
MDD-based Postoptimality Analysis

for Mixed-integer Programs

John Hooker, Ryo Kimura
Carnegie Mellon University

Thiago Serra
Mitsubishi Electric Research Laboratories

Symposium on Decision Diagrams for Optimization (DDOPT)
Carnegie Mellon University, October 2018

Two Perspectives on Optimization

2

Traditional

Nontransparent data

structure

Optimal solution,

or list of

(near-optimal)

solutions

Solver

This wastes a wealth of information

collected for the model,

perhaps at great expense

Ax b

Two Perspectives on Optimization

3

Traditional

Nontransparent data

structure

Optimal solution,

or list of

(near-optimal)

solutions

Solver

Ax b

Proposed

Nontransparent data

structure

Transparent data

structure

Solver

Ax b

● Decision diagrams provide a transparent data

structure

– Can compactly represent all near-optimal solutions

(within of optimum).

– Open the door to more

comprehensive postoptimality

analysis

– Can be efficiently queried

with what-if questions.

4

Postoptimality Analysis

● Basic concepts

● Pure integer programming

– Sound diagrams for IP

– Postoptimality analysis using sound DDs

– Sound reduction

– Computational results

● Mixed-integer programming

– Sound diagrams for MILP

– Identifying equivalent states

– By computation of equivalency ranges

– Arc deletion and contraction

– Separable constraints

– Introducing spurious solutions

– By constraint dualization

– By sound reduction

5

Outline

● Let z* = optimal cost.

● A solution is -optimal if it is feasible and

its cost is z* +

● We wish to represent all -optimal solutions in a decision

diagram.

● The diagram is generated once for multiple queries.

– In general, the user will be interested in -optimal

solutions for .

6

Near-optimal Solutions

Hadžić and JH (2006)

● Sound DDs can store near-optimal solutions more

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions

(feasible and infeasible) that are worse

than -optimal

– That is, cost > z* + .

7

Sound Decision Diagrams

Hadžić and JH (2006)

● Sound DDs can store near-optimal solutions more

compactly.

– Sound = all -optimal solutions are included…

– …along with some spurious solutions

(feasible and infeasible) that are worse

than -optimal

– That is, cost > z* + .

– These solutions are easily screened out.

– No effect whatever on most queries.

– Paradoxically, this can result in a smaller DD.

8

Sound Decision Diagrams

Hadžić and JH (2006)

9

Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for = 6

Optimal value = 2

10

Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for = 6

Optimal value = 2

11

Sound DDs for IP

Branching tree
Reduced

weighted DD

Sound DD

for = 6

Optimal value = 2 Contains spurious solution x = (1,1,1)

Its value = 9 > 2 +

12

Postoptimality Queries

First use original DD

for = 6.

Shortest distance to root

Example: What values can x2 take when = 2?

4 0

2

Shortest distance to terminus

13

Postoptimality Queries

First use original DD

for = 6.

These arcs are removed

because 4 + 0 + 2 > 2 +

 0 + 3 + 2 > 2 +

Example: What values can x2 take when = 2?

4 0

2

14

Postoptimality Queries

First use original DD

for = 6.

x2 can take only value 0 when = 2.

Example: What values can x2 take when = 2?

15

Postoptimality Queries

Now use sound DD

for = 6.

Shortest distance to root

Example: What values can x2 take when = 2?

0

2

Shortest distance to terminus

16

Postoptimality Queries

Now use sound DD

for = 6.

Example: What values can x2 take when = 2?

0

2

This arc is removed

because 0 + 3 + 2 > 2 +

17

Postoptimality Queries

Now use sound DD

for = 6.

Spurious solution (1,1,1)

is screened out in the

process.

Example: What values can x2 take when = 2?

x2 can take only value 0 when = 2.

Spurious solution has no effect on the analysis.

● A sound DD is minimal if no arcs/nodes can be

removed without destroying soundness.

– Easy to check whether an arc/node can be removed.

Theorem. A minimal sound DD for = 0 never

contains spurious solutions.

So there is no point in using sound DDs for optimal solutions

only. (Not so for MIP.)

18

Minimal Sound DDs

Serra and JH (2018)

u

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram.

19

Sound Reduction

v

r r

Arcs out of u

are dropped

v

u

20

Sound Reduction

v

r r

-optimal

solutions

through u

preserved
v

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram.

u

21

Sound Reduction

v

r r

Introduced

solutions

worse

than

-optimal

v

● We can sound reduce node u into node v

when this removes no -optimal solutions

and introduces only spurious solutions.

● Can be checked recursively while building diagram.

22

Sound Reduction

Optimal value = 2, = 6.

Sound-reduce u1 into v1

Introduced solution is spurious, value = 9

Theorem. Repeated application of the

sound reduction operation (in any order) yields

a sound DD of minimum size.

Different reduction orders can yield different

diagrams, but they all have the same size!

(Does not hold for MILP.)

23

Sound Reduction

Serra and JH (2018)

24

Sound Reduction

Mergers yield 2 different sound-reduced diagrams,

but of the same size

This merger yields one sound-reduced diagram

25

Sound Reduction

Mergers yield 2 different sound-reduced diagrams,

but of the same size

This merger yields another, of the same minimum size

● Two options:

● Stand-alone approach

– Build the sound DD and identify -optimal solutions

simultaneously.

– Use branching search with backtracking.

– Use only the optimal value, obtained from a solver.

– Identify nodes and sound-reduce nodes when possible.

● Solver-assisted approach

– Obtain -optimal solutions from a solver.

– Use similar backtracking algorithm, without search for

solutions.

26

Building a Sound DD

u

27

Building a Sound DD

v

r r

v

Technical conditions for sound-reducing u into v:

Shortest ru distance Optimal

value

Least-cost differing suffix

= min cost of suffix of v

that is not a suffix of u

Suffix = path to terminus

Computed recursively

while backtracking.

LCDS is known when we

have backtracked to both

u and v.

● Sound reduction can significantly compress a

diagram that represents near-optimal solutions.

– We investigate compression for a large , larger than

needed in practice.

– For some instances, is large enough to include all

feasible solutions.

– Same diagram used for multiple queries, using different

tolerances < .

28

Compression

● We measure:

– Size of tree representation of -optimal solutions.

– Smaller than a list.

– Size of reduced DD and sound-reduced DD.

– Computation times, including search time for

-optimal solutions.

– Stand-alone method

– CPLEX-assisted method

29

Compression

30

DD Compression

Tree size & sound-reduced DD size for large

39 IP instances from MIPLIB 3.0 and MIPLIB 2010

31

Search & Compression Time

CPLEX search time & DD build time (sec) for large

32

DD Compression & Time vs

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

33

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

DD Compression & Time vs

34

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

DD Compression & Time vs

35

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

DD Compression & Time vs

36

T = tree representation

U = reduced DD

S = sound-reduced DD

Stand-alone method

DD Compression & Time vs

● DD representation of MILP

– DD represents only integer solutions.

– Distinguish:

– path length = cost of integer variables on path

– path cost = value of LP relaxation after fixing

integer variables on path

37

Extension to MILP

● DD representation of MILP

– DD represents only integer solutions.

– Distinguish:

– path length = cost of integer variables on path

– path cost = value of LP relaxation after fixing

integer variables on path

● Two basic strategies

– Merge nodes with equivalent states

– More effective for MILP than IP

– Shrink DD by introducing spurious solutions.

– By dualizing constraints to obtain node equivalence.

– By sound reduction, as in IP but modified.

38

Extension to MILP

● Soundness defined as before

– Admit spurious solutions with cost greater than z* +

– Spurious solutions can be feasible or infeasible.

39

Soundness

● Soundness defined as before

– Admit spurious solutions with cost greater than z* +

– Spurious solutions can be feasible or infeasible.

● Sound reduction now useful for optimal as well as

near-optimal solutions.

– A minimal sound DD can contain spurious solutions even

when = 0.

40

Soundness

41

Exact DD

for = 0

Minimal sound DD

for = 0

3 optimal solutions

with z* = 1

Minimal because

every arc is part of a

-optimal solution

Spurious solution

is suboptimal.

DD is smaller.

● Nodes with equivalent RHS states 𝑏 can be

identified.

– Node state is

42

Equivalent States

Modified RHS

after variables

along path

down to current

node are fixed

(in general, a

tuple of RHSs)

Length (not cost)

of shortest path

from root to

current node

43

Leads to state (3,0)

Leads to state (2,4)

Leads to state (1,8)

Leads to state (0,12)

All RHS states 𝑏 ∈ [𝜀, 3] are equivalent because they allow the

same values of x1, x2. So arcs leading to (3,0), (2,4), (1,8) can

lead to the same node with state (min 3,2,1 , min 0,4,8) = (1,0).

We say 𝜀, 3 is an equivalency range for 𝑏 .

● MILP states are more often equivalent than IP

states.

– Presence of continuous variables often leads to

equivalency range −∞,∞ .

– So many constraints have same equivalency range.

44

Equivalent States

Both constraints have equivalency range −∞,∞

● An arc can be deleted when it cannot be part of a

-optimal solution.

– Based on LP bound 𝐿𝑗(𝑏) of cost between node at

the end of the arc and the terminus.

45

Deleting Arcs

If the MILP is

Then

46

Dashed arcs can be deleted when = 4.

Deleted because

𝑣 + 4𝑥1 + 𝐿1 𝑏 = 0 + 8 + 12
3

= 92
3 > 𝑧∗ + ∆ = 5 + 4

𝐿1 𝑏 = 12
3

When identifying nodes, use the state with the smallest

LP bound on cost, rather than taking mins.

Theorem. This procedure results in a sound DD

for a given .

47

Top-Down Compilation

Build a DD by top-down branching, identifying equivalent states,

and deleting arcs when possible.

Theorem. This can result in a smaller sound DD.

48

Bottom-up pass deletes one more arc.

Theorem. A bottom-up pass can yield a still

smaller DD.

49

Theorem. Arc contraction can delete more arcs while

preserving soundness.

Contraction of arcs a1, a2

● Problem: Because 𝑏 is a tuple, it is hard to prove

equivalence.

– Let a subset S of constraints be separable when the

problem of finding equivalency ranges for the entire

constraint set can be decomposed into finding ranges for

S and its complement separately.

● Dividing constraints into separable subsets can

help prove equivalence.

– Particularly because constraints with continuous

variables often have RHS equivalency range −∞,∞ .

– Their RHS states are always equivalent.

50

Separable Constraints

Theorem. If S has no continuous variables in

common with other constraints, then S is separable.

51

Separable Constraints

Corollary. A pure integer constraint is separable and can

therefore be analyzed separately.

Corollary. If all constraints in S have equivalency range

−∞,∞ , we can ignore S when computing equivalency ranges

for the entire constraint set.

● Constraints that block equivalence can be

dualized.

– Given constraint add artificial variable

to obtain

– Add to the constraint set and to the

objective function.

– Constraint can now be ignored when

checking for equivalence.

Theorem. For sufficiently large but bounded M,

dualizing constraints preserves soundness.

Yet it results in more spurious solutions.
52

Dualizing Constraints

● Sound reduction can be defined in parallel with IP.

– However, the test for sound reduction is harder to pass.

– It relies on LP bounds rather than path lengths.

– Finding weaker conditions for sound reduction is a

current research issue.

53

Sound Reduction

● Applications to:

– Multiobjective optimization

– Original application!

– General mixed discrete/continuous programming

– Not just MILP

54

Research Issues

● Applications to:

– Multiobjective optimization

– Original application!

– General mixed discrete/continuous programming

– Not just MILP

● How to combine DD-based solution with

DD-based postoptimality?

– Partially analogous to “1-tree” method for generating

near-optimal MILP solutions.

– Search for all near-optimal solutions using the same tree.

– Use a “1-DD” method.

– Search for all near-optimal solutions in the same DD.

– Result is a sound DD representing the solutions,

rather than just a list as in MILP.

55

Research Issues

