
Integer Programming

Postoptimality Analysis

Using Decision Diagrams

John Hooker
Carnegie Mellon University

Thiago Serra
Mitsubishi Electric Research Laboratories

INFORMS 2018

Two Perspectives on Optimization

2

Traditional

Nontransparent data

structure
Optimal solution,

or list of

(near-optimal)

solutions

Solver

This wastes a wealth of information

collected for the model,

perhaps at great expense

Ax b

Two Perspectives on Optimization

3

Traditional

Nontransparent data

structure
Optimal solution,

or list of

(near-optimal)

solutions

Solver

Ax b

Proposed

Nontransparent data

structure

Transparent data

structure

Solver

Ax b

● Decision diagrams provide a transparent data

structure

– Can compactly represent all near-optimal solutions

(within  of optimum).

– Open the door to more

comprehensive postoptimality

analysis

– Can be efficiently queried

with what-if questions.

4

Postoptimality Analysis

● Let v* = optimal cost.

● A solution is -optimal if it is feasible and

its cost is  v* + 

● We wish to represent all -optimal solutions in a decision

diagram.

● The diagram is generated once for multiple queries.

– In general, the user will be interested in -optimal

solutions for   .

5

Near-optimal Solutions

Hadžić and JH (2006)

● Sound DDs can store near-optimal solutions more

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions

(feasible and infeasible) that are worse

than -optimal

– That is, cost > v* + .

6

Sound Decision Diagrams

Hadžić and JH (2006)

● Sound DDs can store near-optimal solutions more

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions

(feasible and infeasible) that are worse

than -optimal

– That is, cost > v* + .

– These solutions are easily screened out.

– No effect whatever on most queries.

– Paradoxically, this can result in a smaller DD.

7

Sound Decision Diagrams

Hadžić and JH (2006)

8

Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2

9

Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2

10

Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for  = 6

Optimal value = 2 Contains spurious solution x = (1,1,1)

Its value = 9 > 2 + 

11

Postoptimality Queries

First use original DD

for  = 6.

Shortest distance to root

Example: What values can x2 take when  = 2?

(Given that optimal value is 2.)

4 0

2

Shortest distance to terminus

12

Postoptimality Queries

First use original DD

for  = 6.

These arcs are removed

because 4 + 0 + 2 > 2 + 

0 + 3 + 2 > 2 + 

Example: What values can x2 take when  = 2?

(Given that optimal value is 2.)

4 0

2

13

Postoptimality Queries

First use original DD

for  = 6.

x2 can take only value 0 when  = 2.

Example: What values can x2 take when  = 2?

(Given that optimal value is 2.)

Example: What values can x2 take when  = 2?

(Given that optimal value is 2.)

14

Postoptimality Queries

Now use sound DD

for  = 6.

Shortest distance to root

0

2

Shortest distance to terminus

15

Postoptimality Queries

Now use sound DD

for  = 6.

Example: What values can x2 take when  = 2?

(Given that optimal value is 2.)

0

2

This arc is removed

because 0 + 3 + 2 > 2 + 

16

Postoptimality Queries

Now use sound DD

for  = 6.

Spurious solution (1,1,1)

is screened out in the

process.

Example: What values can x2 take when  = 2?

(Given that optimal value is 2.)

x2 can take only value 0 when  = 2.

Spurious solution has no effect on the analysis.

● A sound DD is minimal if no arcs/nodes can be

removed without destroying soundness.

– Easy to check whether an arc/node can be removed.

Theorem. A minimal sound DD for  = 0 never

contains spurious solutions.

So there is no point in using sound DDs for optimal solutions

only. (Not so for MIP.)

17

Minimal Sound DDs

Serra and JH (2018)

u

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram.

18

Sound Reduction

v

r r

Arcs out of u

are dropped

v

u

19

Sound Reduction

v

r r

-optimal

solutions

through u

preserved
v

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram.

u

20

Sound Reduction

v

r r

Introduced

solutions

worse

than

-optimal

v

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram.

21

Sound Reduction

Optimal value = 2,  = 6.

Sound-reduce u1 into v1

Introduced solution is spurious, value = 9

Theorem. Repeated application of the

sound reduction operation (in any order) yields

a sound DD of minimum size.

Different reduction orders can yield different

diagrams, but they all have the same size!

22

Sound Reduction

Serra and JH (2018)

23

Sound Reduction

Mergers yield 2 different sound-reduced diagrams,

but of the same size

This merger yields one sound-reduced diagram

24

Sound Reduction

Mergers yield 2 different sound-reduced diagrams,

but of the same size

This merger yields another, of the same minimum size

● Two options:

● Stand-alone approach

– Build the sound DD and identify -optimal solutions

simultaneously.

– Use branching search with backtracking.

– Use only the optimal value, obtained from a solver.

– Identify nodes and sound-reduce nodes when possible.

● Solver-assisted approach

– Obtain -optimal solutions from a solver.

– Use similar backtracking algorithm, without search for

solutions.

25

Building a Sound DD

u

26

Building a Sound DD

v

r r

v

Technical conditions for sound-reducing u into v:

Shortest ru distance Optimal

value

Least-cost differing suffix

= min length suffix of v

that is not a suffix of u

Suffix = path to terminus

Computed recursively

while backtracking.

LCDS is known when we

have backtracked to both

u and v.

● Sound reduction can significantly compress a

diagram that represents near-optimal solutions.

– We investigate compression for a large , larger than

needed in practice.

– For some instances,  is large enough to include all

feasible solutions.

– Same diagram used for multiple queries, using different

tolerances  < .

27

Compression

28

MDD Compression

Tree size & sound-reduced DD size for large 

39 IP instances from MIPLIB 3.0 and MIPLIB 2010

29

Search & Compression Time

CPLEX search time & DD build time (sec) for large 

30

MDD Compression & Time vs 

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

31

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

MDD Compression & Time vs 

32

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

MDD Compression & Time vs 

33

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

MDD Compression & Time vs 

34

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

MDD Compression & Time vs 

● Extension to MILP

– Under development

● Applications to:

– Multiobjective optimization

– Original application!

– General mixed discrete/continuous programming

– Not just MILP

● How to combine DD-based solution with

DD-based postoptimality?

– As in “1-tree” method for MILP

35

Research Issues

