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Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– An alternative data structure

– A new tool to do many of the things we do in optimization.
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Decision Diagrams

• Some advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– Exploits recursive structure in the problem, but…

– Solves dynamic programming models

without state space enumeration.

– Effective parallel computation.

– Ideal for postoptimality analysis
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Decision Diagrams

• This is a high-level overview.

– No need to follow the details.
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Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

9
Boole (1847), Shannon (1937), Lee (1959), Akers (1978), Bryant (1986)



Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Easily generalized to multivalued decision diagrams
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Reduced Decision Diagrams

• There is a unique reduced DD representing any given 

function.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with 

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)
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Optimization with Exact Decision 

Diagrams

23

• Decision diagrams can 

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Reduces optimization

to a shortest path problem

Hadžić and JH (2006, 2007)
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Exact DD Compilation

• Build an exact DD by associating a state with each 

node.

• Merge nodes with identical states.

31
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Toward a General-Purpose Solver

• The decision diagram tends to grow exponentially.

• To build a practical solver:

– Use a recursive dynamic programming model.

– Use limited-width relaxed decision diagrams to bound the 

objective value.

– Use limited-width restricted decision diagrams for primal 

heuristic.

– Use relaxed diagrams for constraint propagation.

– Use novel branching scheme within relaxed decision 

diagrams.

– Use sound decision diagrams for postoptimality analysis.



Elements of Optimization

42

Modeling
with recursive 

formulations

Relaxation
with relaxed 

diagrams

Primal

heuristics
with restricted 

diagrams

Constraint

propagation
through a 

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams



Dynamic Programming Model

● Formulate problem with dynamic programming model.

• Rather than constraint set.

– Problem must have recursive structure

• But there is great flexibility to represent constraints and 

objective function.

– We don’t care if state space is exponential, because 

we don’t solve the problem by dynamic programming.



Dynamic Programming Model

● Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

Recursion:

Cost-to-go State Immediate 

cost 

(edge weight)

Vertex j and 

neighbors

Boundary condition:

Optimal value:
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Relaxed Decision Diagrams

• An exact DD can grow too large.

– So we use a smaller, relaxed DD



Relaxed Decision Diagrams

• An exact DD can grow too large.

– So we use a smaller, relaxed DD

• A relaxed DD represents a superset of feasible set.

– Shortest (longest) path length is a bound on optimal value.

– Size of DD is controlled.

– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007) 
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Relaxed Decision Diagrams

• Alternate relaxation method: node refinement.

– Start with DD of width 1 representing Cartesian product of 

variable domains.

– Split nodes so as to remove some infeasible paths.

– Will be illustrated in constraint propagation.

56

Andersen, Hadžić, JH, Tiedemann (2007) 



Relaxed Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

57Bergman, Ciré, van Hoeve, JH (2013) 



Relaxed Decision Diagrams

– DDs vs. CPLEX

bound at root node

for max stable set 

problem

– Using CPLEX

default cut 

generation

– DD max width

of 1000.

– DDs require

about 5% the

time of CPLEX

58

Bergman, Ciré, 

van Hoeve, JH (2014) 

CPLEX bound 

is better

DD bound

is better



Relaxing DP Models

• Decision diagrams provide a general method for 

relaxing dynamic programming models.

– Including problem for which no practical relaxation exists.

• Example:  job sequencing with sequence-

dependent setup times and time windows.

– Setup time is less when certain jobs have already been 

processed.

– A hard problem to solve exactly.

– No useful relaxation.

59

JH (2017) 
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State:

Controls:

Immediate cost:

Transition:
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Relaxed DP Model

Set of jobs scheduled in all feasible 

solutions so far

Earliest possible finish time of 

immediately previous job

Initial state = 

Transition:

New state variable:  set of jobs 

scheduled in some feasible 

solution so far

Processing time depends on U, not V

(state variable V can be dropped if desired)



Node Merger in Relaxation

• Merge nodes as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– In state-dependent job sequencing,

63



Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for 

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation 

64



Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for 

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation 

• First we need a definition:  state S relaxes state S

in the same stage if

– Every control feasible in S is feasible in S

– The immediate cost of a control feasible in S is no greater

in S.
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Theorem.  The merger of states S and T in layer j

of diagram D yields a relaxation of D if:

• S relaxes S implies that                    relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation

66

Proof by induction.

This generalizes to stochastic decision diagrams, 

where the conditions are much more complicated.

JH (2017) 



It is easily checked that node merger for job sequencing 

satisfies these conditions.

• S relaxes S implies that                    relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation
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Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

68



Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

• Underlying idea

– Preserve accuracy in the region of the diagram that is 

likely to contain the best solutions.

– Analogous to using denser finite elements in models of the 

atmosphere in regions with more activity.
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Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

70



Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root 

are large.
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Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root 

are large.

– Random heuristic

– Randomly choose nodes for merger..
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Merger Heuristics

• Finish time heuristic – By far the best

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root 

are large.

– Random heuristic

– Randomly choose nodes for merger..
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Computational Results

12 jobs

Using finish time heuristic

JH (2017) 



Computational Results

14 jobs

Using finish time heuristic

JH (2017) 



● This is very different from state space relaxation.

– Problem is not solved by dynamic programming.

– Relaxation created by merging nodes of DD

– …rather than mapping into smaller state space.

– Relaxation is constructed dynamically

– …as relaxed DD is built.

– Relaxation uses same state variables as exact 

formulation

– …which allows branching in relaxed DD

76

State Space Relaxation?

Christofides, Mingozzi, Toth (1981) 



Improving the Bound

● A simple Lagrangian technique can improve the bound 

provided by a relaxed DD.

– Increase costs on infeasible paths.

● This is effective on TSPTW, etc.

– May also be useful for general DP models.

Bergman, Ciré, van Hoeve (2015) 
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Restricted Decision Diagrams

● A restricted DD represents a subset of the feasible set.

● Restricted DDs provide a basis for a primal heuristic.

– Shortest (longest) paths in the restricted DD provide good 

feasible solutions.

– Generate a limited-width restricted DD by deleting unpromising 

nodes as diagram is constructed top-down

Bergman, Ciré, van Hoeve, Yunes (2014) 
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Constraint Propagation

• Original application:  graph coloring

– Use node splitting to create relaxed diagram.

– Propagate through relaxed diagram by removing arcs 

that cannot be part of a feasible path.

– In multiple alldiff problem (graph coloring), this reduced 

search tree from 1 million nodes to 1 node.

– Order of magnitude reduction in solution time.

84

Andersen, Hadžić, JH, Tiedemann (2007) 



Constraint Propagation

● Recent application:  TSP with time windows.

● Decision diagram propagator becomes an additional 

global constraint in a constraint programming solver.

● The CP solver conducts the search.

● Substantial speedup

● Closed 3 open problem instances in TSPLIB.

Ciré and van Hoeve (2013) 



Effect of decision-diagram-based propagation in a 
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Three open instances solved

Ciré and van Hoeve (2013) 
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Branching Algorithm

• Solve optimization problem using a novel 

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision 

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

89

Bergman, Ciré, van Hoeve, JH (2016) 
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Branch on nodes 

in this layer

Branching in a relaxed

decision diagram
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First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram
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First branch

New relaxed decision diagram
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decision diagram
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relaxed DD is no better than cost 

of best feasible solution found so far

(branch and bound).



Second branch

Branching in a relaxed

decision diagram

94

1 

2 

3 

4 

5 

6 

Branching Algorithm

Prune this branch if cost bound from 

relaxed DD is no better than cost 

of best feasible solution found so far

(branch and bound).



Third branch

Continue recursively

Branching in a relaxed

decision diagram
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Computational Performance

● Max cut problem on a graph.

– Partition nodes into 2 sets so as to maximize total weight 

of connecting edges.

– State = marginal benefit of placing each remaining vertex on left 

side of cut.

– State merger =

• Componentwise min if all components  0 or all  0;  0 otherwise

• Adjust incoming arc weights

● Max 2-SAT.

– Similar to max cut.
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● Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Better than mixed integer programming.

100

Computational performance



Elements of Optimization

101

Modeling
with recursive 

formulations

Search
with a novel branch-and-

bound method

Optimization

Primal

heuristics
with restricted 

diagrams

Relaxation
with relaxed 

diagrams

Constraint

propagation
through a 

relaxed diagramPostoptimality

analysis
with sound diagrams



● Decision diagrams open the door to more 

comprehensive postoptimality analysis.

– DDs can compactly represent all near-optimal solutions

(within  of optimum).

– They can be efficiently queried with what-if questions.

102

Postoptimality Analysis

Serra and JH (2018)



● Decision diagrams open the door to more 

comprehensive postoptimality analysis.

– DDs can compactly represent all near-optimal solutions

(within  of optimum).

– They can be efficiently queried with what-if questions.

● Basic philosophy

– Solution = conversion from an opaque data structure...

– A constraint set

– …to a transparent data structure.

– A decision diagram

103

Postoptimality Analysis

Serra and JH (2018)



● Sound DDs can store solutions more compactly.

– Sound = some bad solutions (feasible and infeasible) are 

included 

– i.e., solutions that are not within  of optimum.

– These solutions are easily screened out.

– No effect whatever on most queries. 

– Paradoxically, this can result in a smaller DD.

104

Postoptimality Analysis
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● Sound DDs can store solutions more compactly.

– Sound = some bad solutions (feasible and infeasible) are 

included 

– i.e., solutions that are not within  of optimum.

– These solutions are easily screened out.

– No effect whatever on most queries. 

– Paradoxically, this can result in a smaller DD.

Theorem. Repeated application of a certain node 

merger operation (in any order) yields a sound 

reduced DD – i.e., a DD of minimum size.

…even though the sound reduced DD is not unique!

105

Postoptimality Analysis
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Postoptimality Analysis

Merger yields this 

sound-reduced DD

Serra and JH (2018)
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Postoptimality Analysis

Merger yields this distinct

sound-reduced DD

Serra and JH (2018)
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Postoptimality Analysis for IP

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate 

optimal solutions, given optimal 

value from IP solver
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Postoptimality Analysis for IP

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate 

optimal solutions, given optimal 

value from IP solver
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• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics, 

constraint propagation, search, postoptimality
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– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References
110



• The separation problem arises when a new constraint 

is added.

– As in Benders decomposition.

– We wish to separate solutions that violate the new constraint.

• Example:  exclude a given partial assignment 

𝑥𝑖 = ҧ𝑥𝑖 for 𝑖 ∈ 𝐼.

– That is, remove all paths in which 𝑥𝑖 = ҧ𝑥𝑖 for 𝑖 ∈ 𝐼.

• Example…

Separation Problem for BDDs



1-arcs from state 1 nodes 

preserve state

0-arcs switch state to 0.

Original DD

Remove

partial 

assignment 
𝑥2, 𝑥4 = (1,1)



1-arcs from state 1 nodes 

preserve state

0-arcs switch state to 0.

Original DD Separating DD

Remove

partial 

assignment 
𝑥2, 𝑥4 = (1,1)



• In principle, a partial assignment can be separated by 

conjoining two DDs.

– There are efficient algorithms for this.

Separation Algorithm

Original 

DD

Width-2 DD 

representing

negation of partial 

assignment





Theorem.  The separating DD is at most twice as large as 

the original DD.

Theorem. In the worst case, the separating DD can grow 

exponentially with the number of constraints separated.

Size of Separating Diagram

Ciré and JH (2014)



• How fast does the separating DD grow in a realistic 

optimization algorithm?

– We will look at a logic-based Benders algorithm

– …for the home health care delivery problem

• Assign patients to health care aides.

• Route aides to assigned patients.

Empirical Growth

Ciré and JH (2014)



• Solve with logic-based 

Benders decomposition.

– Assignment problem in master.

– Subproblem generates Benders 

cuts when there is no feasible 

schedule.

– Each cut excludes a partial

assignment of aides to

patients.

– Cut is based on inference

dual of subproblem.

Empirical Growth

Master Problem

diagram that represents 

relaxation of nurse 

assignment problem

Subproblem

Decouples into routing 

and scheduling problem 

for each nurse.

Solution ҧ𝑥
of master

Benders 

cut

JH (2000),

JH & Ottosson (2003)



• Solve with logic-based 

Benders decomposition.

– Assignment problem in master.

– Subproblem generates Benders 

cuts when there is no feasible 

schedule.

– Each cut excludes a partial

assignment of aides to

patients.

– Cut is based on inference

dual of subproblem.

• How fast does the DD grow 

as cuts are added?

Empirical Growth

Master Problem

diagram that represents 

relaxation of nurse 

assignment problem

Subproblem

Decouples into routing 

and scheduling problem 

for each nurse.

Solution ҧ𝑥
of master

Benders 

cut



Growth of separating DD 

for all but 3 instances

Remember:  The master 

problem is a shortest-path 

problem, easy for large DDs



Growth of separating DD

for 2 harder instances

Remember:  The master 

problem is a shortest-path 

problem, easy for large DDs



Growth of separating DD

for hardest instance

Remember:  The master 

problem is a shortest-path 

problem, easy for large DDs
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● DD reduction can dramatically simplify a 

DP problem.

– Arrange arc costs to represent canonical costs

– …while not changing the objective function.

– This may allow radical reduction of state space.

– Illustrate with a textbook inventory problem.

123

Radical Reduction of State Space



Example: Set Covering

DD for a set 

covering problem

xi = 1 when we select set i



Suppose we have a 

nonseparable cost 

function

Example: Set Covering



Obtaining canonical costs

Put costs on leaves

of branching tree.

Modeling the Objective Function



Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

Modeling the Objective Function



Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.

Modeling the Objective Function

JH (2013)



Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.
0

6

0 1

7

0

5

0 2 0 2

6 7

Modeling the Objective Function

JH (2013)
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Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.

JH (2013)
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Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.

JH (2013)



Obtaining a reduced DD

Now the tree can

be reduced.

0
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6 7
0 1

6
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0 0 1

6 5

Modeling the Objective Function

JH (2013)



Obtaining a reduced DD

Now the tree can

be reduced.

Modeling the Objective Function

JH (2013)



Obtaining a reduced DD

DD is larger than reduced 

unweighted diagram,

but still compact.

Modeling the Objective Function



Theorem. For a given variable ordering, a given 

objective function is represented by a unique 

weighted DD with canonical costs.

Modeling the Objective Function

JH (2013),

Similar result for AADDs: 

Sanner & McAllester (2005) 



Inventory Management Example

● In each period i, we have:

– Demand di

– Unit production cost  ci

– Warehouse space m

– Unit holding cost hi

● In each period, we decide:

– Production level xi

– Stock level si

● Objective:

– Meet demand each period while minimizing production and 

holding costs.
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Arcs leaving each node are 

very similar.

• Transition to the same 

states.

• Have the same costs, 

up to an offset.

Reducing the Transition Graph

JH (2013)



0 21

0 21

0 21

0

0

Inventory Problem
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To equalize controls, let

be the stock level in next period.

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

2

3

4 1
2 3 0

1

2

JH (2013)



0 21

0 21

0 21

0

0

Inventory Problem

1 0x   1 1x  
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To equalize controls, let

be the stock level in next period.
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To equalize controls, let

be the stock level in next period.
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JH (2013)



Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.
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Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming 

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost
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Inventory Problem

These are canonical costs with 

offset
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Inventory Problem
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New recursion:

JH (2013)



Now there is only one state per period.

Do this analysis before constructing the 

diagram.
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New recursion:

Inventory Problem

JH (2013)
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Nonlinear Optimization

● Several research projects now underway.  

● If variables are discrete…

● We don’t care whether the “constraints” are nonlinear.

● We need only the state transition function.

● Only the cost function is an issue.

● One study recently published:

– Nonlinear, nonseparable cost function.

Bergman and Ciré (2018)



Nonlinear Optimization

● Approach

– Construct exact diagram for each term of objective function.

• Terms may be nonseparable.

• Practical if limited number of variables in each term.

– Immediate cost (arc cost) in DP model is effect of corresponding 

control on objective function value.

– View each diagram as a 0-1 network flow problem with unit flow 

from root.

• Equate flow variables in different diagrams that represent 

same value of same control variable.

• Solve the resulting MIP.

Bergman and Ciré (2018)



Nonlinear Optimization

Bergman and Ciré (2018)

Portfolio Optimization



Nonlinear Optimization

Bergman and Ciré (2018)

Portfolio Optimization



Nonlinear Optimization

Bergman and Ciré (2018)

Product Assortment
(Latent Class Logit Assortment)



Nonlinear Optimization

Bergman and Ciré (2018)

Workflow Employee Assignment



Nonlinear Optimization

Bergman and Ciré (2018)

Workflow Employee Assignment
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Nonserial Decision Diagrams

● Analogous to nonserial dynamic programming, 

independently(?) rediscovered many times:

– Nonserial DP (1972)

– Constraint satisfaction (1981)

– Data base queries (1983)

– k-trees (1985)

– Belief logics (1986)

– Bucket elimination (1987)

– Bayesian networks (1988)

– Pseudoboolean optimization (1990)

– Location analysis (1994)



Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set  selectedjx j 



Set Partitioning example

Dependency graph

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set  selectedjx j 

x1

x2

x3

x4

x5

x6
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Dependency graph
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Enumeration order
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x5

x1
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Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Induced width = 3

(max in-degree)

Enumeration order

x2

x3

x4

x5

x1
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Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1    0   0   1   1   0

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1    0   0   1   1   0

0    0   1   1   0   0

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0



Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1    0   0   1   1   0

0    0   1   1   0   0

0    1   0   0   0   1

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Construct using join tree



Set Partitioning example

Solution by nonserial DP

0 1

00 01 10

01 11

010 011 110 000 001

0 1

00

1 0

Reduced nonserial DD

x2 0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5
011

110
000

x6
0

1

00

0

1

x2

x2x3

x3x4

x1

x3x4x5

x6

JH (2013)



Nonserial Decision Diagrams

● Every technique described here for DDs can be 

generalized to nonserial DDs.



Other Ongoing Research

● Solving stochastic DPs with DDs.

● Continuous global optimization with DDs.

● Cutting planes from DDs.

● Etc.
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Congratulations!

You survived 176 slides!
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