Can split states

if they are

different

(they are).

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Can split states

if they are

different

(they are).

{34}

{34}
{4}

{2345}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Examine states

in next layer.

{34}

{34}
{4}

{2345}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Examine states

in next layer.

All distinct, split

arbitrarily.

{34}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Examine states

in next layer.

All distinct, split

arbitrarily.

{34}

{34}



{4}{45}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Repeat.

Two states are

identical and are

not split.

{34}

{34}

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Repeat.

Two states are

identical and are

not split.

{34}

{34}



{5}{5}





x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Repeat.

Two states are

identical and are

not split.

{34}

{34}



x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

Repeat.

Two states are

identical and are

not split.

{34}

{34}





x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{45}

{5}



Aim for

width = 2

{345}

{2345}

{12345}

Start with DD of

width 1

12 solutions,

9 of which are

feasible

{34}

{34}





Relaxed Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

62Bergman, Ciré, van Hoeve, JH (2013)

Relaxed Decision Diagrams

– DDs vs. CPLEX

bound at root node

for max stable set

problem

– Using CPLEX

default cut

generation

– DD max width

of 1000.

– DDs require

about 5% the

time of CPLEX

63

Bergman, Ciré,

van Hoeve, JH (2013)

CPLEX bound

is better

DD bound

is better

Propagation in Relaxed DDs

• Propagate through relaxed DD rather than

domain store.

– DD conveys more information.

• This was first application of relaxed DDs.

– Applied to multiple alldiffs (graph coloring).

64

Andersen, Hadžić, JH, Tiedemann (2007)

Propagation in Relaxed DDs

• Example 1: multiple alldiffs

– Propagate alldiff(x1, …, x4)

– Through a given DD relaxation.

• Example 2: single-machine scheduling with time

windows.

– Propagate alldiff + time windows.

65

{1}

{3}

{25}
{12345}

{14}
{1}

{3}

{5}
{3}

{12}

{4}{12}
x1

x2

x3

x4

x5

Suppose this is a

relaxed DD for the

problem.

Indicate

multiple arcs with

arc domains

Propagate
alldiff(x1,…,x4)

x1

x2

x3
{2}

{2}

{1}

{3}

{25}
{12345}

{14}
{1}

{3}

{5}
{3}

{12}

{4}{12}
x1

x2

x3

x4

x5

alldiff provides no

filtering for domain

store x1

x2

x3

{1234}

{12345}

{1234}

{12345}

 

{25}
{12345}

{14}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

For purposes of

filtering alldiff,

introduce state

(A,S)

A = {jobs on

all paths to

node}

S = {jobs on

some path to

node}

x1

x2

x3

{4}{3}

 

{4}{3}{12}

{25}
{12345}

{14}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

filtering alldiff,

introduce state

(A,S)

A = {jobs on

all paths to

node}

S = {jobs on

some path to

node}

{45}{13}{3}

{4}{3}





 

{4}{3}{12}

{25}
{12345}

{14}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

filtering alldiff,

introduce state

(A,S)

A = {jobs on

all paths to

node}

S = {jobs on

some path to

node}

Can remove 4

from outgoing

arc domain

{45}{13}{3}

{4}{3}





 

{4}{3}{12}

{25}
{12345}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

filtering alldiff,

introduce state

(A,S)

A = {jobs on

all paths to

node}

S = {jobs on

some path to

node}

Can remove 4

from outgoing

arc domain

{45}{13}{3}

{4}{3}





 

{45}{13}{123}{12}

{4}{3}{12}

{25}
{12345}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

filtering alldiff,

introduce state

(A,S)

A = {jobs on

all paths to

node}

S = {jobs on

some path to

node}

{45}

{145}{3}

{13}{3}

{4}{3}





 

{45}{13}{123}{12}

{4}{3}{12}

{25}

{12345}

{12345}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

Can remove 3

from outgoing

arc domain

x1

x2

x3

{45}

{145}{3}

{13}{3}

{4}{3}





 

{45}{13}{123}{12}

{4}{3}{12}

{25}

{12345}

{1245}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

Can remove 3

from outgoing

arc domain

x1

x2

x3

{45}

{145}
{3}

{13}{3}

{4}{3}





 

{45}{13}{123}{12}

{4}{3}{12}

{25}

{12345}

{1245}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

Can remove 5

from outgoing

arc domain

x1

x2

x3

{45}

{145}
{3}

{13}{3}

{4}{3}





 

{45}{13}{123}{12}

{4}{3}{12}

{2}

{12345}

{1245}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

Can remove 5

from outgoing

arc domain

x1

x2

x3

{45}

{145}{3}

{13}{3}

{4}{3}





 

{145}{123}

{45}{13}{123}{12}

{4}{3}{12}

{2}

{12345}

{1245}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

We have a Hall set.

Can remove 1,2

from outgoing arc

domain

x1

x2

x3

{45}

{145}{3}

{13}{3}

{4}{3}





 

{145}{123}

{45}{13}{123}{12}

{4}{3}{12}

{2}

{12345}

{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

We have a Hall set.

Can remove 1,2

from outgoing arc

domain

x1

x2

x3

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

Now some domains

can be reduced,

resulting in less search x1

x2

x3

{1234}

{12345}

{1234}

{12345}

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

Now some domains

can be reduced,

resulting in less search x1

x2

x3

{1234}

{1235}

{123}

{245}

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

{1234}

{1235}

{123}

{245}

Can follow this with a

bottom-up pass.

Propagation in Relaxed DDs

• Computational results

– Reduced search trees from 1+ million nodes to 1 node.

– Reduced computation time by one order of magnitude.

82

Andersen, Hadžić, JH, Tiedemann (2007)

Propagation in Relaxed DDs

• Example 2: single-machine scheduling with time

windows.

– Schedule jobs sequentially, no overlap.

– Each has given processing time and deadline.

– Other constraints.

– xi = i th job in sequence

• Use same relaxed DD as before.

– Suppose we have already propagated alldiff(x1, …, xn).

– Now propagate time windows.

83

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

{1234}

{1235}

{123}

{245}

Current relaxed DD

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

propagating deadlines,

let state = min latest

finish time

0

job Win-

dow

Proc

time

1 [0,4] 2

2 [3,7] 3

3 [1,8] 3

4 [5,7] 1

5 [2,10] 3

etc.

642

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

propagating deadlines,

let state = min latest

finish time

0

job Win-

dow

Proc

time

1 [0,4] 2

2 [3,7] 3

3 [1,8] 3

4 [5,7] 1

5 [2,10] 3

etc.

{45}

5 964

642

{2}
{45}

{1}{2}
{1}

{3}

{5}{1}
{3}

{12}

{4}
{3}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

propagating deadlines,

let state = min latest

finish time

0

job Win-

dow

Proc

time

1 [0,4] 2

2 [3,7] 3

3 [1,8] 3

4 [5,7] 1

5 [2,10] 3

etc.

Can be deleted,

because jobs must

be late

{45}

54

2

{45}

{1}
{3}

{3}
{12}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

propagating deadlines,

let state = min latest

finish time

0

job Win-

dow

Proc

time

1 [0,4] 2

2 [3,7] 3

3 [1,8] 3

4 [5,7] 1

5 [2,10] 3

etc.

7

{45}

54

2

{45}

{1}
{3}

{3}
{12}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

propagating deadlines,

let state = min latest

finish time

0

job Win-

dow

Proc

time

1 [0,4] 2

2 [3,7] 3

3 [1,8] 3

4 [5,7] 1

5 [2,10] 3

etc.

Job 4 can be

deleted

7

{5}

54

2

{1}
{3}

{3}
{12}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

For purposes of

propagating deadlines,

let state = min latest

finish time

0

job Win-

dow

Proc

time

1 [0,4] 2

2 [3,7] 3

3 [1,8] 3

4 [5,7] 1

5 [2,10] 3

etc.

7

{5}

54

2

{1}
{3}

{3}
{12}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

Domains can be

reduced further 0

{1234}

{1235}

{123}

{245}

7

{5}

54

2

{1}
{3}

{3}
{12}

{12}
x1

x2

x3

x4

x5

x1

x2

x3

Domains can be

reduced further 0

{12}

{123}

{13}

{5}

CP Solver

• Enhance existing solver with DD-based propagation.

– DD serves as enhanced domain store.

– Can use one or more DDs.

• Different subsets of variables

• Different variable orderings

• Propagate each constraint through suitable DD(s).

– Plug in each DD as a new global constraint.

Ciré, van Hoeve (2013)

CP Solver

• Computational results.

– Traveling salesman problem with time windows.

• That is, single-machine scheduling with time windows

and sequence-dependent setup times.

– Dumas/Anscheuer instances.

Ciré, van Hoeve (2013)

CPO =

CP Optimizer

Pure CP better

CP + DD

better

Computation time scatter plot, lex search

CPO =

CP Optimizer

Pure CP better

CP + DD

better

Computation time scatter plot, depth-first search

CPO =

CP Optimizer

Performance profile, depth-first search

Restricted Decision Diagrams

• A restricted DD represents a subset of the feasible set.

• Restricted DDs provide a basis for a primal heuristic.

– Shortest (longest) paths in the restricted DD provide good

feasible solutions.

– Generate a limited-width restricted DD by deleting nodes that

appear unpromising.

Bergman, Ciré, van Hoeve, Yunes (2014)

Set covering problem

1 2 3

1 4 5

2 4 6

1

1

1

x x x

x x x

x x x

  

  

  

52 feasible

solutions.

Minimum cover of 2,

e.g. x1, x2

Sets

1 2 3 4 5 6

A ● ● ●

B ● ● ●

C ● ● ●

Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have

length 2.

All are minimum covers.

Restricted DD of width 4

41 paths (< 52 feasible solutions)

Several shortest paths have

length 2.

All are minimum covers.

In this case, restricted DD

delivers optimal solutions.

Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

IP

DD

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

IP

DD

IP

DD

Dynamic Programming Model

● Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t

solve the problem by dynamic programming.

Dynamic Programming Model

• Formulate problem with dynamic programming model.

– Rather than constraint set.

– Problem must have recursive structure

– But there is great flexibility to represent constraints and

objective function.

– Any function of current state is permissible.

– We don’t care if state space is exponential, because we don’t

solve the problem by dynamic programming.

• State variables are the same as in relaxed DD.

– Must also specify state merger rule.

Dynamic Programming Model

• Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

Recursion:

Cost-to-go State Immediate

cost

(edge weight)

Vertex j and

neighbors

Boundary condition:

Optimal value:

Dynamic Programming Model

• Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

– State merger = union

Recursion:

Merger of states in M =

Cost-to-go State Immediate

cost

(edge weight)

Vertex j and

neighbors

Boundary condition:

Optimal value:

Dynamic Programming Model

• Single-machine scheduling with due dates

 Minimize total tardiness.

– State = (set of jobs not yet processed,

latest finish time of jobs processed so far)

Cost-to-go

Jobs

remaining

Tardiness of

job j

Boundary condition:

Optimal value:

Last

finish

time

Dynamic Programming Model

• Single-machine scheduling with due dates

 Minimize total tardiness.

– State = (set of jobs not yet processed,

latest finish time of jobs processed so far)

– State merger = union, min

Merger of states in M =

Cost-to-go

Jobs

remaining

Tardiness of

job j

Boundary condition:

Optimal value:

Last

finish

time

Dynamic Programming Model

• Single machine scheduling with due dates

– Easy to add constraints that are functions of current state

• Release times

• Shutdown periods

• Precedence constraints on jobs

– Easy to use more complicated cost function that is a function

of current state

• Step functions, etc.

• Cost that depends on which jobs have been processed.

Dynamic Programming Model

• Scheduling with sequence-dependent setup times

– State = (Ji, last job processed, fi)

– State merger requires modification of states

Last job

processed
Processing + setup timeTardiness of job j

Dynamic Programming Model

• Scheduling with sequence-dependent setup times

– To allow for state merger:

– State = (, set of pairs , representing jobs

that could have been the last processed)

Merger of states in M =

Dynamic Programming Model

• Max cut problem on a graph.

– Partition nodes into 2 sets so as to maximize total weight

of connecting edges.

– State = marginal benefit of placing each remaining vertex on left

side of cut.

– State merger =

• Componentwise min if all components  0 or all  0; 0 otherwise

• Adjust incoming arc weights

• Max 2-SAT.

– Similar to max cut.

Branching Algorithm

• Solve optimization problem using a novel

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

114

Bergman, Ciré, van Hoeve, JH (2016)

• Solve optimization problem using a novel

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

– Advantage: a manageable number states may be

reachable in first few layers.

– …even if the state space is exponential.

– Alternative way of dealing with curse of dimensionality.

115

Branching Algorithm

Bergman, Ciré, van Hoeve, JH (2016)

1

2

3

4

5

6

Diagram is exact

down to here

Branching in a relaxed

decision diagram

116

Branching Algorithm

Branch on nodes

in this layer

Branching in a relaxed

decision diagram

117

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

118

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

119

1

2

3

4

5

6

Branching Algorithm

Prune this branch if cost bound from

relaxed DD is no better than cost

of best feasible solution found so far

(branch and bound).

Second branch

Branching in a relaxed

decision diagram

120

1

2

3

4

5

6

Branching Algorithm

Prune this branch if cost bound from

relaxed DD is no better than cost

of best feasible solution found so far

(branch and bound).

Third branch

Continue recursively

Branching in a relaxed

decision diagram

121

1

2

3

4

5

6

Branching Algorithm

Prune this branch if cost bound from

relaxed DD is no better than cost

of best feasible solution found so far

(branch and bound).

• This is very different from state space relaxation.

– Problem is not solved by dynamic programming.

– Relaxation created by merging nodes of DD

– …rather than mapping into smaller state space.

– Relaxation is constructed dynamically

– …as relaxed DD is built.

– Relaxation uses same state variables as exact

formulation

– …which allows branching in relaxed DD

122

State Space Relaxation?

Christofides, Mingozzi, Toth (1981)

• Enhance existing solver with DDs

– Better bounds from relaxed DDs.

– Better primal heuristic using restricted DDs.

– Add to existing LP relaxation and primal heuristics.

• Use stand-alone DD-based solver

– Obtain bounds from relaxed DDs.

– Use restricted DDs for primal heuristic.

– Use dynamic programming formulation of problem.

– Branch inside relaxed DD.

Discrete Optimization Solver

Computational performance

• Computational results…

– Applied to stable set, max cut, max 2-SAT.

– Superior to commercial MIP solver (CPLEX) on most

instances.

– Obtained best known solution on some max cut instances.

– Slightly slower than MIP on stable set with precomputed

clique cover model, but…

124

Bergman, Ciré, van Hoeve, JH (2016)

Max cut

on a graph

Avg. solution time

vs

graph density

30 vertices

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e
ra

g
e
 s

o
lu

ti
o
n
 t

im
e
 (

s
e
c
)

Density of graph

CPLEX

MDDs

Computational performance

Max 2-SAT

Performance

profile

30 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u
m

b
e
r

o
f

in
s
ta

n
c
e
s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

Max 2-SAT

Performance

profile

40 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u
m

b
e
r

o
f

in
s
ta

n
c
e
s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

• Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Much better than mixed integer programming.

128

Computational performance

Computational performance

• In all computational comparisons so far…

– Problem is easily formulated for IP.

• DD-based optimization is most competitive when…

– Problem has a recursive dynamic programming model…

– and no convenient IP model.

Computational performance

• In all computational comparisons so far…

– Problem is easily formulated for IP.

• DD-based optimization is most competitive when…

– Problem has a recursive dynamic programming model…

– and no convenient IP model.

• Such as…

– Sequencing and scheduling problems

– DP problems with exponential state space

• New approach to “curse of dimensionality”

– Problems with nonconvex, nonseparable objective function…

• Weighted DD can represent any objective function

– Separable functions are the easiest, but any

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

131

Modeling the Objective Function

• Weighted DD can represent any objective function

– Separable functions are the easiest, but any

nonseparable function is possible.

– Can be nonlinear, nonconvex, etc.

– The issue is complexity of resulting DD

• Multiple encodings

– A given objective function can be encoded by multiple

assignments of costs to arcs.

– There is a unique canonical arc cost assignment.

– Which can reduce size of exact DD.

– Design state variables accordingly

132

Modeling the Objective Function

Modeling the Objective Function

Set covering with

separable cost

function

Easy. Just label arcs

with weights.

xi = 1 when we select set i

Weight 3 5 4 6

Nonseparable cost

function

Now what?

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs. 0

6

0 1

7

0

5

0 2 0 2

6 7

Modeling the Objective Function

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6
0 0 1

6 5

Modeling the Objective Function

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

Nonseparable cost function

Now the tree can

be reduced.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6
0 0 1

6 5

Modeling the Objective Function

Nonseparable cost function

Now the tree can

be reduced.

Modeling the Objective Function

Nonseparable cost function

DD is larger than

reduced unweighted DD,

but still compact.

Modeling the Objective Function

Theorem. For a given variable ordering, a given

objective function is represented by a unique

weighted decision diagram with canonical costs.

Modeling the Objective Function

JH (2013),

Similar result for AADDs:

Sanner & McAllester (2005)

Inventory Management Example

• In each period i, we have:

– Demand di

– Unit production cost ci

– Warehouse space m

– Unit holding cost hi

• In each period, we decide:

– Production level xi

– Stock level si

• Objective:

– Meet demand each period while minimizing production and

holding costs.

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

Arcs leaving each node are

very similar.

• Transition to the same

states.

• Have the same costs,

up to an offset.

Reducing the Transition Graph

0 21

0 21

0 21

0

0

Inventory Problem

1 2x  1 3x 
1 4x 

To equalize controls, let

be the stock level in next period.

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

2

3

4 1
2 3 0

1

2

0 21

0 21

0 21

0

0

Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

0

1

2 0
1 2 0

1

2

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
0

1

2 0
1 2 0

1

2

New recursion:

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.
5

10

3

6

0

0 21

0 21

0 21

0

0

4

2
0

6

3

0

10

5

6

0

10

0

4

0

0

3

0
5

0

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.
13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

Inventory Problem

These are canonical costs with

offset

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

Inventory Problem

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

These are canonical costs with

offset

New recursion:

Now there is only one state per period.

12

0

13 14

10 9 8

6 7 8

4

0

0

12

20

26

30

New recursion:

Inventory Problem

JH (2013)

Nonserial Decision Diagrams

• Analogous to nonserial dynamic programming,

independently(?) rediscovered many times:

– Nonserial DP (1972)

– Constraint satisfaction (1981)

– Data base queries (1983)

– k-trees (1985)

– Belief logics (1986)

– Bucket elimination (1987)

– Bayesian networks (1988)

– Pseudoboolean optimization (1990)

– Location analysis (1994)

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

For example…

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Or…

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set selectedjx j 

Set Partitioning example

Dependency graph

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set selectedjx j 

x1

x2

x3

x4

x5

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Dependency graph

x1

x2

x3

x4

x5

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Dependency graph

x1

x2

x3

x4

x5

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Induced width = 3

(max in-degree)

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 0 0 1 1 0

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 0 0 1 1 0

0 0 1 1 0 0

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 0 0 1 1 0

0 0 1 1 0 0

0 1 0 0 0 1

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Serialized DP

0 1

00 01 10

001 011

010 011 110 000 001

0 1

100

1001 0011 0100

x3x3x4

x1x2x3x4

x3x4x5

x6

x2

x2x3

Set Partitioning example

Feasible solutions

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Feasible solutions

0 1

00 01 10

001 011

010 011 110 000 001

0 1

100

1001 0011 0100

x3x3x4

x1x2x3x4

x3x4x5

x6

x2

x2x3

BDD vs. DP Solution

Serialized DP

0 1

00 01 10

001 011

010 011 110 000 001

0 1

100

1001 0011 0100

BDD

x2
0 1

x2x3 00 01 10

x3x4 001 011

x1

x3x4x5 011

110

000

x6 0

1

100

1001 0011 0100

x3x3x4

x1x2x3x4

x3x4x5

x6

x2

x2x3

BDD vs. DP Solution

Serialized DP

0 1

00 01 10

001 011

010 011 110 000 001

0 1

100

1001 0011 0100

BDD

x2
0 1

x2x3 00 01 10

x3x4 001 011

x1

x3x4x5 011

110

000

x6 0

1

100

1001 0011 0100

Deleted

x3x3x4

x1x2x3x4

x3x4x5

x6

x2

x2x3

BDD vs. DP Solution

Serialized DP

x2
0 1

x2x3 00 01 10

x3x3x4 001 011

x1x2x3x4

x3x4x5 010 011 110 000 001

x6 0 1

100

1001 0011 0100

BDD

x2
0 1

x2x3 00 01 10

x3x4 001 011

x1

x3x4x5 011

110

000

x6 0

1

100

1001 0011 0100

Merged

Set Partitioning example

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

Solution by nonserial DP

0 1

00 01 10

01 11

010 011 110 000 001

0 1

00

1 0

Nonserial BDD

x2 0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5
011

110
000

x6
0

1

00

0

1

x2

x2x3

x3x4

x1

x3x4x5

x6

Constructing the Join Tree

Clique in the

dependency graph

x1

x2

x3

x4

x5

x6

x1x2x3

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

Clique in the

dependency graph

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

Clique in the

dependency graph

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x3

x2x3

x3x4

Join graph

Connect nodes with

common variables

Dependency graph

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x3

x2x3

x3x4

Join graph

xj occurs along every path

connecting xj with xj

Dependency graph

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x3

x2x3

x3x4

Join graph

This can be viewed as the

constraint dual

Binary constraints equate common

variables in subproblems

Dependency graph

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

Dependency graph

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x3

x2x3

x3x4

Join graph

Some edges may be redundant

when equating variables

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

Dependency graph

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

Removing redundant edges

yields join tree

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

Dependency graph

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

Max node cardinality is

tree width + 1 = 3 + 1

x2 x3 x4 x1 x5 x6

Constructing the Join Tree

Dependency graph

x1

x2

x3

x4

x5

x6

x1x2x3

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

Induced width = tree width = 3

x2 x3 x4 x1 x5 x6

Designing the Nonserial BDD

x2x3x1

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

x2 x3 x4 x1 x5 x6

x2

BDD design

Designing the Nonserial BDD

x2x3x1

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

x2 x3 x4 x1 x5 x6

x2

x2x3

BDD design

Designing the Nonserial BDD

x2x3x1

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

x2 x3 x4 x1 x5 x6

x2

x2x3

x3x4

BDD design

Designing the Nonserial BDD

x2x3x1

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

x2 x3 x4 x1 x5 x6

x2

x2x3

x1

BDD design

x3x4

Designing the Nonserial BDD

x2x3x1

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

x2 x3 x4 x1 x5 x6

x2

x2x3

x3x4 x1

x5

BDD design

Designing the Nonserial BDD

x2x3x1

x2x3x4

x3x4x5x6

x2x3

x3x4

Join tree

x2 x3 x4 x1 x5 x6

x2

x2x3

x3x4 x1

x6

x3x4x5

BDD design

Designing the Nonserial BDD

x2 x3 x4 x1 x5 x6

x2

x2x3

x3x4 x1

x6

x3x4x5

Nonserial BDD

x2 0 1

x2x3 00 01 10

01 11

x1

x3x4x5
011

110
000

x6
0

1

00

0

1

x3x4

BDD design

Another Variable Ordering

x1

x2

x3

x4

x5

x6

x3x2x1 x3x6x5

x3x6x2

x3x2

x3

x3x6

Join graph

Dependency graph

x3 x6 x2 x5 x1 x4

x6x2x4x6x2

x2

x6

Induced width = 2

Constructing the Join Tree

x1

x2

x3

x4

x5

x6

x3x2x1 x3x6x5

x3x6x2

x3x2

x3x6

Join treeDependency graph

x3 x6 x2 x5 x1 x4

x6x2x4x6x2

Induced width = 2 Tree width = 2

Designing the BDD

x3x2x1 x3x6x5

x3x6x2

x3x2

x3x6

Join tree

x3 x6 x2 x5 x1 x4

x6x2x4x6x2

Tree width = 2

x3

BDD design

Designing the BDD

x3x2x1 x3x6x5

x3x6x2

x3x2

x3x6

Join tree

x3 x6 x2 x5 x1 x4

x6x2x4x6x2

Tree width = 2

x3

x3x6

BDD design

Designing the BDD

x3x2x1 x3x6x5

x3x6x2

x3x2

x3x6

Join tree

x3 x6 x2 x5 x1 x4

x6x2x4x6x2

Tree width = 2

x3

x3x2

x3x6

x6x2

BDD design

Designing the BDD

x3x2x1 x3x6x5

x3x6x2

x3x2

x3x6

Join tree

x3 x6 x2 x5 x1 x4

x6x2x4x6x2

Tree width = 2

x3

x3x2

x3x6

x6x2

x5

x1 x4

BDD design

Nonserial BDD

x3 x6 x2 x5 x1 x4

x3

x3x2

x3x6

x6x2

x5

x1 x4

BDD design

Nonserial BDD

x3 0 1

x3x6 00 01 10

00

x1
0

1

01

10
x2x3

0

1

x5

00 11

x2x6

x4
0

1

• Broader applicability

– Stochastic dynamic programming

– Continuous global optimization

• Combination with other techniques

– Lagrangean relaxation.

– Column generation

– Logic-based Benders decomposition

– Solve separation problem

207

Current Research

References

2006

• T. Hadzic and J. N. Hooker. Discrete global optimization with binary decision diagrams. In

Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming,

and Computational Algebraic Geometry (GICOLAG), Vienna, 2006.

2007

• Tarik Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1

programming. In Proceedings of CPAIOR. LNCS 4510, pp. 84-98. Springer, 2007.

• Tarik Hadzic and J. N. Hooker. Postoptimality analysis for integer programming using binary

decision diagrams. December 2007, revised April 2008 (not submitted).

• M. Behle. Binary Decision Diagrams and Integer Programming. PhD thesis, Max Planck

Institute for Computer Science, 2007.

• H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store based on

multivalued decision diagrams. In Proceedings of CP. LNCS 4741, pp. 118-132. Springer,

2007.

2008

• T. Hadzic, J. N. Hooker, B. O'Sullivan, and P. Tiedemann. Approximate compilation of

constraints into multivalued decision diagrams. In Proceedings of CP. LNCS 5202, pp. 448-

462. Springer, 2008.

• T. Hadzic, J. N. Hooker, and P. Tiedemann. Propagating separable equalities in an MDD

store. In Proceedings of CPAIOR. LNCS 5015, pp. 318-322. Springer, 2008.

http://web.tepper.cmu.edu/jnh/bddvienna.pdf
http://web.tepper.cmu.edu/jnh/bdd-compile.pdf
http://web.tepper.cmu.edu/jnh/bdd.pdf
http://scidok.sulb.uni-saarland.de/volltexte/2010/3200/pdf/Dissertation_2208_Behl_Mark_2007.pdf
http://web.tepper.cmu.edu/jnh/constraint-store.pdf
http://web.tepper.cmu.edu/jnh/nodesplitting.pdf
http://web.tepper.cmu.edu/jnh/equality.pdf

References

2010

• S. Hoda. Essays on Equilibrium Computation, MDD-based Constraint Programming and

Scheduling. PhD thesis, Carnegie Mellon University, 2010.

• S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based

Constraint Programming. In Proceedings of CP. LNCS 6308, pp. 266-280. Springer, 2010.

• T. Hadzic, E. O’Mahony, B. O’Sullivan, and M. Sellmann. Enhanced inference for the

market split problem. In Proceedings, International Conference on Tools for AI (ICTAI),

pages 716–723. IEEE, 2009.

2011

• D. Bergman, W.-J. van Hoeve, and J. N. Hooker. Manipulating MDD Relaxations for

Combinatorial Optimization. In Proceedings of CPAIOR. LNCS 6697, pp. 20-35. Springer,

2011.

2012

• A. A. Cire and W.-J. van Hoeve. MDD Propagation for Disjunctive Scheduling. In

Proceedings of ICAPS, pp. 11-19. AAAI Press, 2012.

• D. Bergman, A.A. Cire, W.-J. van Hoeve, and J.N. Hooker. Variable Ordering for the

Application of BDDs to the Maximum Independent Set Problem. In Proceedings of CPAIOR.

LNCS 7298, pp. 34-49. Springer, 2012.

http://tepper.cmu.edu/~/media/files/tepper/extranet/academic programs/phd/dissertations/hoda dissertation.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/mdd_cp2010.pdf
https://www.researchgate.net/publication/221417192_Enhanced_Inference_for_the_Market_Split_Problem
http://www.andrew.cmu.edu/user/vanhoeve/papers/relaxation_mdd.pdf
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4720
http://www.andrew.cmu.edu/user/vanhoeve/papers/VariableOrderingIS.pdf

References

2013

• A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing Problems.

Operations Research 61(6): 1411-1428, 2013.

• D. Bergman. New Techniques for Discrete Optimization. PhD thesis, Carnegie Mellon

University, 2013.

• J. N. Hooker. Decision Diagrams and Dynamic Programming. In Proceedings of CPAIOR.

LNCS 7874, pp. 94-110. Springer, 2013.

• B. Kell and W.-J. van Hoeve. An MDD Approach to Multidimensional Bin Packing. In

Proceedings of CPAIOR, LNCS 7874, pp. 128-143. Springer, 2013.

2014

• D. R. Morrison, E. C. Sewell, S. H. Jacobson , Characteristics of the maximal independent

set ZDD, Journal of Combinatorial Optimization 28 (1) 121-139, 2014

• D. R. Morrison, E. C. Sewell, S. H. Jacobson, Solving the Pricing Problem in a Generic

Branch-and-Price Algorithm using Zero-Suppressed Binary Decision Diagrams,

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Optimization Bounds from

Binary Decision Diagrams. INFORMS Journal on Computing 26(2): 253-258, 2014.

• A. A. Cire. Decision Diagrams for Optimization. PhD thesis, Carnegie Mellon University,

2014.

• D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD Propagation for Sequence Constraints.

JAIR, Volume 50, pages 697-722, 2014.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. BDD-Based Heuristics for Binary

Optimization. Journal of Heuristics 20(2): 211-234, 2014.

http://dx.doi.org/10.1287/opre.2013.1221
http://tepper.cmu.edu/~/media/files/tepper/extranet/academic programs/phd/dissertations/bergman dissertation.pdf
http://web.tepper.cmu.edu/jnh/DDandDP2.pdf
http://link.springer.com/chapter/10.1007/978-3-642-38171-3_9
http://link.springer.com/article/10.1007/s10878-014-9722-4
https://www.researchgate.net/profile/Sheldon_Jacobson/publication/259874859_Solving_the_Pricing_Problem_in_a_Generic_Branch-and-Price_Algorithm_using_Zero-Suppressed_Binary_Decision_Diagrams/links/54d4d4ac0cf2970e4e63b8b4.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/Bounds_from_BDDs.pdf
http://tepper.cmu.edu/~/media/files/tepper/extranet/academic programs/phd/dissertations/cire dissertation.pdf
http://www.jair.org/papers/paper4199.html
http://www.andrew.cmu.edu/user/vanhoeve/papers/bdd-restriction_final_draft.pdf

References

2014

• D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat, and W.-J. van Hoeve.

Parallel Combinatorial Optimization with Decision Diagrams. In Proceedings of CPAIOR,

LNCS 8451, pp. 351-367. Springer, 2014.

• A. A. Cire and J. N. Hooker. The Separation Problem for Binary Decision Diagrams. In

Proceedings of the International Symposium on Artificial Intelligence and Mathematics

(ISAIM), 2014.]

2015

• D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian Bounds from Decision Diagrams.

Constraints 20(3): 346-361, 2015.

• B. Kell, A. Sabharwal, and W.-J. van Hoeve. BDD-Guided Clause Generation. In

Proceedings of CPAIOR, 2015.

2016

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, Decision Diagrams for

Optimization, Springer, to appear.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Discrete Optimization with

Decision Diagrams. INFORMS Journal on Computing 28: 47-66, 2016.

http://www.andrew.cmu.edu/user/vanhoeve/papers/DDX10.pdf
http://www.cs.uic.edu/pub/Isaim2014/WebPreferences/ISAIM2014_Boolean_Cire_Hooker.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/MDDlagrangian.pdf
http://www.andrew.cmu.edu/user/vanhoeve/papers/cpaior15-bddclausegen.pdf
http://cpaior2015.uconn.edu/
http://www.andrew.cmu.edu/user/vanhoeve/papers/discrete_opt_with_DDs.pdf

