
Compact Representation

of Near-Optimal

Integer Programming Solutions

John Hooker
Carnegie Mellon University

Thiago Serra
Mitsubishi Electric Research Laboratories

ISMP 2018

Bordeaux, France

Two Perspectives on Optimization

2

Traditional

Problem formulation

(nontransparent)

A few solutions

revealed

Solver

Two Perspectives on Optimization

3

Traditional

Problem formulation

(nontransparent)

A few solutions

revealed

Proposed

Transparent

data structure

Problem formulation

(nontransparent)

Solver

Solver

Two Perspectives on Optimization

4

Traditional

Nontransparent data

structure
Optimal solution,

or list of

(near-optimal)

solutions

Solver

This wastes a wealth of information

collected for the model,

perhaps at great expense

Ax b

Two Perspectives on Optimization

5

Traditional

Nontransparent data

structure
Optimal solution,

or list of

(near-optimal)

solutions

Solver

Ax b

Proposed

Nontransparent data

structure

Transparent data

structure

Solver

Ax b

● Decision diagrams provide a transparent data

structure

– Can compactly represent all near-optimal solutions

(within  of optimum).

– Open the door to more

comprehensive postoptimality

analysis

– Can be efficiently queried

with what-if questions.

6

Postoptimality Analysis

Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– An alternative data structure

– A new tool to do many of the things we do in optimization.

7

DDs in Optimization

8

Modeling
with recursive

formulations

Relaxation
with relaxed

diagrams

Primal

heuristics
with restricted

diagrams

Constraint

propagation
through a

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Decision Diagrams

• Some advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– Exploits recursive structure in the problem, but…

– Solves dynamic programming models

without state space enumeration.

– Effective parallel computation.

– Ideal for postoptimality analysis

9

DDs in Optimization

10

Modeling
with recursive

formulations

Relaxation
with relaxed

diagrams

Primal

heuristics
with restricted

diagrams

Constraint

propagation
through a

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

11
Boole (1847), Shannon (1937), Lee (1959), Akers (1978), Bryant (1986)

Reduced Decision Diagrams

• There is a unique reduced DD representing any given

function.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution,

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

01

Superimpose identical

subtrees…

1 1 1 0

x0

x2

x1

x2

x3

1 0

x3

1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 01 0

x0

x2

x1

x2

x3

1 0

x3

1 01 0

Superimpose identical

subtrees…

x0

x2

x1

x2

x3

1 0

x3

1 01 0

x0

x2

x1

x2

x3

1 0 01

x0

x2

x1

x2

x3

1 0 01

Superimpose identical

leaf nodes…

x0

x2

x1

x2

x3

1 0

x0

x2

x1

x2

x3

1 0 01

as generated by software

x0

x2

x1

x2

x3

1 0

Optimization with Exact Decision

Diagrams

23

• Decision diagrams can

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Reduces optimization

to a shortest path problem

Hadžić and JH (2006, 2007)

Stable Set Problem

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

Exact DD for

stable set

problem

1

2 3

5 4

x1 = 1x1 = 0

x4

x5

x1

x2

x3

1

2 3

5 4

x1 = 1x1 = 0

Paths from top

to bottom

correspond to

the 9 feasible

solutions x4

x5

x1

x2

x3

1

2 3

5 4

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

Optimal solution

is longest path

1

2 3

5 4

For objective

function,

associate

weights with

arcs

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

Optimal solution

is longest path

1

2 3

5 4

20

40 50

30 10

● Let v* = optimal cost.

● A solution is -optimal if it is feasible and

its cost is  v* + 

● We wish to represent all -optimal solutions in a decision

diagram.

● The diagram is generated once for multiple queries.

– In general, the user will be interested in -optimal

solutions for  < .

31

Near-optimal Solutions

Hadžić and JH (2007)

● Sound DDs can store near-optimal solutions more

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions (feasible and

infeasible) that are worse than -optimal

– That is, cost > v* + .

32

Sound Decision Diagrams

Hadžić and JH (2007)

● Sound DDs can store near-optimal solutions more

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions (feasible and

infeasible) that are worse than -optimal

– That is, cost > v* + .

– These solutions are easily screened out.

– No effect whatever on most queries.

– Paradoxically, this can result in a smaller DD.

33

Sound Decision Diagrams

Hadžić and JH (2007)

34

Sound Decision Diagrams

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2

35

Sound Decision Diagrams

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2

36

Sound Decision Diagrams

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2 Contains spurious solution x = (1,1,1)

Its value = 9 > 2 + 

37

Postoptimality Queries

First use original DD.

Set  = 6, so that all

feasible solutions are

-optimal and included

in the diagram

Shortest distance to root

Example: What values can x2 take when  = 2?

4 0

2

Shortest distance to terminus

38

Postoptimality Queries

First use original DD.

Set  = 6, so that all

feasible solutions are

-optimal and included

in the diagram

These arcs are removed

because 4 + 0 + 2 > 2 + 

0 + 3 + 2 > 2 + 

Example: What values can x2 take when  = 2?

4 0

2

39

Postoptimality Queries

First use original DD.

Set  = 6, so that all

feasible solutions are

-optimal and included

in the diagram

x2 can take only value 0 when  = 2.

Example: What values can x2 take when  = 2?

40

Postoptimality Queries

Now use sound DD.

Again set  = 6, so that

all feasible solutions are

-optimal and included

in the diagram

Shortest distance to root

Example: What values can x2 take when  = 2?

0

2

Shortest distance to terminus

41

Postoptimality Queries

Now use sound DD.

Again set  = 6, so that

all feasible solutions are

-optimal and included

in the diagram

Example: What values can x2 take when  = 2?

0

2

This arc is removed

because 0 + 3 + 2 > 2 + 

42

Postoptimality Queries

Now use sound DD.

Again set  = 6, so that

all feasible solutions are

-optimal and included

in the diagram

Example: What values can x2 take when  = 2?

x2 can take only value 0 when  = 2.

Spurious solution has no effect on the analysis.

● A sound diagram is minimal if no arcs/nodes can

be removed without destroying soundness.

– Easy to check whether an arc/node can be removed.

Theorem. A minimal sound diagram for  = 0

(optimal solutions only) never contains spurious

solutions.

So there is no point in using sound diagrams for optimal

solutions only.

43

Sound DDs

● We can sound reduce node u into node v when this

introduces only spurious solutions

● Easy to check while building diagram. Then merge u and v.

44

Sound Reduction

Introduced

solution

u v

r

45

Sound Reduction

Optimal value = 2,  = 6.

Sound-reduce u1 into v1

Introduced solution is spurious, value = 9

Theorem. Repeated application of the node merger

operation (in any order) yields a sound reduced DD

– i.e., a sound DD of minimum size.

Different reduction orders can yield different

diagrams, but they all have the same size!

46

Sound

47

Sound Reduction

Mergers yield 2 different sound-reduced diagrams,

but of the same size

This merger yields one sound-reduced diagram

48

Sound Reduction

Mergers yield 2 different sound-reduced diagrams,

but of the same size

This merger yields another, of the same minimum size

● Sound reduction can significantly compress a

diagram that represents near-optimal solutions.

– We investigate compression over a range of ’s,

most larger than needed in practice.

– Diagram is generated for one tolerance .

– Same diagram used for multiple queries, using different

tolerances  < .

– For some instances, maximum  is large enough to

include all feasible solutions.

49

Compression

● We measure:

– Size of tree representation of -optimal solutions.

– Size of reduced DD representation.

– Size of sound-reduced DD representation.

– Computation times

– Including time needed to find -optimal solutions,

giuven optimal value from solver.

– The solver may be able to find the -optimal solutions

(e.g., CPLEX).

– Then only DD-construction is needed,

which is very fast.

50

Compression

51

DD Compression

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

52

DD Compression

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

53

DD Compression

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

54

DD Compression

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

55

DD Compression

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

56

DD Compression

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

● Extend to MILP

– Represent integer solutions only in DD.

– Path length computed by solving LP after fixing integer

variables.

– Scale up by “dualizing” troublesome constraints.

– This introduces spurious solutions that are easily

ignored.

57

Ongoing Research

● Extend to MILP

– Represent integer solutions only in DD.

– Path length computed by solving LP after fixing integer

variables.

– Scale up by “dualizing” troublesome constraints.

– This introduces spurious solutions that are easily

ignored.

● Next: open-source software

– Independent of solver.

– Needs only optimal value and problem formulation.

58

Ongoing Research

