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Objective

• Relaxed decision diagrams provide an general-

purpose method for discrete optimization.

– When the problem has a dynamic programming model.

– It can outperform MIP even on problems with natural MIP 

formulations.

• Goal: extend the method to stochastic 

optimization.
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– Some previous results.
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Outline

• Review discrete optimization with relaxed 

decision diagrams

– Some previous results.

• Define stochastic decision diagrams (SDDs).

– This is easy.

• Define relaxed SDDs.

– Not so easy.

• Show how to relax SDDs by node merger.

• Apply to a sequencing problem

– No computational results yet.
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Decision Diagrams

• Graphical encoding of a 

boolean function

– Historically used for circuit design 

& verification

– Adapt to optimization and 

constraint programming
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Hadžić and JH (2006, 2007)
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Stable Set Problem

Let each vertex have weight𝑤𝑖

Select nonadjacent vertices to maximize  𝑖𝑤𝑖𝑥𝑖
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Objective Function

• In general, objective function can be any separable 

function.

– Linear or nonlinear, convex or nonconvex

• BDDs can be generalized to nonseparable objective 

functions.

– There is a unique reduced BDD with canonical edge costs.



DP-Style Modeling

• Model has two components.

– DP model of problem, using state variables.

• Analogous to inequality model in IP.

– Rule for merging states to create relaxed DD.

• Analogous to adding valid inequalities in IP.
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Relaxation Bounding

• To obtain a bound on the objective function:

– Use a relaxed BDD

– Analogous to LP relaxation in IP

– This relaxation is discrete.

– Doesn’t require the linear inequality formulation of IP.
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Decision Diagrams

• Original application:  enhanced propagation in 

constraint programming

– In multiple alldiff problem (graph coloring), reduced 1 

million node search trees to 1 node.

41

Andersen, Hadžić, JH, Tiedemann (2007) 



Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

42Bergman, Ciré, van Hoeve, JH (2013) 



Decision Diagrams

• Solve optimization problem using a novel branch-

and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.
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Decision Diagrams

• Solve optimization problem using a novel branch-

and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

– Advantage:  a manageable number states may be 

reachable in first few layers.

– …even if the state space is exponential.

– Alternative way of dealing with curse of dimensionality.
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Decision Diagrams

• Computational results…

– Applied to stable set, max cut, max 2-SAT.

– Superior to commercial MIP solver (CPLEX) on most 

instances.

– Even though the problems have natural MIP models.

– Obtained best known solution on some max cut instances.
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Decision Diagrams

• Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Much better than mixed integer programming.
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Stochastic Decision Diagram

• Each decision (control) has probabilistic results.

– Several possible outcomes.

– A solution is a policy (not a path).

– Specifies control at each node of DD.
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Transition costs
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Relaxed SDD

• Not obvious how to define a relaxed SDD.

– We can’t say that every solution of the original is a 

solution of the relaxation.

– A solution is a policy that defines control at each node.

– The relaxed DD may have a completely different 

configuration of nodes.

– …as in the example.
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Relaxed SDD

• We need a concept of flow-path decomposition

– …for a given policy.

• A flow-path decomposition is a set of flows from 

top to bottom such that:

– Sum of flows is 1.

– Sum of flows on a given arc is probability of traversing 

that arc.
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Relaxed SDD

• D is a relaxation of D if:

– For every policy u on D:

– There is a policy u on D, and flow-path decompositions 

F, F on D, D for policies u, u such that:

– There is a 1-1 mapping of flow-paths from F to F that, on 

each arc, preserves flow and does not increase cost.
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Relaxation by Node Merger

• Can we relax by merging nodes?

– As in deterministic case?

• Focus on a job sequencing problem.

– Processing time is stochastic.

– Minimize penalty for tardiness.
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Relaxation by Node Merger

• Can we relax by merging nodes?

– As in deterministic case?

• Focus on a job sequencing problem.

– Processing time is stochastic.

– Minimize penalty for tardiness.

• Decision diagram:

– Associate a state with each node:

where S = {jobs still available to schedule}

t = finish time of jobs scheduled so far

74

(S,t)



Relaxation by Node Merger

• Merging nodes creates a valid relaxation if:

– Probability distribution over outcomes is the same at each 

node, except for an offset.

– We merge node states as follows:

75

(S,t), (S,t )  (S  S, min{t,t }) 

Union ensures that no 

feasible policies are 

excluded.

Min ensures that 

tardiness cost does 

not increase.
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Relaxation by Node Merger

• Consider an instance with 3 jobs.

– Minimize total tardiness.

– Transition probabilities have offset pattern:

77



78

Exact SDD for small sequencing problem

Jobs available for 

sequencing



79

Exact SDD for small sequencing problem

Earliest finish time for 

sequenced jobs



80

Exact SDD for small sequencing problem

Merge circled nodes



81

Relaxed SDD for small sequencing problem

Merge circled nodes
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Check validity of relaxation

This path, with flow (0.4)(0.4)(0.6) = 0.96 …



83…maps to this path with same flow,  cost

Check validity of relaxation

Choose control at a merged 

node that results in smaller 

mean processing time



• If probability distributions do not have offset 

pattern…

– Replace each distribution with one that stochastically 

dominates it, so that replacement distributions have the 

offset pattern..

– Use original distributions down to last exact later of DD.

– Weakens relaxation but does not sacrifice optimality.

84

Relaxation by Node Merger



Partially Observable State Spaces

• Can use relaxed SDDs for this case.

– State is information vector.

– such as probability distribution over original states.

• Can again relax by merging nodes.

– Using similar merger rule.

– If transition probabilities have offset property.
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Relaxing Stochastic DP

• Relaxed SDDs provide a general relaxation 

scheme for stochastic DP.

– Yields a valid lower bound.

– …unlike most state space approximation schemes.

• Also a new solution method.

– The same SDD that provides a relaxation provides a 

framework for solution by branch and bound.

• Relaxation created dynamically.

– For example, using node merger.
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