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Two Perspectives on Optimization 
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● Decision diagrams provide a transparent data 

structure 

– Can compactly represent all near-optimal solutions 

(within  of optimum). 

– Open the door to more  

comprehensive postoptimality  

analysis 

– Can be efficiently queried  

with what-if questions. 
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Postoptimality Analysis 



● Basic concepts 

● Pure integer programming 

– Sound diagrams for IP 

– Postoptimality analysis using sound DDs 

– Sound reduction 

– Computational results  

● Mixed-integer programming 

– Sound diagrams for MILP 

– Identifying equivalent states 

– By computation of equivalency ranges 

– Arc deletion and contraction 

– Separable constraints 

– Introducing spurious solutions 

– By constraint dualization 

– By sound reduction 
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Outline 



● Let z* = optimal cost. 

● A solution is -optimal if it is feasible and  

its cost is  z* +  

● We wish to represent all -optimal solutions in a decision 

diagram. 

● The diagram is generated once for multiple queries. 

– In general, the user will be interested in -optimal 

solutions for   .   
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Near-optimal Solutions 

Hadžić and JH (2006) 



● Sound DDs can store near-optimal solutions more 

compactly. 

– Sound = all -optimal solutions are included… 

– …along with some spurious solutions  

(feasible and infeasible) that are worse  

than -optimal 

– That is, cost > z* + . 
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Sound Decision Diagrams 

Hadžić and JH (2006) 



● Sound DDs can store near-optimal solutions more 

compactly. 

– Sound = all -optimal solutions are included… 

– …along with some spurious solutions  

(feasible and infeasible) that are worse  

than -optimal 

– That is, cost > z* + . 

– These solutions are easily screened out. 

– No effect whatever on most queries.  

– Paradoxically, this can result in a smaller DD. 
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Sound Decision Diagrams 

Hadžić and JH (2006) 



9 

Sound DDs for IP 

Branching tree 
Reduced 

weighted DD 

Sound DD 

for  = 6 

Optimal value = 2 
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Sound DDs for IP 

Branching tree 
Reduced 

weighted DD 

Sound DD 

for  = 6 

Optimal value = 2 Contains spurious solution x = (1,1,1) 

Its value = 9 > 2 +  
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Postoptimality Queries 

First use original DD 

for  = 6. 

Shortest distance to root 

Example:  What values can x2 take when  = 2? 
 

4 0 

2 

Shortest distance to terminus 
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Postoptimality Queries 

First use original DD 

for  = 6. 

These arcs are removed 

because 4 + 0 + 2 > 2 +  

               0 + 3 + 2 > 2 +  

Example:  What values can x2 take when  = 2? 
 

4 0 

2 
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Postoptimality Queries 

First use original DD  

for  = 6. 

x2 can take only value 0 when  = 2. 

Example:  What values can x2 take when  = 2? 
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Postoptimality Queries 

Now use sound DD 

for  = 6. 

Shortest distance to root 

Example:  What values can x2 take when  = 2? 
 

0 

2 

Shortest distance to terminus 
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Postoptimality Queries 

Now use sound DD 

for  = 6. 

Example:  What values can x2 take when  = 2? 
 

0 

2 

This arc is removed 

because 0 + 3 + 2 > 2 +  
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Postoptimality Queries 

Now use sound DD 

for  = 6. 

 

Spurious solution (1,1,1) 

is screened out in the 

process. 

Example:  What values can x2 take when  = 2? 
 

x2 can take only value 0 when  = 2. 

Spurious solution has no effect on the analysis. 



● A sound DD is minimal if no arcs/nodes can be 

removed without destroying soundness. 

– Easy to check whether an arc/node can be removed.  

 

Theorem.  A minimal sound DD for  = 0 never 

contains spurious solutions. 

So there is no point in using sound DDs for optimal solutions 

only.  (Not so for MIP.) 
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Minimal Sound DDs 

Serra and JH (2018) 



u 

● We can sound reduce node u into node v  

when this removes no -optimal solutions 

and introduces only spurious solutions. 

● Can be checked recursively while building diagram.  
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Sound Reduction 

v 

r r 

Arcs out of u 

are dropped 

v 



u 
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Sound Reduction 

v 

r r 

-optimal 

solutions 

through u 

preserved 
v 

● We can sound reduce node u into node v  

when this removes no -optimal solutions 

and introduces only spurious solutions. 

● Can be checked recursively while building diagram.  

 



u 
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Sound Reduction 

v 

r r 

Introduced 

solutions 

worse  

than 

-optimal 

v 

● We can sound reduce node u into node v  

when this removes no -optimal solutions 

and introduces only spurious solutions. 

● Can be checked recursively while building diagram.  
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Sound Reduction 

Optimal value = 2,  = 6. 

Sound-reduce u1 into v1 

Introduced solution is spurious, value = 9 



Theorem.  Repeated application of the  

sound reduction operation (in any order) yields  

a sound DD of minimum size. 

 

Different reduction orders can yield different 

diagrams, but they all have the same size! 

 

(Does not hold for MILP.) 
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Sound Reduction  

Serra and JH (2018) 
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Sound Reduction 

Mergers yield 2 different sound-reduced diagrams, 

but of the same size 

This merger yields one sound-reduced diagram 
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Sound Reduction 

Mergers yield 2 different sound-reduced diagrams, 

but of the same size 

This merger yields another, of the same minimum size 



● Two options: 

● Stand-alone approach 

– Build the sound DD and identify -optimal solutions 

simultaneously. 

– Use branching search with backtracking. 

– Use only the optimal value, obtained from a solver. 

– Identify nodes and sound-reduce nodes when possible. 

● Solver-assisted approach 

– Obtain -optimal solutions from a solver. 

– Use similar backtracking algorithm, without search for 

solutions. 
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Building a Sound DD 



u 

27 

Building a Sound DD 

v 

r r 

v 

Technical conditions for sound-reducing u into v: 
 

Shortest ru distance  Optimal  

value 

Least-cost differing suffix 

= min cost of suffix of v 

that is not a suffix of u 

 

Suffix = path to terminus 

 

Computed recursively 

while backtracking. 

 

LCDS is known when we 

have backtracked to both 

u and v. 



● Sound reduction can significantly compress a 

diagram that represents near-optimal solutions. 

– We investigate compression for a large , larger than 

needed in practice. 

– For some instances,  is large enough to include all 

feasible solutions. 

– Same diagram used for multiple queries, using different 

tolerances  < . 
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Compression 



● We measure: 

– Size of tree representation of -optimal solutions. 

– Smaller than a list. 

– Size of reduced DD and sound-reduced DD. 

– Computation times, including search time for 

-optimal solutions. 

– Stand-alone method 

– CPLEX-assisted method 
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Compression 
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DD Compression 

Tree size & sound-reduced DD size for large  

39 IP instances from MIPLIB 3.0 and MIPLIB 2010 
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Search & Compression Time 

CPLEX search time & DD build time (sec) for large  
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DD Compression & Time vs  

T = tree representation 

U = reduced DD 

S = sound-reduced DD 

Stand-alone method 
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T = tree representation 

U = reduced DD 

S = sound-reduced DD 

Stand-alone method 
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T = tree representation 

U = reduced DD 

S = sound-reduced DD 

Stand-alone method 

DD Compression & Time vs  



● DD representation of MILP 

– DD represents only integer solutions. 

– Distinguish: 

– path length = cost of integer variables on path 

– path cost = value of LP relaxation after fixing  

integer variables on path 
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Extension to MILP 



● DD representation of MILP 

– DD represents only integer solutions. 

– Distinguish: 

– path length = cost of integer variables on path 

– path cost = value of LP relaxation after fixing  

integer variables on path 

● Two basic strategies 

– Merge nodes with equivalent states 

– More effective for MILP than IP 

– Shrink DD by introducing spurious solutions. 

– By dualizing constraints to obtain node equivalence. 

– By sound reduction, as in IP but modified. 
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Extension to MILP 



● Soundness defined as before 

– Admit spurious solutions with cost greater than z* +  

– Spurious solutions can be feasible or infeasible. 

 

 

39 

Soundness 



● Soundness defined as before 

– Admit spurious solutions with cost greater than z* +  

– Spurious solutions can be feasible or infeasible. 

● Sound reduction now useful for optimal as well as 

near-optimal solutions. 

– A minimal sound DD can contain spurious solutions even 

when  = 0. 
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Soundness 
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Exact DD 

for  = 0 

Minimal sound DD  

for  = 0 

3 optimal solutions 

with z* = 1 

Minimal because 

every arc is part of a 

-optimal solution 

Spurious solution  

is suboptimal. 

 

DD is smaller. 



● Nodes with equivalent RHS states 𝑏  can be 

identified. 

– Node state is 
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Equivalent States 

Modified RHS 

after variables 

along path 

down to current 

node are fixed 

(in general, a 

tuple of RHSs) 

Length (not cost) 

of shortest path 

from root to 

current node 
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Leads to state (3,0) 

Leads to state (2,4) 

Leads to state (1,8) 

Leads to state (0,12) 

All RHS states 𝑏  ∈ [𝜀, 3] are equivalent because they allow the 

same values of x1, x2.  So arcs leading to (3,0), (2,4), (1,8) can 

lead to the same node with state (min 3,2,1 , min 0,4,8 ) = (1,0). 
 

We say 𝜀, 3  is an equivalency range for 𝑏 . 

 



● MILP states are more often equivalent than IP 

states. 

– Presence of continuous variables often leads to 

equivalency range −∞,∞ .  

– So many constraints have same equivalency range. 
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Equivalent States 

Both constraints have equivalency range −∞,∞  



● An arc can be deleted when it cannot be part of a 

-optimal solution. 

– Based on LP bound 𝐿𝑗(𝑏 ) of cost between node at  

the end of the arc and the terminus. 
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Deleting Arcs 

If the MILP is 

Then  
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Dashed arcs can be deleted when  = 4.  

Deleted because 

𝑣 +  4𝑥1 + 𝐿1 𝑏 = 0 + 8 + 12
3

= 92
3 > 𝑧∗ + ∆ = 5 + 4 

𝐿1 𝑏 = 12
3 



When identifying nodes, use the state with the smallest  

LP bound on cost, rather than taking mins. 

 

 

 

 

 

Theorem.  This procedure results in a sound DD  

for a given .  
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Top-Down Compilation 

Build a DD by top-down branching, identifying equivalent states, 

and deleting arcs when possible. 

 

Theorem.  This can result in a smaller sound DD. 

 



48 

Bottom-up pass deletes one more arc. 

Theorem.  A bottom-up pass can yield a still  

smaller DD. 
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Theorem. Arc contraction can delete more arcs while 

preserving soundness. 

 

 
Contraction of arcs a1, a2 



● Problem:  Because 𝑏  is a tuple, it is hard to prove 

equivalence. 

– Let a subset S of constraints be separable when the 

problem of finding equivalency ranges for the entire 

constraint set can be decomposed into finding ranges for 

S and its complement separately. 

● Dividing constraints into separable subsets can 

help prove equivalence. 

– Particularly because constraints with continuous 

variables often have RHS equivalency range −∞,∞ . 

– Their RHS states are always equivalent. 
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Separable Constraints 



Theorem.  If S has no continuous variables in 

common with other constraints, then S is separable.  
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Separable Constraints 

Corollary.  A pure integer constraint is separable and can 

therefore be analyzed separately. 

Corollary.  If all constraints in S have equivalency range 

−∞,∞ , we can ignore S when computing equivalency ranges 

for the entire constraint set. 



● Constraints that block equivalence can be 

dualized. 

– Given constraint                                 add artificial variable 

to obtain                                            

– Add               to the constraint set and               to the 

objective function. 

– Constraint                                  can now be ignored when 

checking for equivalence. 

 

Theorem.  For sufficiently large but bounded M, 

dualizing constraints preserves soundness. 

 

Yet it results in more spurious solutions. 
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Dualizing Constraints 



● Sound reduction can be defined in parallel with IP. 

– However, the test for sound reduction is harder to pass. 

– It relies on LP bounds rather than path lengths. 

– Finding weaker conditions for sound reduction is a 

current research issue. 
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Sound Reduction 



● Applications to: 

– Multiobjective optimization 

– Original application! 

– General mixed discrete/continuous programming 

– Not just MILP 
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Research Issues 



● Applications to: 

– Multiobjective optimization 

– Original application! 

– General mixed discrete/continuous programming 

– Not just MILP 

● How to combine DD-based solution with  

DD-based postoptimality? 

– Partially analogous to “1-tree” method for generating 

near-optimal MILP solutions. 

– Search for all near-optimal solutions using the same tree. 

– Use a “1-DD” method. 

– Search for all near-optimal solutions in the same DD. 

– Result is a sound DD representing the solutions,  

rather than just a list as in MILP. 
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Research Issues 


