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Objective

 Relaxed decision diagrams provide a general-
purpose method for discrete optimization.
— When the problem has a dynamic programming model.
— It can outperform MIP even on problems with natural MIP
formulations.
« Goal: extend the method to stochastic
optimization.



Motivation

» Historical focus on inequality models.
— Problem can be solved by branch and bound.
— Good bounds from cutting planes.
 Recursive (DP) models are less common.

— Powerful modeling paradigm — nonlinear, nonconvex.
— But must enumerate exponential state space.



Motivation

» Solution: solve recursive model with
branch and bound!
— Decision diagrams allow this.
— Good bounds from relaxed decision diagrams.

* Today’s goal: conceptual basis to extend DDs
to stochastic problems.
— Define relaxed stochastic decision diagrams.
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Outline

Review discrete optimization with relaxed
decision diagrams
— Some previous results.

Define stochastic decision diagrams (SDDs).
— This is easy.

Main task: define relaxed SDDs.

— Not so easy.

Show how to relax SDDs by node merger.

lllustrate with a sequencing problem
— No computational results yet.



Decision Diagrams

« Graphical encoding of a “
boolean function '-

— Historically used for circuit design 2
& verification

— Adapt to optimization and
constraint programming

x1 x1

Hadzi¢ and JH (2006, 2007)
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Stable Set Problem
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Objective Function

* In general, objective function can be any separable

function.
— Linear or nonlinear, convex or nonconvex

« BDDs can be generalized to nonseparable objective

functions.
— There is a unique reduced BDD with canonical edge costs.

JH (2014)




DP-Style Modeling

* Model has two components.
— DP model of problem, using state variables.
« Analogous to inequality model in IP.
— Rule for merging states to create relaxed DD.
* Analogous to adding valid inequalities in IP.
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Relaxation Bounding

« To obtain a bound on the objective function:
— Use arelaxed BDD
— Analogous to LP relaxation in IP
— This relaxation is discrete.
— Doesn’t require the linear inequality formulation of IP.



2—3

AN

o—4

To build relaxed
BDD, merge
some additional
nodes as we go
along

{12345)



2—3

AN

o—4

To build relaxed
BDD, merge
some additional
nodes as we go
along

{12345}

/
/
/
/
/

{2345}



2—3

AN

o—4

To build relaxed
BDD, merge
some additional
nodes as we go
along

{12345}

/
/
/
/
/

{2345)

14}




2—3

AN

o—4

To build relaxed
BDD, merge
some additional
nodes as we go
along

/ /
/ /
/ /
/ /7
/ V4

{345}

{12345}

/
/
/
/
/

{2345}

134}



{12345}

/
/
/
/
/

To build relaxed o @
BDD, merge @
some additional

nodes as we go
along




To build relaxed
BDD, merge
some additional
nodes as we go
along

(5)

{12345}

/
/
/
/
/

{2345) {34}



1

2—3
/
AN
o—4
Width = 2

Represents 11
solutions,
iIncluding 9
feasible
solutions

{12345}

/
/
/
/
/

{2345) [34)

/
/ /
/ /
/ /
Vg

{345/} {34}




1

2—3
/
AN
o—4
Width = 2

Represents 11
solutions,
iIncluding 9
feasible
solutions

{12345}

/
/
/
/
/

{2345) {34}

/
/ /
/ /
/ /
Vg

{345/} {34}

% Longest path
! gives upper
| bound on
| optimal value

|

%)

/



Decision Diagrams

 QOriginal application: enhanced propagation in
constraint programming

— In multiple alldiff problem (graph coloring), reduced
1 million node search trees to 1 node.

Andersen, Hadzi¢, JH, Tiedemann (2007)
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Decision Diagrams

— Wider diagrams

. . 80 —
yield tighter bounds \\
— But take longer 70 - T
to build.
60 -
— Adjust width
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Relaxation BDD Width
Bergman, Ciré, van Hoeve, JH (2013) 37




Decision Diagrams

« Solve optimization problem using a novel
branch-and-bound algorithm.

— Branch on nodes in last exact layer of relaxed decision
diagram.
— ...rather than branch on variables.

— Create a new relaxed DD rooted at each branching node.

— Prune search tree using bounds from relaxed DD.

38



Decision Diagrams

« Solve optimization problem using a novel
branch-and-bound algorithm.
— Branch on nodes in last exact layer of relaxed decision
diagram.
— ...rather than branch on variables.
— Create a new relaxed DD rooted at each branching node.
— Prune search tree using bounds from relaxed DD.
— Advantage: a manageable number states may be
reachable in first few layers.
— ...even if the state space is exponential.
— Alternative way of dealing with curse of dimensionality.
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Decision Diagrams

Branching in a relaxed
decision diagram

Diagram is exact S
down to here
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Decision Diagrams

Branching in a relaxed
decision diagram

Branch on nodes
In this layer
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Decision Diagrams

Branching in a relaxed
decision diagram

First branch

New relaxed decision diagram
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Decision Diagrams

Branching in a relaxed
decision diagram

Second branch

43




Decision Diagrams

Branching in a relaxed
decision diagram

Third branch
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Decision Diagrams

« Computational results...

— Applied to stable set, max cut, max 2-SAT.

— Superior to commercial MIP solver (CPLEX) on most
instances.

— Even though the problems have natural MIP models.

— Obtained best known solution on some max cut instances.

— Slightly slower than MIP on stable set with precomputed
clique cover model, but...

45



Max cut
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Decision Diagrams

Max 2-SAT

Performance
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Decision Diagrams

* Potential to scale up
— No need to load large inequality model into solver.

— Parallelizes very effectively
— Near-linear speedup.
— Much better than mixed integer programming.
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Stochastic Decision Diagram

« Each decision (control) has probabilistic results.
— Several possible outcomes.

— Assolution is a policy (not a path).
— Specifies control at each node of DD.

50



Uq

Us

Stochastic decision diagram (SDD)

51



Possible outcomes of settingu, =1
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A possible relaxation of the SDD

Uy U1

us

U3 us

Original SDD Relaxed SDD
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Us

Original SDD

Provides lower bound on optimal cost

Relaxed SDD
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Relaxed SDD

Not obvious how to define a relaxed SDD.

— We can’t say that every solution of the original is a
solution of the relaxation.
— A solution is a policy that defines control at each node.

— The relaxed DD may have a completely different
configuration of nodes.

— ...as in the example.

61



Relaxed SDD

* We need a concept of flow-path decomposition
— ...for a given policy.

+ A flow-path decomposition is a set of flows from
top to bottom such that:

— Sum of flows is 1.

— Sum of flows on a given arc is probability of traversing
that arc.

62



A possible flow-path decomposition
of the original SDD

Uy

U9

U3 Us

Original SDD Flow-path
decomposition for

policy in red
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A possible flow-path decomposition
of the original SDD

Uy

u2

Uus

Flow on an arc =
probability of

; traversing the arc
t
0.1+0.2+0.18 =
Original SDD (0.6)(0.8) Flow-path
decomposition for
policy in red
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Relaxed SDD

IS a relaxation of D If:
For every policy u on D:

There is a policy u’ on D’, and flow-path decompositions
F, F" on D, D’ for policies u, u’ such that:

There is a 1-1 mapping of flow-paths from F to F’ that, on
each arc, preserves flow and does not increase cost.
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U2

A possible flow-path decomposition
of the relaxed SDD

Relaxed SDD Flow-path
decomposition for

policy in blue
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Must have 1-1 mapping of each path
to one of equal flow and no greater cost

N\

Flow-path Flow-path
decomposition for decomposition for
original SDD relaxed SDD

67



Relaxed SDD

Theorem. The expected cost of a relaxed SDD is a
bound on the expected cost of the original SDD.
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Relaxation by Node Merger

« Can we relax by merging nodes?
— As in deterministic case?

* Focus on a job sequencing problem.
— Processing time is stochastic.
— Minimize penalty for tardiness.

69



Relaxation by Node Merger

« Can we relax by merging nodes?
— As in deterministic case?

* Focus on a job sequencing problem.
— Processing time is stochastic.
— Minimize penalty for tardiness.

* Decision diagram:
— Associate a state with each node:

(S.)

where S = {jobs still available to schedule}
t = finish time of jobs scheduled so far

70



Relaxation by Node Merger

* Merging nodes creates a valid relaxation if:

— Probabillity distribution over outcomes is the same at each
node, except for an offset.

— We merge node states as follows:

(S)1), (S7t") > (S S/, min{t,t"})

o

Union ensures that no Min ensures that

feasible policies are tardiness cost does
excluded. not increase.
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General node merger scheme
for sequencing problem
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Relaxation by Node Merger

« Consider an instance with 3 jobs.
— Minimize total tardiness.
— Transition probabilities have offset pattern:

Job No. of jobs Processing time
already processed 1 2 3 4 5 §
1 0 06 04
1 0.6 04
2 0.6 04
2 0 0.6 04
1 0.6 04
2 0.6 04
3 0 0.6 04
1 0.6 04
2 0.6 04
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Exact SDD for small sequencing problem

Jobs available for >(({1,2,31)0)
sequencing
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Exact SDD for small sequencing problem

Earliest finish time for
sequenced jobs
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Exact SDD for small sequencing problem

({1,2,3},0)
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Relaxed SDD for small sequencing problem

({1,2.3}.,0)
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Check validity of relaxation

({1,2,3},0)
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Check validity of relaxation

Choose control at a merged
node that results in smaller
mean processing time

(1,2.3},0)
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Relaxed SDD

Theorem. This merger scheme creates a relaxed SDD,
even when applied recursively.
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Relaxation by Node Merger

 If probability distributions do not have offset
pattern...

— Replace each distribution with one that stochastically
dominates it, so that replacement distributions have the
offset pattern..

— Use original distributions down to last exact later of DD.
— Weakens relaxation but does not sacrifice optimality.
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Partially Observable State Spaces

» Can use relaxed SDDs for this case.
— State is information vector.
— such as probability distribution over original states.
« Can again relax by merging nodes.
— Using similar merger rule.
— If transition probabilities have offset property.
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Relaxing Stochastic DP

* Relaxed SDDs provide a general relaxation
scheme for stochastic DP.

— Yields a valid lower bound.
— ...unlike most state space approximation schemes.

 Also a new solution method.

— The same SDD that provides a relaxation provides a
framework for solution by branch and bound.

* Relaxation created dynamically.
— For example, using node merger.
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