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Two Perspectives on Optimization

2

Traditional

Nontransparent data 

structure
Optimal solution, 

or list of 

(near-optimal) 
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This wastes a wealth of information 

collected for the model,

perhaps at great expense

Ax b
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● Decision diagrams provide a transparent data 

structure

– Can compactly represent all near-optimal solutions

(within  of optimum).

– Open the door to more 

comprehensive postoptimality

analysis

– Can be efficiently queried 

with what-if questions.
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Postoptimality Analysis



● Let v* = optimal cost.

● A solution is -optimal if it is feasible and 

its cost is  v* + 

● We wish to represent all -optimal solutions in a decision 

diagram.

● The diagram is generated once for multiple queries.

– In general, the user will be interested in -optimal 

solutions for   .  
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Near-optimal Solutions

Hadžić and JH (2006)



● Sound DDs can store near-optimal solutions more 

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions 

(feasible and infeasible) that are worse 

than -optimal

– That is, cost > v* + .
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Sound Decision Diagrams

Hadžić and JH (2006)



● Sound DDs can store near-optimal solutions more 

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions 

(feasible and infeasible) that are worse 

than -optimal

– That is, cost > v* + .

– These solutions are easily screened out.

– No effect whatever on most queries. 

– Paradoxically, this can result in a smaller DD.
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Sound Decision Diagrams

Hadžić and JH (2006)
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Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2
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Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2 Contains spurious solution x = (1,1,1)

Its value = 9 > 2 + 



11

Postoptimality Queries

First use original DD

for  = 6.

Shortest distance to root

Example:  What values can x2 take when  = 2?

(Given that optimal value is 2.) 

4 0

2

Shortest distance to terminus
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Postoptimality Queries

First use original DD

for  = 6.

These arcs are removed

because 4 + 0 + 2 > 2 + 

0 + 3 + 2 > 2 + 

Example:  What values can x2 take when  = 2? 

(Given that optimal value is 2.)

4 0

2
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Postoptimality Queries

First use original DD 

for  = 6.

x2 can take only value 0 when  = 2.

Example:  What values can x2 take when  = 2?

(Given that optimal value is 2.)



Example:  What values can x2 take when  = 2?

(Given that optimal value is 2.)
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Postoptimality Queries

Now use sound DD

for  = 6.

Shortest distance to root

0

2

Shortest distance to terminus
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Postoptimality Queries

Now use sound DD

for  = 6.

Example:  What values can x2 take when  = 2?

(Given that optimal value is 2.)

0

2

This arc is removed

because 0 + 3 + 2 > 2 + 
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Postoptimality Queries

Now use sound DD

for  = 6.

Spurious solution (1,1,1)

is screened out in the 

process.

Example:  What values can x2 take when  = 2?

(Given that optimal value is 2.)

x2 can take only value 0 when  = 2.

Spurious solution has no effect on the analysis.



● A sound DD is minimal if no arcs/nodes can be 

removed without destroying soundness.

– Easy to check whether an arc/node can be removed. 

Theorem. A minimal sound DD for  = 0 never 

contains spurious solutions.

So there is no point in using sound DDs for optimal solutions 

only.  (Not so for MIP.)
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Minimal Sound DDs

Serra and JH (2018)



u

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram. 
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Sound Reduction

v

r r

Arcs out of u

are dropped

v



u
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Sound Reduction

v

r r

-optimal 

solutions 

through u

preserved
v

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram. 



u
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Sound Reduction

v

r r

Introduced

solutions

worse 

than

-optimal

v

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram. 
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Sound Reduction

Optimal value = 2,  = 6.

Sound-reduce u1 into v1

Introduced solution is spurious, value = 9



Theorem. Repeated application of the 

sound reduction operation (in any order) yields 

a sound DD of minimum size.

Different reduction orders can yield different 

diagrams, but they all have the same size!
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Sound Reduction 

Serra and JH (2018)
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Sound Reduction

Mergers yield 2 different sound-reduced diagrams, 

but of the same size

This merger yields one sound-reduced diagram
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Sound Reduction

Mergers yield 2 different sound-reduced diagrams, 

but of the same size

This merger yields another, of the same minimum size



● Two options:

● Stand-alone approach

– Build the sound DD and identify -optimal solutions 

simultaneously.

– Use branching search with backtracking.

– Use only the optimal value, obtained from a solver.

– Identify nodes and sound-reduce nodes when possible.

● Solver-assisted approach

– Obtain -optimal solutions from a solver.

– Use similar backtracking algorithm, without search for 

solutions.
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Building a Sound DD



u
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Building a Sound DD

v

r r

v

Technical conditions for sound-reducing u into v:

Shortest ru distance Optimal 

value

Least-cost differing suffix

= min length suffix of v

that is not a suffix of u

Suffix = path to terminus

Computed recursively 

while backtracking.

LCDS is known when we 

have backtracked to both 

u and v.



● Sound reduction can significantly compress a 

diagram that represents near-optimal solutions.

– We investigate compression for a large , larger than 

needed in practice.

– For some instances,  is large enough to include all 

feasible solutions.

– Same diagram used for multiple queries, using different 

tolerances  < .
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Compression
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MDD Compression

Tree size & sound-reduced DD size for large 

39 IP instances from MIPLIB 3.0 and MIPLIB 2010
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Search & Compression Time

CPLEX search time & DD build time (sec) for large 
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MDD Compression & Time vs 

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method
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● Extension to MILP

– Under development

● Applications to:

– Multiobjective optimization

– Original application!

– General mixed discrete/continuous programming

– Not just MILP

● How to combine DD-based solution with 

DD-based postoptimality?

– As in “1-tree” method for MILP
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Research Issues


