Stochastic Decision Diagrams

John Hooker

CORS/INFORMS Montréal June 2015

Objective

- Relaxed decision diagrams provide an generalpurpose method for discrete optimization.
 - When the problem has a **dynamic programming** model.
 - It can **outperform MIP** even on problems with natural MIP formulations.
- Goal: extend the method to stochastic optimization.

- Review discrete optimization with relaxed decision diagrams
 - Some previous results.

- Review discrete optimization with relaxed decision diagrams
 - Some previous results.
- Define stochastic decision diagrams (SDDs).
 - This is easy.

- Review discrete optimization with relaxed decision diagrams
 - Some previous results.
- Define stochastic decision diagrams (SDDs).
 - This is easy.
- Define relaxed SDDs.
 - Not so easy.

- Review discrete optimization with relaxed decision diagrams
 - Some previous results.
- Define stochastic decision diagrams (SDDs).
 - This is easy.
- Define relaxed SDDs.
 - Not so easy.
- Show how to relax SDDs by node merger.

- Review discrete optimization with relaxed decision diagrams
 - Some previous results.
- Define stochastic decision diagrams (SDDs).
 - This is easy.
- Define relaxed SDDs.
 - Not so easy.
- Show how to relax SDDs by node merger.
- Apply to a **sequencing** problem
 - No computational results yet.

Decision Diagrams

- Graphical encoding of a boolean function
 - Historically used for circuit design & verification
 - Adapt to optimization and constraint programming

Hadžić and JH (2006, 2007)

Stable Set Problem

Let each vertex have weight w_i

Select nonadjacent vertices to maximize $\sum_i w_i x_i$

...and so forth

Objective Function

- In general, objective function can be any separable function.
 - Linear or nonlinear, convex or nonconvex
- BDDs can be generalized to nonseparable objective functions.
 - There is a unique reduced BDD with **canonical** edge costs.

DP-Style Modeling

- Model has two components.
 - DP model of problem, using state variables.
 - Analogous to inequality model in IP.
 - Rule for **merging states** to create relaxed DD.
 - Analogous to adding valid inequalities in IP.

X₂

*X*₃

*X*₄

To build BDD, associate **state** with each node

X6

*X*₅

To build BDD, associate **state** with each node

X₆

*X*₅

*X*₄

To build BDD, associate **state** with each node

X₆

*X*₅

Relaxation Bounding

- To obtain a bound on the objective function:
 - Use a **relaxed** BDD
 - Analogous to LP relaxation in IP
 - This relaxation is **discrete**.
 - Doesn't require the linear inequality formulation of IP.

{123456}

X₁

X₂

*X*₃

X₄

X5

To build **relaxed** BDD, merge some additional nodes as we go along

*X*₆

X5

*X*₆

*X*₄

BDD, merge some additional nodes as we go along

*X*₆

*X*₅

X₆

To build **relaxed** BDD, merge some additional nodes as we go along

Width = 1

To build **relaxed** BDD, merge some additional nodes as we go along

Width = 1

Represents 18 solutions, including 11 feasible solutions

Width = 1

Longest path gives bound of 3 on optimal value of 2

- Original application: enhanced propagation in constraint programming
 - In multiple alldiff problem (graph coloring), reduced 1 million node search trees to 1 node.

Andersen, Hadžić, JH, Tiedemann (2007)

- Solve optimization problem using a novel branchand-bound algorithm.
 - Branch on nodes in last exact layer of relaxed decision diagram.
 - ...rather than branch on variables.
 - Create a new **relaxed DD rooted** at each branching node.
 - Prune search tree using bounds from relaxed DD.

- Solve optimization problem using a novel branchand-bound algorithm.
 - Branch on nodes in **last exact layer** of relaxed decision diagram.
 - ...rather than branch on variables.
 - Create a new **relaxed DD rooted** at each branching node.
 - Prune search tree using bounds from relaxed DD.
 - Advantage: a manageable number states may be reachable in first few layers.
 - ...even if the state space is **exponential**.
 - Alternative way of dealing with **curse of dimensionality**.

- Computational results...
 - Applied to stable set, max cut, max 2-SAT.
 - Superior to commercial MIP solver (CPLEX) on most instances.
 - Even though the problems have **natural MIP models**.
 - Obtained best known solution on some max cut instances.

Max cut on a graph

Avg. solution time vs graph density

30 vertices

Max 2-SAT

Performance profile

30 variables

Max 2-SAT

Performance profile

40 variables

- Potential to scale up
 - No need to load large inequality model into solver.
 - Parallelizes very effectively
 - Near-linear speedup.
 - Much better than mixed integer programming.

Stochastic Decision Diagram

- Each decision (control) has probabilistic results.
 - Several possible outcomes.
 - A solution is a **policy** (not a path).
 - Specifies control at each node of DD.

Stochastic decision diagram (SDD)

A possible relaxation of the SDD

Original SDD

Relaxed SDD

Original SDD

Relaxed SDD

Relaxed SDD

- Not obvious how to define a relaxed SDD.
 - We can't say that every solution of the original is a solution of the relaxation.
 - A solution is a **policy** that defines control at each node.
 - The relaxed DD may have a completely different configuration of nodes.
 - ...as in the example.

Relaxed SDD

- We need a concept of flow-path decomposition
 - ...for a given policy.
- A flow-path decomposition is a set of flows from top to bottom such that:
 - Sum of flows is 1.
 - Sum of flows on a given arc is probability of traversing that arc.

A possible flow-path decomposition of the original SDD

Original SDD

Flow-path decomposition for policy in red

A possible flow-path decomposition of the original SDD

Relaxed SDD

- *D'* is a relaxation of *D* if:
 - For every policy *u* on *D*:
 - There is a policy u' on D', and flow-path decompositions
 F, F' on D, D' for policies u, u' such that:
 - There is a 1-1 mapping of flow-paths from F to F that, on each arc, preserves flow and does not increase cost.

A possible flow-path decomposition of the relaxed SDD

0.20.1 v_1' $\bullet v_2$ 0.12 0.240.18 0.01 0.15 v'_3 v'_4 v'_5 t

r

Relaxed SDD

Flow-path decomposition for policy in blue

Must have 1-1 mapping of each path to one of equal flow and no greater cost

Flow-path decomposition for original SDD Flow-path decomposition for relaxed SDD
- Can we relax by merging nodes?
 - As in deterministic case?
- Focus on a job sequencing problem.
 - Processing time is stochastic.
 - Minimize penalty for tardiness.

- Can we relax by merging nodes?
 - As in deterministic case?
- Focus on a job sequencing problem.
 - Processing time is stochastic.
 - Minimize penalty for tardiness.
- Decision diagram:
 - Associate a state with each node:

(*S*,*t*)

where $S = \{jobs still available to schedule\}$ t = finish time of jobs scheduled so far

- Merging nodes creates a valid relaxation if:
 - Probability distribution over outcomes is the same at each node, except for an offset.
 - We merge node states as follows:

S,t),
$$(S',t') \rightarrow (S \cup S', \min\{t,t'\})$$

Union ensures that no feasible policies are excluded.

Min ensures that tardiness cost does not increase.

General node merger scheme for sequencing problem

- Consider an instance with 3 jobs.
 - Minimize total tardiness.
 - Transition probabilities have offset pattern:

Job	No. of jobs	Processing time					
	already processed	1	2	3	4	5	6
1	0	0.6	0.4				
	1		0.6	0.4			
	2			0.6	0.4		
2	0		0.6	0.4			
	1			0.6	0.4		
	2				0.6	0.4	
3	0			0.6	0.4		
	1				0.6	0.4	
	2					0.6	0.4

Exact SDD for small sequencing problem

Exact SDD for small sequencing problem

Exact SDD for small sequencing problem

Merge circled nodes

Relaxed SDD for small sequencing problem

Merge circled nodes

Check validity of relaxation

This path, with flow $(0.4)(0.4)(0.6) = 0.96 \dots$

Check validity of relaxation

...maps to this path with same flow, \leq cost

- If probability distributions do not have offset pattern...
 - Replace each distribution with one that stochastically dominates it, so that replacement distributions have the offset pattern..
 - Use original distributions down to last exact later of DD.
 - Weakens relaxation but does not sacrifice optimality.

Partially Observable State Spaces

- Can use relaxed SDDs for this case.
 - State is information vector.
 - such as probability distribution over original states.
- Can again relax by merging nodes.
 - Using similar merger rule.
 - If transition probabilities have offset property.

Relaxing Stochastic DP

- Relaxed SDDs provide a general relaxation scheme for stochastic DP.
 - Yields a valid lower bound.
 - ...unlike most state space approximation schemes.
- Also a new solution method.
 - The same SDD that provides a relaxation provides a framework for solution by branch and bound.
- Relaxation created dynamically.
 - For example, using node merger.