What Decision Diagrams Can Do for You

John Hooker
Carnegie Mellon University

INFORMS Optimization Society
March 2018

Decision Diagrams

- Used in computer science and AI for decades
- Logic circuit design
- Product configuration
- A new perspective on optimization
- An alternative data structure
- A new tool to do many of the things we do in optimization.

Decision Diagrams

- Some advantages:
- No need for inequality formulations.
- No need for linear or convex relaxations.
- Exploits recursive structure in the problem, but...
- Solves dynamic programming models without state space enumeration.
- Effective parallel computation.
- Ideal for postoptimality analysis

Decision Diagrams

- This is a high-level overview.
- No need to follow the details.

Some Contributors to This Work

David
Bergman

André
Ciré

Thiago Serra

Tarik Hadžić

Tallys
Yunes

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion
- References

Elements of Optimization

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear programming
- Nonserial recursion
- References

Decision Diagram Basics

- Binary decision diagrams encode Boolean functions

x_{1}	x_{2}	x_{3}	f
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Decision Diagram Basics

- Binary decision diagrams encode Boolean functions
- Easily generalized to multivalued decision diagrams

Reduced Decision Diagrams

- There is a unique reduced DD representing any given function.
- Once the variable ordering is specified.

Bryant (1986)

- The reduced DD can be viewed as a branching tree with redundancy removed.
- Superimpose isomorphic subtrees.
- Remove redundant nodes.

Branching tree for 0-1 inequality
$2 x_{0}+3 x_{1}+5 x_{2}+5 x_{3} \geq 7$

1 indicates feasible solution, 0 infeasible

Branching tree for 0-1 inequality $2 x_{0}+3 x_{1}+5 x_{2}+5 x_{3} \geq 7$

Remove redundant nodes...

Superimpose identical subtrees...

Superimpose identical subtrees...

Superimpose identical leaf nodes...

as generated by software

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion
- References

Optimization with Exact Decision Diagrams

- Decision diagrams can represent feasible set
- Remove paths to 0.
- Paths to 1 are feasible solutions.
- Associate costs with arcs.
- Reduces optimization to a shortest path problem

Hadžić and JH $(2006,2007)$

Stable Set Problem

Let each vertex have weight w_{i}

Select nonadjacent vertices to maximize $\sum_{i} w_{i} x_{i}$

Exact DD for stable set problem

Exact DD for stable set problem

For objective function, associate weights with arcs

For objective function, associate weights with arcs

Optimal solution is longest path

For objective function, associate weights with arcs

Optimal solution is longest path

Exact DD Compilation

- Build an exact DD by associating a state with each node.
- Merge nodes with identical states.

Exact DD for stable set problem

X_{4}

To build DD, associate state with each nodex_{5}

Exact DD for stable set problem
x_{3}
x_{4}

To build DD, associate state with each node

Exact DD for stable set problem

$$
x_{4}
$$

To build DD, associate state with each node

Merge nodes that correspond
to the same
state

Merge nodes that correspond
to the same
state

To build DD, associate state with each node

DD reduction is a more powerful simplification
method than DP

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion

Toward a General-Purpose Solver

- The decision diagram tends to grow exponentially.
- To build a practical solver:
- Use a recursive dynamic programming model.
- Use limited-width relaxed decision diagrams to bound the objective value.
- Use limited-width restricted decision diagrams for primal heuristic.
- Use relaxed diagrams for constraint propagation.
- Use novel branching scheme within relaxed decision diagrams.
- Use sound decision diagrams for postoptimality analysis.

Elements of Optimization

Dynamic Programming Model

- Formulate problem with dynamic programming model.
- Rather than constraint set.
- Problem must have recursive structure
- But there is great flexibility to represent constraints and objective function.
- We don't care if state space is exponential, because we don't solve the problem by dynamic programming.

Dynamic Programming Model

- Max stable set problem on a graph.
- State = set of vertices that can be added to stable set.

Recursion:

Optimal value:

$$
g(\{1, \ldots, n\})
$$

Elements of Optimization

Relaxed Decision Diagrams

- An exact DD can grow too large.
- So we use a smaller, relaxed DD

Relaxed Decision Diagrams

- An exact DD can grow too large.
- So we use a smaller, relaxed DD
- A relaxed DD represents a superset of feasible set.
- Shortest (longest) path length is a bound on optimal value.
- Size of DD is controlled.
- Analogous to LP relaxation in IP, but discrete.
- Does not require linearity, convexity, or inequality constraints.

Stable set problem

x_{3}

To build relaxed
DD, merge
some additional
X_{4} nodes as we go along

$$
x_{5}
$$

Stable set problem

To build relaxed DD, merge some additional nodes as we go along

Stable set problem

To build relaxed DD, merge
some additional nodes as we go along.

Take the union
of merged
states

Stable set problem

To build relaxed DD, merge some additional nodes as we go along.

Take the union
states.

Stable set problem

To build relaxed DD, merge some additional nodes as we go along.

Take the union
 of merged
states.

Stable set problem

To build relaxed DD, merge some additional nodes as we go along.

Take the union

of merged
states.

Width $=2$

Represents 11 solutions, including 9 feasible solutions

Width $=2$

Represents 11 solutions, including 9 feasible solutions

Longest path (90) gives bound on optimal value (70)

Relaxed Decision Diagrams

- Alternate relaxation method: node refinement.
- Start with DD of width 1 representing Cartesian product of variable domains.
- Split nodes so as to remove some infeasible paths.
- Will be illustrated in constraint propagation.

> Andersen, Hadžić, JH, Tiedemann (2007)

Relaxed Decision Diagrams

- Wider diagrams yield tighter bounds
- But take longer to build.
- Adjust width dynamically.

Relaxed Decision Diagrams

- DDs vs. CPLEX bound at root node for max stable set problem
- Using CPLEX default cut generation
- DD max width of 1000 .
- DDs require about 5\% the time of CPLEX

Relaxing DP Models

- Decision diagrams provide a general method for relaxing dynamic programming models.
- Including problem for which no practical relaxation exists.
- Example: job sequencing with sequencedependent setup times and time windows.
- Setup time is less when certain jobs have already been processed.
- A hard problem to solve exactly.
- No useful relaxation.

JH (2017)

DP Model for Job Sequencing

State: $S=(V, f)$,

$$
\text { Initial state }=(\emptyset, 0)
$$

Finish time of last job scheduled
Controls: $x_{j}(V, f)=\{1, \ldots, n\} \backslash V$
Immediate cost: $c_{j}\left((V, f), x_{j}\right)=\left(\max \left\{r_{x_{j}}, f\right\}+p_{x_{j}}(V)-d_{x_{j}}\right)^{+}$
State-dependent processing time

DP Model for Job Sequencing

State: $S=(V, f)$

$$
\text { Initial state }=(\emptyset, 0)
$$

Finish time of last job scheduled
Controls: $x_{j}(V, f)=\{1, \ldots, n\} \backslash V$
Immediate cost: $c_{j}\left((V, f), x_{j}\right)=\left(\max \left\{r_{x_{j}}, f\right\}+p_{x_{j}}(V)-d_{x_{j}}\right)^{+}$
Transition: $\phi_{j}\left((V, f), x_{j}\right)=\left(V \cup\left\{x_{j}\right\}, \max \left\{r_{x_{j}}, f\right\}+p_{x_{j}}(V)\right)$

$$
\begin{aligned}
& \quad h_{j}(\underset{\uparrow}{S})=\min _{x_{j} \in \underset{X_{j}(S)}{ }}^{\{ } \underbrace{\mid c_{j}\left(S, x_{j}\right)}_{\uparrow}+h_{\text {Immediate }}^{h_{j+1}\left(\left(\phi_{j}\left(S, x_{j}\right)\right)\right\}}] \\
& \text { State in stage } j
\end{aligned}
$$

cost

Cost to go Set of possible controls

Relaxed DP Model

New state variable: set of jobs scheduled in some feasible solution so far

Earliest possible finish time of immediately previous job

Transition:

$$
\begin{aligned}
& \phi_{j}\left((V, U, f), x_{j}\right)=\left(V \cup\left\{x_{j}\right\}, U \cup\left\{x_{j}\right\}, \max \left\{r_{x_{j}}, f\right\}+p_{x_{j}}(U)\right. \\
& \text { Processing time depends on } \cup \text {, not } V \\
& \text { (state variable } V \text { can be dropped if desired) }
\end{aligned}
$$

$$
h_{j}(S)=\min _{x_{j} \in X_{j}(S)}\left\{c_{j}\left(S, x_{j}\right)+h_{j+1}\left(\left(\phi_{j}\left(S, x_{j}\right)\right)\right\}\right.
$$

Node Merger in Relaxation

- Merge nodes as the diagram is constructed
- States S, T merge to form state $S \oplus T$
- Merger operation must yield valid relaxation
- In state-dependent job sequencing,

$$
(V, U, f) \oplus\left(V^{\prime}, U^{\prime}, f^{\prime}\right)=\left(V \cap V^{\prime}, U \cup U^{\prime}, \min \left\{f, f^{\prime}\right\}\right)
$$

Conditions for a Valid Relaxation

- There are two jointly sufficient conditions for obtaining a relaxed diagram from node merger.
- A condition on the transition function
- And a condition on the merger operation $\quad S \oplus T$

Conditions for a Valid Relaxation

- There are two jointly sufficient conditions for obtaining a relaxed diagram from node merger.
- A condition on the transition function
- And a condition on the merger operation $S \oplus T$
- First we need a definition: state S^{\prime} relaxes state S in the same stage if
- Every control feasible in S is feasible in S^{\prime}

$$
X_{j}(S) \subseteq X_{j}\left(S^{\prime}\right)
$$

- The immediate cost of a control feasible in S is no greater in S^{\prime}.

$$
c_{j}\left(S, x_{j}\right) \geq c_{j}\left(S^{\prime}, x_{j}\right), \text { all } x_{j} \in X_{j}(S)
$$

Conditions for a Valid Relaxation

Theorem. The merger of states S and T in layer j of diagram D yields a relaxation of D if:

- S^{\prime} relaxes S implies that $\phi_{j}\left(S^{\prime}, x_{j}\right)$ relaxes $\phi_{j}\left(S, x_{j}\right)$ for any control x_{j} feasible in S.
- $S \oplus T$ relaxes both S and T.

Proof by induction.
This generalizes to stochastic decision diagrams, where the conditions are much more complicated.

Conditions for a Valid Relaxation

It is easily checked that node merger for job sequencing satisfies these conditions.

- S^{\prime} relaxes S implies that $\phi_{j}\left(S^{\prime}, x_{j}\right)$ relaxes $\phi_{j}\left(S, x_{j}\right)$ for any control x_{j} feasible in S.
- $S \oplus T$ relaxes both S and T.

Merger Heuristics

- Goal:
- Merge nodes that are not likely to lie on short paths.
- This reduces the likelihood of creating a superoptimal path, which would weaken the bound.
- Keep merging nodes until desired width is obtained.

Merger Heuristics

- Goal:
- Merge nodes that are not likely to lie on short paths.
- This reduces the likelihood of creating a superoptimal path, which would weaken the bound.
- Keep merging nodes until desired width is obtained.
- Underlying idea
- Preserve accuracy in the region of the diagram that is likely to contain the best solutions.
- Analogous to using denser finite elements in models of the atmosphere in regions with more activity.

Merger Heuristics

- Finish time heuristic
- Merge nodes whose last finish time states are large.
- Paths through these nodes are likely to be longer.

Merger Heuristics

- Finish time heuristic
- Merge nodes whose last finish time states are large.
- Paths through these nodes are likely to be longer.
- Shortest path heuristic
- Merge nodes whose shortest-path distances from root are large.

Merger Heuristics

- Finish time heuristic
- Merge nodes whose last finish time states are large.
- Paths through these nodes are likely to be longer.
- Shortest path heuristic
- Merge nodes whose shortest-path distances from root are large.
- Random heuristic
- Randomly choose nodes for merger..

Merger Heuristics

- Finish time heuristic - By far the best
- Merge nodes whose last finish time states are large.
- Paths through these nodes are likely to be longer.
- Shortest path heuristic
- Merge nodes whose shortest-path distances from root are large.
- Random heuristic
- Randomly choose nodes for merger..

Computational Results

12 jobs

Computational Results

14 jobs

Using finish time heuristic

State Space Relaxation?

- This is very different from state space relaxation.
- Problem is not solved by dynamic programming.
- Relaxation created by merging nodes of DD
- ...rather than mapping into smaller state space.
- Relaxation is constructed dynamically
- ...as relaxed DD is built.
- Relaxation uses same state variables as exact formulation
- ...which allows branching in relaxed DD

Improving the Bound

- A simple Lagrangian technique can improve the bound provided by a relaxed DD.
- Increase costs on infeasible paths.
- This is effective on TSPTW, etc.
- May also be useful for general DP models.

Improving the Bound

Effect of Lagrangian relaxation on quality of bound in TSPTW

Elements of Optimization

Restricted Decision Diagrams

- A restricted DD represents a subset of the feasible set.
- Restricted DDs provide a basis for a primal heuristic.
- Shortest (longest) paths in the restricted DD provide good feasible solutions.
- Generate a limited-width restricted DD by deleting unpromising nodes as diagram is constructed top-down

Optimality gap for set covering, n variables

Restricted DDs vs
Primal heuristic at root node of CPLEX

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

Elements of Optimization

Constraint Propagation

- Original application: graph coloring
- Use node splitting to create relaxed diagram.
- Propagate through relaxed diagram by removing arcs that cannot be part of a feasible path.
- In multiple alldiff problem (graph coloring), this reduced search tree from 1 million nodes to 1 node.
- Order of magnitude reduction in solution time.

> Andersen, Hadžić, JH, Tiedemann (2007)

Constraint Propagation

- Recent application: TSP with time windows.
- Decision diagram propagator becomes an additional global constraint in a constraint programming solver.
- The CP solver conducts the search.
- Substantial speedup
- Closed 3 open problem instances in TSPLIB.

Effect of decision-diagram-based propagation in a constraint programming solver (ILOG CP Optimizer)

Three open instances solved

instance	vertices	bounds	CPO		CPO+MDD, width 2048	
			best	time (s)	best	time (s)
br17.10	17	55	55	0.01	55	4.98
br17.12	17	55	55	0.01	55	4.56
ESC07	7	2125	2125	0.01	2125	0.07
ESC25	25	1681	1681	TL	1681	48.42
p43.1	43	28140	28205	TL	28140	287.57
p43.2	43	[28175, 28480]	28545	TL	28480	279.18
p43.3	43	[28366, 28835]	28930	TL	28835	177.29
p43.4	43	83005	83615	TL	83005	88.45
ry48p. 1	48	[15220, 15805]	18209	TL	16561	TL
ry48p. 2	48	[15524, 16666]	18649	TL	17680	TL
ry48p. 3	48	[18156, 19894]	23268	TL	22311	TL
ry48p. 4	48	[29967, 31446]	34502	TL	31446	96.91
ft53.1	53	[7438, 7531]	9716	TL	9216	TL
ft53.2	53	[7630, 8026]	11669	TL	11484	TL
ft 53.3	53	[9473, 10262]	12343	TL	11937	TL
ft 53.4	53	14425	16018	TL	14425	120.79

Elements of Optimization

Branching Algorithm

- Solve optimization problem using a novel branch-and-bound algorithm.
- Branch on nodes in last exact layer of relaxed decision diagram.
- ...rather than branch on variables.
- Create a new relaxed DD rooted at each branching node.
- Prune search tree using bounds from relaxed DD.

Branching Algorithm

Branching in a relaxed decision diagram

Diagram is exact down to here

Branching Algorithm

Branching in a relaxed decision diagram

Branch on nodes in this layer

Branching Algorithm

Branching in a relaxed decision diagram2

Branching Algorithm

Branching in a relaxed decision diagram
 (branch and bound).

Branching Algorithm

$$
\begin{aligned}
& \text { Branching in a relaxed } \\
& \text { decision diagram }
\end{aligned}
$$

Prune this branch if cost bound from relaxed DD is no better than cost of best feasible solution found so far
 (branch and bound).

Branching Algorithm

$$
\begin{aligned}
& \text { Branching in a relaxed } \\
& \text { decision diagram }
\end{aligned}
$$

Third branch

Prune this branch if cost bound from relaxed DD is no better than cost of best feasible solution found so far

Continue recursively (branch and bound).

Computational Performance

- Max cut problem on a graph.
- Partition nodes into 2 sets so as to maximize total weight of connecting edges.
- State = marginal benefit of placing each remaining vertex on left side of cut.
- State merger =
- Componentwise min if all components ≥ 0 or all $\leq 0 ; 0$ otherwise
- Adjust incoming arc weights
- Max 2-SAT.
- Similar to max cut.

Computational performance

Max cut on a graph

Computational performance

Max 2-SAT

Performance profile

30 variables

Computational performance

Max 2-SAT

Computational performance

- Potential to scale up
- No need to load large inequality model into solver.
- Parallelizes very effectively
- Near-linear speedup.
- Better than mixed integer programming.

Elements of Optimization

Postoptimality Analysis

- Decision diagrams open the door to more comprehensive postoptimality analysis.
- DDs can compactly represent all near-optimal solutions (within Δ of optimum).
- They can be efficiently queried with what-if questions.

Postoptimality Analysis

- Decision diagrams open the door to more comprehensive postoptimality analysis.
- DDs can compactly represent all near-optimal solutions (within Δ of optimum).
- They can be efficiently queried with what-if questions.
- Basic philosophy
- Solution = conversion from an opaque data structure...
- A constraint set
- ...to a transparent data structure.
- A decision diagram

Serra and JH (2018)

Postoptimality Analysis

- Sound DDs can store solutions more compactly.
- Sound = some bad solutions (feasible and infeasible) are included
- i.e., solutions that are not within Δ of optimum.
- These solutions are easily screened out.
- No effect whatever on most queries.
- Paradoxically, this can result in a smaller DD.

Postoptimality Analysis

- Sound DDs can store solutions more compactly.
- Sound = some bad solutions (feasible and infeasible) are included
- i.e., solutions that are not within Δ of optimum.
- These solutions are easily screened out.
- No effect whatever on most queries.
- Paradoxically, this can result in a smaller DD.

Theorem. Repeated application of a certain node merger operation (in any order) yields a sound reduced DD - i.e., a DD of minimum size.
...even though the sound reduced DD is not unique!

Postoptimality Analysis

Postoptimality Analysis

Merger yields this distinct sound-reduced DD107

Postoptimality Analysis for IP

(a3) Representation sizes for stein27

T = tree representation
$U=$ reduced DD
$S=$ sound-reduced DD
(b3) Construction time for stein27

Includes time to find alternate optimal solutions, given optimal value from IP solver

Postoptimality Analysis for IP

(a) Representation sizes for p0201

T = tree representation
U = reduced DD
S = sound-reduced DD
(c) Construction time for p 0201

Includes time to find alternate optimal solutions, given optimal value from IP solver

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion
- References

Separation Problem for BDDs

- The separation problem arises when a new constraint is added.
- As in Benders decomposition.
- We wish to separate solutions that violate the new constraint.
- Example: exclude a given partial assignment $x_{i}=\bar{x}_{i}$ for $i \in I$.
- That is, remove all paths in which $x_{i}=\bar{x}_{i}$ for $i \in I$.
- Example...

Original DD

Original DD

Separation Algorithm

- In principle, a partial assignment can be separated by conjoining two DDs.

- There are efficient algorithms for this.

Size of Separating Diagram

Theorem. The separating DD is at most twice as large as the original DD.

Theorem. In the worst case, the separating DD can grow exponentially with the number of constraints separated.

Empirical Growth

- How fast does the separating DD grow in a realistic optimization algorithm?
- We will look at a logic-based Benders algorithm
- ...for the home health care delivery problem
- Assign patients to health care aides.
- Route aides to assigned patients.

Ciré and JH (2014)

Empirical Growth

- Solve with logic-based Benders decomposition.
- Assignment problem in master.
- Subproblem generates Benders cuts when there is no feasible schedule.
- Each cut excludes a partial assignment of aides to patients.
- Cut is based on inference dual of subproblem.

[^0]Master Problem
diagram that represents relaxation of nurse assignment problem

Subproblem

Decouples into routing and scheduling problem for each nurse.

Empirical Growth

- Solve with logic-based Benders decomposition.
- Assignment problem in master.
- Subproblem generates Benders cuts when there is no feasible schedule.
- Each cut excludes a partial assignment of aides to patients.
- Cut is based on inference dual of subproblem.
- How fast does the DD grow as cuts are added?

Master Problem
diagram that represents relaxation of nurse assignment problem

Subproblem

Decouples into routing and scheduling problem for each nurse.

Growth of separating DD for all but 3 instances

Growth of separating DD for 2 harder instances

Growth of separating DD for hardest instance

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion
- References

Radical Reduction of State Space

- DD reduction can dramatically simplify a DP problem.
- Arrange arc costs to represent canonical costs
- ...while not changing the objective function.
- This may allow radical reduction of state space.
- Illustrate with a textbook inventory problem.

Example: Set Covering

DD for a set
covering problem

$x_{i}=1$ when we select set i

Example: Set Covering

Suppose we have a nonseparable cost function

x	$f(x)$
$(0,1,0,1)$	6
$(0,1,1,0)$	7
$(0,1,1,1)$	8
$(1,0,1,1)$	5
$(1,1,0,0)$	6
$(1,1,0,1)$	8
$(1,1,1,0)$	7
$(1,1,1,1)$	9

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves of branching tree.

x	$f(x)$
$(0,1,0,1)$	6
$(0,1,1,0)$	7
$(0,1,1,1)$	8
$(1,0,1,1)$	5
$(1,1,0,0)$	6
$(1,1,0,1)$	8
$(1,1,1,0)$	7
$(1,1,1,1)$	9

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves of branching tree.

But now we can't reduce the tree as before.

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves of branching tree.

But now we can't reduce the tree as before.

We will rearrange costs to obtain canonical costs.

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves of branching tree.

But now we can't reduce the tree as before.

We will rearrange costs to obtain canonical costs.

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves of branching tree.

But now we can't reduce the tree as before.

We will rearrange costs to obtain canonical costs.

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves of branching tree.

But now we can't reduce the tree as before.

We will rearrange costs to obtain canonical costs.

Modeling the Objective Function

Obtaining a reduced DD

Now the tree can be reduced.

Modeling the Objective Function

Obtaining a reduced DD

Now the tree can be reduced.

Modeling the Objective Function

Obtaining a reduced DD

DD is larger than reduced unweighted diagram, but still compact.

Modeling the Objective Function

Theorem. For a given variable ordering, a given objective function is represented by a unique weighted DD with canonical costs.

Similar result for AADDs:
Sanner \& McAllester (2005)

Inventory Management Example

- In each period i, we have:
- Demand d_{i}
- Unit production cost c_{i}
- Warehouse space m
- Unit holding cost h_{i}
- In each period, we decide:
- Production level x_{i}
- Stock level si
- Objective:
- Meet demand each period while minimizing production and holding costs.

Reducing the Transition Graph

Inventory Problem

Inventory Problem

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion
- References

Nonlinear Optimization

- Several research projects now underway.
- If variables are discrete...
- We don't care whether the "constraints" are nonlinear.
- We need only the state transition function.
- Only the cost function is an issue.
- One study recently published:
- Nonlinear, nonseparable cost function.

Bergman and Ciré (2018)

Nonlinear Optimization

- Approach
- Construct exact diagram for each term of objective function.
- Terms may be nonseparable.
- Practical if limited number of variables in each term.
- Immediate cost (arc cost) in DP model is effect of corresponding control on objective function value.
- View each diagram as a 0-1 network flow problem with unit flow from root.
- Equate flow variables in different diagrams that represent same value of same control variable.
- Solve the resulting MIP.

Nonlinear Optimization

Portfolio Optimization

Nonlinear Optimization

Portfolio Optimization

Nonlinear Optimization

Product Assortment (Latent Class Logit Assortment)

Nonlinear Optimization

Workflow Employee Assignment

Nonlinear Optimization

Workflow Employee Assignment

Outline

- Decision diagram basics
- Optimization with exact decision diagrams
- Providing the basic elements of optimization
- Modeling, relaxation, primal heuristics, constraint propagation, search, postoptimality
- Research frontiers
- Separation
- Radical reduction of state space in DP
- Nonlinear optimization
- Nonserial recursion
- References

Nonserial Decision Diagrams

- Analogous to nonserial dynamic programming, independently(?) rediscovered many times:
- Nonserial DP (1972)
- Constraint satisfaction (1981)
- Data base queries (1983)
- k-trees (1985)
- Belief logics (1986)
- Bucket elimination (1987)
- Bayesian networks (1988)
- Pseudoboolean optimization (1990)
- Location analysis (1994)

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

0-1 formulation

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
x_{2}+x_{4} & =1 \\
x_{3}+x_{5}+x_{6} & =1 \\
x_{4}+x_{6} & =1
\end{aligned}
$$

$$
x_{j}=1 \Rightarrow \text { set } j \text { selected }
$$

Set Partitioning example

Dependency graph

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =1 \\
x_{2}+x_{4} & =1 \\
x_{3}+x_{5}+x_{6} & =1 \\
x_{4}+x_{6} & =1
\end{aligned}
$$

$$
x_{j}=1 \Rightarrow \text { set } j \text { selected }
$$

Set Partitioning example

Enumeration order
 $$
x_{2}
$$

Dependency graph

Set Partitioning example

Enumeration order

$$
x_{2}
$$

Dependency graph

Set Partitioning example

Enumeration order

$$
x_{2}
$$

Dependency graph

Set Partitioning example

Enumeration order

$$
x_{2}
$$

Dependency graph

Set Partitioning example

Enumeration order

Dependency graph

Set Partitioning example

Enumeration order

Dependency graph

Set Partitioning example

Enumeration order

Dependency graph

Set Partitioning example

Enumeration order

Dependency graph

Induced width = 3
(max in-degree)

Set Partitioning example

Solution by nonserial DP

Enumeration order

Set Partitioning example

Solution by nonserial DP

Set Partitioning example

Feasible solution

Set Partitioning example

Feasible solution

Set Partitioning example

Feasible solution

Set Partitioning example

Reduced nonserial DD
Solution by nonserial DP

Nonserial Decision Diagrams

- Every technique described here for DDs can be generalized to nonserial DDs.

Other Ongoing Research

- Solving stochastic DPs with DDs.
- Continuous global optimization with DDs.
- Cutting planes from DDs.
- Etc.

Congratulations!

You survived 176 slides!

References

2006

- T. Hadzic and J. N. Hooker. Discrete global optimization with binary decision diagrams. In Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming, and Computational Algebraic Geometry (GICOLAG), Vienna, 2006.

2007

- Tarik Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1 programming. In Proceedings of CPAIOR. LNCS 4510, pp. 84-98. Springer, 2007.
- Tarik Hadzic and J. N. Hooker. Postoptimality analysis for integer programming using binary decision diagrams. December 2007, revised April 2008 (tech report).
- M. Behle. Binary Decision Diagrams and Integer Programming. PhD thesis, Max Planck Institute for Computer Science, 2007.
- H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store based on multivalued decision diagrams. In Proceedings of CP. LNCS 4741, pp. 118-132. Springer, 2007.

2008

- T. Hadzic, J. N. Hooker, B. O'Sullivan, and P. Tiedemann. Approximate compilation of constraints into multivalued decision diagrams. In Proceedings of CP. LNCS 5202, pp. 448462. Springer, 2008.
- T. Hadzic, J. N. Hooker, and P. Tiedemann. Propagating separable equalities in an MDD store. In Proceedings of CPAIOR. LNCS 5015, pp. 318-322. Springer, 2008.

References

2010

- S. Hoda. Essays on Equilibrium Computation, MDD-based Constraint Programming and Scheduling. PhD thesis, Carnegie Mellon University, 2010.
- S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based Constraint Programming. In Proceedings of CP. LNCS 6308, pp. 266-280. Springer, 2010.
- T. Hadzic, E. O'Mahony, B. O'Sullivan, and M. Sellmann. Enhanced inference for the market split problem. In Proceedings, International Conference on Tools for AI (ICTAI), pages 716-723. IEEE, 2009.

2011

- D. Bergman, W.-J. van Hoeve, and J. N. Hooker. Manipulating MDD Relaxations for Combinatorial Optimization. In Proceedings of CPAIOR. LNCS 6697, pp. 20-35. Springer, 2011.

2012

- A. A. Cire and W.-J. van Hoeve. MDD Propagation for Disjunctive Scheduling. In Proceedings of ICAPS, pp. 11-19. AAAI Press, 2012.
- D. Bergman, A.A. Cire, W.-J. van Hoeve, and J.N. Hooker. Variable Ordering for the Application of BDDs to the Maximum Independent Set Problem. In Proceedings of CPAIOR. LNCS 7298, pp. 34-49. Springer, 2012.

References

2013

- A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing Problems. Operations Research 61(6): 1411-1428, 2013.
- D. Bergman. New Techniques for Discrete Optimization. PhD thesis, Carnegie Mellon University, 2013.
- J. N. Hooker. Decision Diagrams and Dynamic Programming. In Proceedings of CPAIOR. LNCS 7874, pp. 94-110. Springer, 2013.
- B. Kell and W.-J. van Hoeve. An MDD Approach to Multidimensional Bin Packing. In Proceedings of CPAIOR, LNCS 7874, pp. 128-143. Springer, 2013.

2014

- D. R. Morrison, E. C. Sewell, S. H. Jacobson, Characteristics of the maximal independent set ZDD, Journal of Combinatorial Optimization 28 (1) 121-139, 2014
- D. R. Morrison, E. C. Sewell, S. H. Jacobson, Solving the Pricing Problem in a Generic Branch-and-Price Algorithm using Zero-Suppressed Binary Decision Diagrams,
- D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Optimization Bounds from Binary Decision Diagrams. INFORMS Journal on Computing 26(2): 253-258, 2014.
- A. A. Cire. Decision Diagrams for Optimization. PhD thesis, Carnegie Mellon University, 2014.
- D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD Propagation for Sequence Constraints. JAIR, Volume 50, pages 697-722, 2014.
- D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. BDD-Based Heuristics for Binary Optimization. Journal of Heuristics 20(2): 211-234, 2014.

References

2014

- D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat, and W.-J. van Hoeve. Parallel Combinatorial Optimization with Decision Diagrams. In Proceedings of CPAIOR, LNCS 8451, pp. 351-367. Springer, 2014.
- A. A. Cire and J. N. Hooker. The Separation Problem for Binary Decision Diagrams. In Proceedings of the International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2014.
- D. Bergman, A. A. Cire, W.-J. van Hoeve, T. Yunes, BDD-based heuristics for binary optimization, Journal of Heuristics 20, 211-234, 2014.

2015

- D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian Bounds from Decision Diagrams. Constraints 20(3): 346-361, 2015.
- B. Kell, A. Sabharwal, and W.-J. van Hoeve. BDD-Guided Clause Generation. In Proceedings of CPAIOR, 2015.

2016

- D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, Decision Diagrams for Optimization, Springer, 2016.
- D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Discrete Optimization with Decision Diagrams. INFORMS Journal on Computing 28: 47-66, 2016.

References

2017

- J. N. Hooker, Job sequencing bounds from decision diagrams, Proceedings of CP, LNCS 10416, 565-578, 2017
2018
- T. Serra and J. N. Hooker, Compact representation of near-optimal integer programming solutions, submitted, 2018.
- D. Bergman and A. Cire, Discrete nonlinear decompositions by state-space decompositions, Management Science, published online March 2018.
- L. Lozano, D. Bergman, J. C. Smith, On the consistent path problem, submitted 2018.

[^0]: JH (2000),
 JH \& Ottosson (2003)

