Compact Representation of Near-Optimal Integer Programming Solutions

John Hooker Carnegie Mellon University Thiago Serra Mitsubishi Electric Research Laboratories

> ISMP 2018 Bordeaux, France

Traditional

Traditional

3

Traditional

This wastes a wealth of information collected for the model, perhaps at great expense

Traditional

Optimal solution, or list of (near-optimal) solutions

Proposed

Nontransparent data structure

$$Ax \ge b$$

Postoptimality Analysis

- **Decision diagrams** provide a transparent data structure
 - Can compactly represent all near-optimal solutions (within Δ of optimum).
 - Open the door to more comprehensive postoptimality analysis
 - Can be efficiently queried with what-if questions.

Decision Diagrams

• Used in **computer science** and **AI** for decades

- Logic circuit design
- Product configuration
- A new perspective on optimization
 - An alternative data structure
 - A **new tool** to do many of the things we do in optimization.

Decision Diagrams

- Some advantages:
 - No need for **inequality** formulations.
 - No need for **linear** or **convex** relaxations.
 - Exploits **recursive structure** in the problem, but...
 - Solves dynamic programming models without state space enumeration.
 - Effective **parallel** computation.
 - Ideal for **postoptimality** analysis

Decision Diagram Basics

Binary decision diagrams encode Boolean functions

Boole (1847), Shannon (1937), Lee (1959), Akers (1978), Bryant (1986)

Reduced Decision Diagrams

- There is a **unique reduced** DD representing any given function.
 - Once the variable ordering is specified.

Bryant (1986)

- The reduced DD can be viewed as a branching tree with **redundancy** removed.
 - Superimpose isomorphic subtrees.
 - Remove redundant nodes.

1 indicates feasible solution, 0 infeasible Branching tree for 0-1 inequality $2x_0 + 3x_1 + 5x_2 + 5x_3 \ge 7$

Branching tree for 0-1 inequality $2x_0 + 3x_1 + 5x_2 + 5x_3 \ge 7$

Remove redundant nodes...

Superimpose identical subtrees...

Superimpose identical subtrees...

Superimpose identical leaf nodes...

as generated by software

Optimization with Exact Decision Diagrams

- Decision diagrams can represent feasible set
 - Remove paths to 0.
 - Paths to 1 are feasible solutions.
 - Associate costs with arcs.
 - Reduces optimization to a shortest path problem

Hadžić and JH (2006, 2007)

Stable Set Problem

Let each vertex have weight w_i

Select nonadjacent vertices to maximize $\sum_i w_i x_i$

Exact DD for stable set problem

Exact DD for stable set problem

Paths from top to bottom correspond to the 9 feasible solutions

For objective function, associate weights with arcs

For objective function, associate weights with arcs

Optimal solution is **longest path**

For objective function, associate weights with arcs

Optimal solution is **longest path**

Near-optimal Solutions

- Let $v^* = optimal cost$.
- A solution is Δ-optimal if it is feasible and its cost is ≤ v* + Δ
 - We wish to represent all ∆-optimal solutions in a decision diagram.
 - The diagram is generated once for multiple queries.
 - In general, the user will be interested in δ -optimal solutions for $\delta < \Delta$.

Hadžić and JH (2007)

- **Sound** DDs can store near-optimal solutions more compactly.
 - Sound = all Δ -optimal solutions are included...
 - ...along with some **spurious** solutions (feasible and infeasible) that are **worse than** Δ **-optimal**

- That is, $cost > v^* + \Delta$.

Hadžić and JH (2007)

- **Sound** DDs can store near-optimal solutions more compactly.
 - Sound = all Δ -optimal solutions are included...
 - ...along with some **spurious** solutions (feasible and infeasible) that are **worse than** Δ **-optimal**
 - That is, $cost > v^* + \Delta$.
 - These solutions are easily screened out.
 - No effect whatever on most queries.
 - Paradoxically, this can result in a **smaller** DD.

minimize $4x_1 + 3x_2 + 2x_3$ subject to $x_1 + x_3 \ge 1$, $x_2 + x_3 \ge 1$, $x_1 + x_2 + x_3 \le 2$ $x_1, x_2, x_3 \in \{0, 1\}$

Branching tree

Optimal value = 2

Optimal value = 2

minimize $4x_1 + 3x_2 + 2x_3$ subject to $x_1 + x_3 \ge 1$, $x_2 + x_3 \ge 1$, $x_1 + x_2 + x_3 \le 2$ $x_1, x_2, x_3 \in \{0, 1\}$

Example: What values can x_2 take when $\delta = 2$?

Example: What values can x_2 take when $\delta = 2$?

Example: What values can x_2 take when $\delta = 2$?

First use **original** DD. Set $\Delta = 6$, so that all feasible solutions are Δ -optimal and included in the diagram

 x_2 can take only value 0 when $\delta = 2$.

Example: What values can x_2 take when $\delta = 2$?

Example: What values can x_2 take when $\delta = 2$?

Example: What values can x_2 take when $\delta = 2$?

Now use **sound** DD. Again set $\Delta = 6$, so that all feasible solutions are Δ -optimal and included in the diagram

 x_2 can take only value 0 when $\delta = 2$. Spurious solution has no effect on the analysis.

Sound DDs

- A sound diagram is **minimal** if no arcs/nodes can be removed without destroying soundness.
 - Easy to check whether an arc/node can be removed.

Theorem. A minimal sound diagram for $\Delta = 0$ (optimal solutions only) never contains spurious solutions.

So there is no point in using sound diagrams for optimal solutions only.

Sound Reduction

- We can **sound reduce** node *u* into node *v* when this introduces only spurious solutions
 - Easy to check while building diagram. Then merge **u** and **v**.

 $\operatorname{Suf}_{\Delta}(u) \subseteq \operatorname{Suf}(v)$ $w(\pi) + w(\sigma) > z^* + \Delta \text{ when } x(\pi) \in \operatorname{Pre}(u) \text{ and } x(\sigma) \in \operatorname{Suf}(v) \setminus \operatorname{Suf}(u)$ 44

Sound Reduction

Optimal value = 2, Δ = 6. Sound-reduce u_1 into v_1

Introduced solution is spurious, value = 9

Sound

Theorem. Repeated application of the node merger operation (in any order) yields a **sound reduced** DD – i.e., a sound DD of **minimum size**.

Different reduction orders can yield different diagrams, but **they all have the same size!**

Sound Reduction

Mergers yield 2 different sound-reduced diagrams, but of the same size

This merger yields one sound-reduced diagram

47

Sound Reduction

Mergers yield 2 different sound-reduced diagrams, but of the same size

This merger yields another, of the same minimum size

Compression

- Sound reduction can significantly compress a diagram that represents near-optimal solutions.
 - We investigate compression over a range of Δ 's, most larger than needed in practice.
 - Diagram is generated for one tolerance Δ .
 - Same diagram used for **multiple queries**, using different tolerances $\delta < \Delta$.
 - For some instances, maximum Δ is large enough to include all feasible solutions.

Compression

- We measure:
 - Size of tree representation of Δ -optimal solutions.
 - Size of reduced DD representation.
 - Size of **sound-reduced DD** representation.
 - Computation times
 - Including time needed to find Δ -optimal solutions, giuven optimal value from solver.
 - The solver may be able to find the Δ -optimal solutions (e.g., CPLEX).
 - Then only DD-construction is needed, which is very fast.

T = tree representation U = reduced DD S = sound-reduced DD

T = tree representation U = reduced DD S = sound-reduced DD

T = tree representation U = reduced DD S = sound-reduced DD

T = tree representation U = reduced DD S = sound-reduced DD

T = tree representation U = reduced DD S = sound-reduced DD

T = tree representation U = reduced DD S = sound-reduced DD

Ongoing Research

- Extend to MILP
 - Represent integer solutions only in DD.
 - Path length computed by solving LP after fixing integer variables.
 - Scale up by "dualizing" troublesome constraints.
 - This introduces spurious solutions that are easily ignored.

Ongoing Research

- Extend to MILP
 - Represent integer solutions only in DD.
 - Path length computed by solving LP after fixing integer variables.
 - Scale up by "dualizing" troublesome constraints.
 - This introduces spurious solutions that are easily ignored.
- Next: open-source software
 - Independent of solver.
 - Needs only optimal value and problem formulation.