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● Decision diagrams provide a transparent data 

structure

– Can compactly represent all near-optimal solutions

(within  of optimum).

– Open the door to more 

comprehensive postoptimality

analysis

– Can be efficiently queried 

with what-if questions.
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Postoptimality Analysis



Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– An alternative data structure

– A new tool to do many of the things we do in optimization.
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Decision Diagrams

• Some advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– Exploits recursive structure in the problem, but…

– Solves dynamic programming models

without state space enumeration.

– Effective parallel computation.

– Ideal for postoptimality analysis
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Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

11
Boole (1847), Shannon (1937), Lee (1959), Akers (1978), Bryant (1986)



Reduced Decision Diagrams

• There is a unique reduced DD representing any given 

function.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with 

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)
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Optimization with Exact Decision 

Diagrams

23

• Decision diagrams can 

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Reduces optimization

to a shortest path problem

Hadžić and JH (2006, 2007)



Stable Set Problem



x1

x2

x3

x4

x5

Exact DD for 

stable set 

problem

1

2 3

5 4

x1

x2

x3



Exact DD for 

stable set 

problem

1

2 3

5 4

x1 = 1x1 = 0

x4

x5

x1

x2

x3



1

2 3

5 4

x1 = 1x1 = 0

Paths from top 

to bottom 

correspond to 

the 9 feasible 

solutions x4

x5

x1

x2

x3



1

2 3

5 4

For objective 

function, 

associate 

weights with 

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10



For objective 

function, 

associate 

weights with 

arcs x4

x5

x1

x2

x3

Optimal solution 

is longest path

1

2 3

5 4

For objective 

function, 

associate 

weights with 

arcs

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10



For objective 

function, 

associate 

weights with 

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

Optimal solution 

is longest path

1

2 3

5 4

20

40 50

30 10



● Let v* = optimal cost.

● A solution is -optimal if it is feasible and 

its cost is  v* + 

● We wish to represent all -optimal solutions in a decision 

diagram.

● The diagram is generated once for multiple queries.

– In general, the user will be interested in -optimal 

solutions for  < .  

31

Near-optimal Solutions

Hadžić and JH (2007)



● Sound DDs can store near-optimal solutions more 

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions (feasible and 

infeasible) that are worse than -optimal

– That is, cost > v* + .

32

Sound Decision Diagrams

Hadžić and JH (2007)



● Sound DDs can store near-optimal solutions more 

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions (feasible and 

infeasible) that are worse than -optimal

– That is, cost > v* + .

– These solutions are easily screened out.

– No effect whatever on most queries. 

– Paradoxically, this can result in a smaller DD.
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Sound Decision Diagrams

Hadžić and JH (2007)



34

Sound Decision Diagrams

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2



35

Sound Decision Diagrams

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2



36

Sound Decision Diagrams

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2 Contains spurious solution x = (1,1,1)

Its value = 9 > 2 + 
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Postoptimality Queries
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Postoptimality Queries

Now use sound DD.  

Again set  = 6, so that 

all feasible solutions are 

-optimal and included 

in the diagram
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Postoptimality Queries

Now use sound DD.  

Again set  = 6, so that 

all feasible solutions are 

-optimal and included 

in the diagram

Example:  What values can x2 take when  = 2?

0

2

This arc is removed

because 0 + 3 + 2 > 2 + 
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Postoptimality Queries

Now use sound DD.  

Again set  = 6, so that 

all feasible solutions are 

-optimal and included 

in the diagram

Example:  What values can x2 take when  = 2?

x2 can take only value 0 when  = 2.

Spurious solution has no effect on the analysis.



● A sound diagram is minimal if no arcs/nodes can 

be removed without destroying soundness.

– Easy to check whether an arc/node can be removed. 

Theorem. A minimal sound diagram for  = 0 

(optimal solutions only) never contains spurious 

solutions.

So there is no point in using sound diagrams for optimal 

solutions only.
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Sound DDs



● We can sound reduce node u into node v when this 

introduces only spurious solutions

● Easy to check while building diagram. Then merge u and v.

44

Sound Reduction

Introduced 

solution

u v

r
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Sound Reduction

Optimal value = 2,  = 6.

Sound-reduce u1 into v1

Introduced solution is spurious, value = 9



Theorem. Repeated application of the node merger 

operation (in any order) yields a sound reduced DD 

– i.e., a sound DD of minimum size.

Different reduction orders can yield different 

diagrams, but they all have the same size!
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Sound 
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Sound Reduction

Mergers yield 2 different sound-reduced diagrams, 

but of the same size

This merger yields one sound-reduced diagram
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Sound Reduction

Mergers yield 2 different sound-reduced diagrams, 

but of the same size

This merger yields another, of the same minimum size



● Sound reduction can significantly compress a 

diagram that represents near-optimal solutions.

– We investigate compression over a range of ’s,

most larger than needed in practice.

– Diagram is generated for one tolerance .

– Same diagram used for multiple queries, using different 

tolerances  < .

– For some instances, maximum  is large enough to 

include all feasible solutions.
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Compression



● We measure:

– Size of tree representation of -optimal solutions.

– Size of reduced DD representation.

– Size of sound-reduced DD representation.

– Computation times

– Including time needed to find -optimal solutions, 

giuven optimal value from solver.

– The solver may be able to find the -optimal solutions 

(e.g., CPLEX).  

– Then only DD-construction is needed, 

which is very fast.

50

Compression
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● Extend to MILP

– Represent integer solutions only in DD.

– Path length computed by solving LP after fixing integer 

variables.

– Scale up by “dualizing” troublesome constraints.

– This introduces spurious solutions that are easily 

ignored.
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● Extend to MILP

– Represent integer solutions only in DD.

– Path length computed by solving LP after fixing integer 

variables.

– Scale up by “dualizing” troublesome constraints.

– This introduces spurious solutions that are easily 

ignored.

● Next: open-source software

– Independent of solver.

– Needs only optimal value and problem formulation.
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Ongoing Research


