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Two Perspectives on Optimization
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This wastes a wealth of information
collected for the model,
perhaps at great expense
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Postoptimality Analysis

e Decision diagrams provide a transparent data
structure
— Can compactly represent all near-optimal solutions
(within A of optimum).
— Open the door to more

comprehensive postoptimality
analysis

— Can be efficiently queried
with what-if questions.




Decision Diagrams

« Used in computer science and Al for decades
— Logic circuit design
— Product configuration
 Anew perspective on optimization
— An alternative data structure
— Anew tool to do many of the things we do in optimization.
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Decision Diagrams

 Some advantages:
— No need for inequality formulations.
— No need for linear or convex relaxations.
— EXxploits recursive structure in the problem, but...

— Solves dynamic programming models
without state space enumeration.

— Effective parallel computation.
— lIdeal for postoptimality analysis
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Decision Diagram Basics

« Binary decision diagrams encode Boolean functions

Ty w2 w3 | [
0 0 0 |1
0 0 1 10
0 1 010
0 1 1 |1
1 0 010
1 0 110
1 1 01
1 1 1 |1

Boole (1847), Shannon (1937), Lee (1959), Akers (1978), Bryant (1986)
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Reduced Decision Diagrams

 Thereis aunique reduced DD representing any given
function.
— Once the variable ordering is specified.

Bryant (1986)

 The reduced DD can be viewed as a branching tree with
redundancy removed.
— Superimpose isomorphic subtrees.
— Remove redundant nodes.
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Remove redundant nodes...
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Superimpose identical
subtrees...






Superimpose identical
leaf nodes...
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Optimization with Exact Decision
Diagrams

* Decision diagrams can

represent feasible set (x1)

— Remove paths to 0. 7,)0

— Paths to 1 are feasible /x;( o
solutions.

— Associate costs with

arcs. 1 Q@ \x3>\
— Reduces optimization , »
i ./

1

to a shortest path problem e _J

Hadzi¢ and JH (2006, 2007)




Stable Set Problem

Let each vertex have weight w;

Select nonadjacent vertices to maximize .; W; X;
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Near-optimal Solutions

e et v* = optimal cost.

e A solution is A-optimal if it is feasible and
Its costis <v* + A

e We wish to represent all A-optimal solutions in a decision
diagram.

e The diagram is generated once for multiple queries.

— In general, the user will be interested in 5-optimal
solutions for 6 < A.

Hadzi¢ and JH (2007)
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Sound Decision Diagrams

e Sound DDs can store near-optimal solutions more
compactly.
— Sound = all A-optimal solutions are included...

— ...along with some spurious solutions (feasible and
Infeasible) that are worse than A-optimal

— That is, cost > v* + A.

Hadzi¢ and JH (2007)
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Sound Decision Diagrams

e Sound DDs can store near-optimal solutions more
compactly.
— Sound = all A-optimal solutions are included...

— ...along with some spurious solutions (feasible and
Infeasible) that are worse than A-optimal

— That is, cost > v* + A,
— These solutions are easily screened out.
— No effect whatever on most queries.
— Paradoxically, this can result in a smaller DD.

Hadzi¢ and JH (2007)
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Sound Decision Diagrams

minimize 4xq1 + 319 + 223
subject to x1+ax3>1, xo+ax3>1, 21 +22+ 23 <2
Ty, 2,23 € {0, 1}

Branching tree

Optimal value = 2
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Sound Decision Diagrams

minimize 4xq1 + 319 + 223
subject to x1+ax3>1, xo+ax3>1, 21 +22+ 23 <2
Ty, 20,23 € {0, 1}

_ Reduced
Branching tree weighted DD
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Sound Decision Diagrams

minimize 4xq1 + 319 + 223
subject to x1+ax3>1, xo+ax3>1, 21 +22+ 23 <2
Ty, 2,23 € {0, 1}

_ Reduced Sound DD
Branching tree weighted DD forA=6

r
X1
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~
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N

|

| N
) I I

Optimal value = 2 Contains spurious solution x = (1,1,1)
ltsvalue=9>2+ A




Postoptimality Queries

Example: What values can x, take when ¢ = 2?

First use original DD. .
Set A = 6, so that all 4 A
feasible solutions are
A-optimal and included 4 N X?
in the diagram / S

X3

Shortest distance to r0/

Shortest distance to terminus
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Postoptimality Queries

Example: What values can x, take when ¢ = 2?

First use original DD.

Set A = 6, so that all X1
feasible solutions are
A-optimal and included X
: : ~ 2
in the diagram
//j
X3

These arcs are removed
because4+0+2>2+9
O+3+2>2+95
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Postoptimality Queries

Example: What values can x, take when ¢ = 2?

First use original DD. |
Set A = 6, so that all 4 RS A
feasible solutions are N
A-optimal and included ;' X
. . p)
in the diagram e

ZI Y

{

X, can take only value O when o = 2.
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Postoptimality Queries

Example: What values can x, take when ¢ = 2?

r
Now use sound DD. \ |
Again set A = 6, so that 4 | A
all feasible solutions are 0 e
A-optimal and included \ X?

in the diagram

3
2
Shortest distance to ro/ , X3

Shortest distance to terminus {
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Postoptimality Queries

Example: What values can x, take when ¢ = 2?

r
Now use sound DD. \ |
Again set A = 6, so that 4 1 A1
all feasible solutions are 0 e
A-optimal and included \ X
in the diagram 3 ; 2
/ 2 e
This arc is removed 2 A3

because 0 +3+2>2+9

41



Postoptimality Queries

Example: What values can x, take when ¢ = 2?

r
Now use sound DD. \ |
Again set A = 6, so that 4 | A
all feasible solutions are J
A-optimal and included \ X
in the diagram / 2
Vs
2 A3
A

X, can take only value O when o = 2.
Spurious solution has no effect on the analysis.

42



Sound DDs

e A sound diagram is minimal if no arcs/nodes can
be removed without destroying soundness.
— Easy to check whether an arc/node can be removed.

Theorem. A minimal sound diagram for A=0
(optimal solutions only) never contains spurious
solutions.

So there is no point in using sound diagrams for optimal
solutions only.

43



Sound Reduction

e \We can sound reduce node u into node v when this
iIntroduces only spurious solutions
e Easy to check while building diagram. Then merge u and v.

I

Introduced
solution

N

Suf A (u) C Suf(v)
w(m) +w(o) > 2"+ A when x(7) € Pre(u) and x(o) € Suf(v) \ Suf(u) 44
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X4

A5

X6

Sound Reduction

Optimal value = 2, A = 6.
Sound-reduce u, into v,

Introduced solution is spurious, value =9
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Sound

Theorem. Repeated application of the node merger
operation (in any order) yields a sound reduced DD
—1.e., a sound DD of minimum size.

Different reduction orders can yield different
diagrams, but they all have the same size!
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Sound Reduction

Mergers yield 2 different sound-reduced diagrams,
but of the same size

This merger yields one sound-reduced diagram

a7
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Sound Reduction

Mergers yield 2 different sound-reduced diagrams,
but of the same size
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This merger yields another, of the same minimum size
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Compression

e Sound reduction can significantly compress a
diagram that represents near-optimal solutions.

— We investigate compression over a range of A’s,
most larger than needed in practice.

— Diagram is generated for one tolerance A.

— Same diagram used for multiple queries, using different
tolerances 6 < A.

— For some instances, maximum A is large enough to
iInclude all feasible solutions.
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Compression

e \Ve measure:

Size of tree representation of A-optimal solutions.
Size of reduced DD representation.

Size of sound-reduced DD representation.
Computation times

— Including time needed to find A-optimal solutions,
giuven optimal value from solver.

— The solver may be able to find the A-optimal solutions
(e.g., CPLEX).
— Then only DD-construction is needed,
which is very fast.
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DD Compression

(a3) Representation sizes for stein27
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DD Compression

(al) Representation sizes for air01 (b1) Construction time for air01
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DD Compression

(a2) Representation sizes for lseu
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DD Compression

(a) Representation sizes for p0201 (c) Construction time for p0201
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DD Compression

(a) Representation sizes for sentoy (c) Construction time for sentoy
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Ongoing Research

e Extend to MILP

— Represent integer solutions only in DD.

— Path length computed by solving LP after fixing integer
variables.

— Scale up by “dualizing” troublesome constraints.

— This introduces spurious solutions that are easily
ignored.
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Ongoing Research

e Extend to MILP

— Represent integer solutions only in DD.

— Path length computed by solving LP after fixing integer
variables.

— Scale up by “dualizing” troublesome constraints.
— This introduces spurious solutions that are easily
ignored.
e Next: open-source software
— Independent of solver.
— Needs only optimal value and problem formulation.
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