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Objective

• Relaxed decision diagrams provide an general-

purpose method for discrete optimization.

– When the problem has a dynamic programming model.

– It can outperform MIP even on problems with natural MIP 

formulations.

• Goal: extend the method to stochastic 

optimization.
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– Some previous results.
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Outline

• Review discrete optimization with relaxed 

decision diagrams

– Some previous results.

• Define stochastic decision diagrams (SDDs).

– This is easy.

• Define relaxed SDDs.

– Not so easy.

• Show how to relax SDDs by node merger.

• Apply to a sequencing problem

– No computational results yet.
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Decision Diagrams

• Graphical encoding of a 

boolean function

– Historically used for circuit design 

& verification

– Adapt to optimization and 

constraint programming
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Hadžić and JH (2006, 2007)
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Stable Set Problem

Let each vertex have weight𝑤𝑖

Select nonadjacent vertices to maximize  𝑖𝑤𝑖𝑥𝑖
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Objective Function

• In general, objective function can be any separable 

function.

– Linear or nonlinear, convex or nonconvex

• BDDs can be generalized to nonseparable objective 

functions.

– There is a unique reduced BDD with canonical edge costs.



DP-Style Modeling

• Model has two components.

– DP model of problem, using state variables.

• Analogous to inequality model in IP.

– Rule for merging states to create relaxed DD.

• Analogous to adding valid inequalities in IP.
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Relaxation Bounding

• To obtain a bound on the objective function:

– Use a relaxed BDD

– Analogous to LP relaxation in IP

– This relaxation is discrete.

– Doesn’t require the linear inequality formulation of IP.
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Decision Diagrams

• Original application:  enhanced propagation in 

constraint programming

– In multiple alldiff problem (graph coloring), reduced 1 

million node search trees to 1 node.

41

Andersen, Hadžić, JH, Tiedemann (2007) 



Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

42Bergman, Ciré, van Hoeve, JH (2013) 



Decision Diagrams

• Solve optimization problem using a novel branch-

and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.
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Decision Diagrams

• Solve optimization problem using a novel branch-

and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

– Advantage:  a manageable number states may be 

reachable in first few layers.

– …even if the state space is exponential.

– Alternative way of dealing with curse of dimensionality.
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Decision Diagrams

• Computational results…

– Applied to stable set, max cut, max 2-SAT.

– Superior to commercial MIP solver (CPLEX) on most 

instances.

– Even though the problems have natural MIP models.

– Obtained best known solution on some max cut instances.
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Decision Diagrams

• Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Much better than mixed integer programming.
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Stochastic Decision Diagram

• Each decision (control) has probabilistic results.

– Several possible outcomes.

– A solution is a policy (not a path).

– Specifies control at each node of DD.
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Transition costs
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Relaxed SDD

• Not obvious how to define a relaxed SDD.

– We can’t say that every solution of the original is a 

solution of the relaxation.

– A solution is a policy that defines control at each node.

– The relaxed DD may have a completely different 

configuration of nodes.

– …as in the example.
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Relaxed SDD

• We need a concept of flow-path decomposition

– …for a given policy.

• A flow-path decomposition is a set of flows from 

top to bottom such that:

– Sum of flows is 1.

– Sum of flows on a given arc is probability of traversing 

that arc.
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Relaxed SDD

• D is a relaxation of D if:

– For every policy u on D:

– There is a policy u on D, and flow-path decompositions 

F, F on D, D for policies u, u such that:

– There is a 1-1 mapping of flow-paths from F to F that, on 

each arc, preserves flow and does not increase cost.
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Relaxation by Node Merger

• Can we relax by merging nodes?

– As in deterministic case?

• Focus on a job sequencing problem.

– Processing time is stochastic.

– Minimize penalty for tardiness.
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Relaxation by Node Merger

• Can we relax by merging nodes?

– As in deterministic case?

• Focus on a job sequencing problem.

– Processing time is stochastic.

– Minimize penalty for tardiness.

• Decision diagram:

– Associate a state with each node:

where S = {jobs still available to schedule}

t = finish time of jobs scheduled so far

74

(S,t)



Relaxation by Node Merger

• Merging nodes creates a valid relaxation if:

– Probability distribution over outcomes is the same at each 

node, except for an offset.

– We merge node states as follows:

75

(S,t), (S,t )  (S  S, min{t,t }) 

Union ensures that no 

feasible policies are 

excluded.

Min ensures that 

tardiness cost does 

not increase.
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Relaxation by Node Merger

• Consider an instance with 3 jobs.

– Minimize total tardiness.

– Transition probabilities have offset pattern:
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Relaxed SDD for small sequencing problem

Merge circled nodes



82

Check validity of relaxation

This path, with flow (0.4)(0.4)(0.6) = 0.96 …



83…maps to this path with same flow,  cost

Check validity of relaxation

Choose control at a merged 

node that results in smaller 

mean processing time



• If probability distributions do not have offset 

pattern…

– Replace each distribution with one that stochastically 

dominates it, so that replacement distributions have the 

offset pattern..

– Use original distributions down to last exact later of DD.

– Weakens relaxation but does not sacrifice optimality.
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Relaxation by Node Merger



Partially Observable State Spaces

• Can use relaxed SDDs for this case.

– State is information vector.

– such as probability distribution over original states.

• Can again relax by merging nodes.

– Using similar merger rule.

– If transition probabilities have offset property.
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Relaxing Stochastic DP

• Relaxed SDDs provide a general relaxation 

scheme for stochastic DP.

– Yields a valid lower bound.

– …unlike most state space approximation schemes.

• Also a new solution method.

– The same SDD that provides a relaxation provides a 

framework for solution by branch and bound.

• Relaxation created dynamically.

– For example, using node merger.
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