Integer Programming Postoptimality Analysis Using Decision Diagrams

John Hooker Carnegie Mellon University Thiago Serra Mitsubishi Electric Research Laboratories

INFORMS 2018

Two Perspectives on Optimization

Traditional

This wastes a wealth of information collected for the model, perhaps at great expense

Two Perspectives on Optimization

Traditional

Optimal solution, or list of (near-optimal) solutions

Proposed

Nontransparent data structure

$$Ax \ge b$$

Postoptimality Analysis

- **Decision diagrams** provide a transparent data structure
 - Can compactly represent all near-optimal solutions (within Δ of optimum).
 - Open the door to more comprehensive postoptimality analysis
 - Can be efficiently queried with what-if questions.

Near-optimal Solutions

- Let $v^* = optimal cost$.
- A solution is Δ-optimal if it is feasible and its cost is ≤ v* + Δ
 - We wish to represent all ∆-optimal solutions in a decision diagram.
 - The diagram is generated once for multiple queries.
 - In general, the user will be interested in δ -optimal solutions for $\delta \leq \Delta$.

Sound Decision Diagrams

- **Sound** DDs can store near-optimal solutions more compactly.
 - Sound = all Δ -optimal solutions are included...
 - ...along with some spurious solutions (feasible and infeasible) that are worse than Δ-optimal

– That is, $cost > v^* + \Delta$.

Sound Decision Diagrams

- **Sound** DDs can store near-optimal solutions more compactly.
 - Sound = all Δ -optimal solutions are included...
 - ...along with some spurious solutions (feasible and infeasible) that are worse than Δ-optimal
 - That is, $cost > v^* + \Delta$.
 - These solutions are easily screened out.
 - No effect whatever on most queries.
 - Paradoxically, this can result in a **smaller** DD.

Sound DDs for IP

minimize $4x_1 + 3x_2 + 2x_3$ subject to $x_1 + x_3 \ge 1$, $x_2 + x_3 \ge 1$, $x_1 + x_2 + x_3 \le 2$ $x_1, x_2, x_3 \in \{0, 1\}$

Branching tree

Optimal value = 2

Sound DDs for IP

minimize $4x_1 + 3x_2 + 2x_3$ subject to $x_1 + x_3 \ge 1$, $x_2 + x_3 \ge 1$, $x_1 + x_2 + x_3 \le 2$ $x_1, x_2, x_3 \in \{0, 1\}$

Sound DDs for IP

minimize $4x_1 + 3x_2 + 2x_3$ subject to $x_1 + x_3 \ge 1$, $x_2 + x_3 \ge 1$, $x_1 + x_2 + x_3 \le 2$ $x_1, x_2, x_3 \in \{0, 1\}$

Example: What values can x_2 take when $\delta = 2$? (Given that optimal value is 2.)

Example: What values can x_2 take when $\delta = 2$? (Given that optimal value is 2.)

Example: What values can x_2 take when $\delta = 2$? (Given that optimal value is 2.)

 x_2 can take only value 0 when $\delta = 2$.

Example: What values can x_2 take when $\delta = 2$? (Given that optimal value is 2.)

Now use **sound** DD for $\Delta = 6$.

Spurious solution (1,1,1) is screened out in the process.

 x_2 can take only value 0 when $\delta = 2$. Spurious solution has no effect on the analysis.

Minimal Sound DDs

- A sound DD is **minimal** if no arcs/nodes can be removed without destroying soundness.
 - Easy to check whether an arc/node can be removed.

Theorem. A minimal sound DD for $\Delta = 0$ never contains spurious solutions.

So there is no point in using sound DDs for **optimal solutions only**. (Not so for MIP.)

- We can sound reduce node *u* into node *v* when this removes no ∆-optimal solutions and introduces only spurious solutions.
 - Can be checked recursively while building diagram.

- We can sound reduce node *u* into node *v* when this removes no ∆-optimal solutions and introduces only spurious solutions.
 - Can be checked recursively while building diagram.

- We can sound reduce node *u* into node *v* when this removes no ∆-optimal solutions and introduces only spurious solutions.
 - Can be checked recursively while building diagram.

Optimal value = 2, Δ = 6. Sound-reduce u_1 into v_1

Introduced solution is spurious, value = 9

Theorem. Repeated application of the sound reduction operation (in any order) yields a **sound** DD of **minimum size**.

Different reduction orders can yield different diagrams, but **they all have the same size!**

Mergers yield 2 different sound-reduced diagrams, but of the same size

This merger yields one sound-reduced diagram

Mergers yield 2 different sound-reduced diagrams, but of the same size

This merger yields another, of the same minimum size

Building a Sound DD

- Two options:
- Stand-alone approach
 - Build the sound DD and identify ∆-optimal solutions simultaneously.
 - Use branching search with backtracking.
 - Use only the optimal value, obtained from a solver.
 - Identify nodes and sound-reduce nodes when possible.
- Solver-assisted approach
 - Obtain Δ -optimal solutions from a solver.
 - Use similar backtracking algorithm, without search for solutions.

Building a Sound DD

Technical conditions for sound-reducing *u* into *v*:

Compression

- Sound reduction can significantly compress a diagram that represents near-optimal solutions.
 - We investigate compression for a large Δ , larger than needed in practice.
 - For some instances, Δ is large enough to include all feasible solutions.
 - Same diagram used for **multiple queries**, using different tolerances $\delta < \Delta$.

MDD Compression

Tree size & sound-reduced DD size for large Δ 39 IP instances from MIPLIB 3.0 and MIPLIB 2010

Search & Compression Time CPLEX search time & DD build time (sec) for large Δ

Stand-alone method

Stand-alone method

Stand-alone method

Research Issues

- Extension to MILP
 - Under development
- Applications to:
 - Multiobjective optimization
 - Original application!
 - General mixed discrete/continuous programming
 - Not just MILP
- How to combine DD-based solution with DD-based postoptimality?
 - As in "1-tree" method for MILP