
What Decision Diagrams

Can Do for You

John Hooker
Carnegie Mellon University

INFORMS Optimization Society

March 2018

Decision Diagrams

• Used in computer science and AI for decades

– Logic circuit design

– Product configuration

• A new perspective on optimization

– An alternative data structure

– A new tool to do many of the things we do in optimization.

2

Decision Diagrams

• Some advantages:

– No need for inequality formulations.

– No need for linear or convex relaxations.

– Exploits recursive structure in the problem, but…

– Solves dynamic programming models

without state space enumeration.

– Effective parallel computation.

– Ideal for postoptimality analysis

3

Decision Diagrams

• This is a high-level overview.

– No need to follow the details.

4

Some Contributors to This Work

5

Henrik Reif

Andersen

David

Bergman

André

Ciré

Tarik

Hadžić

Willem

van Hoeve
Thiago

Serra

Tallys

Yunes

Samid

Hoda

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers

– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References

6

Elements of Optimization

7

Modeling
with recursive

formulations

Relaxation
with relaxed

diagrams

Primal

heuristics
with restricted

diagrams

Constraint

propagation
through a

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Outline

• Decision diagram basics
• Optimization with exact decision diagrams

• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers

– Separation

– Radical reduction of state space in DP

– Nonlinear programming

– Nonserial recursion

• References

8

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

9
Boole (1847), Shannon (1937), Lee (1959), Akers (1978), Bryant (1986)

Decision Diagram Basics

• Binary decision diagrams encode Boolean functions

– Easily generalized to multivalued decision diagrams

10

Reduced Decision Diagrams

• There is a unique reduced DD representing any given

function.

– Once the variable ordering is specified.

• The reduced DD can be viewed as a branching tree with

redundancy removed.

– Superimpose isomorphic subtrees.

– Remove redundant nodes.

Bryant (1986)

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Branching tree for 0-1 inequality

1 indicates feasible solution,

0 infeasible

0 1 2 32 3 5 5 7x x x x   

0 1x  0 0x 

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0 1

Remove redundant nodes…

Branching tree for 0-1 inequality

0 1 2 32 3 5 5 7x x x x   

x0

x1

x2 x2

x3 x3 x3 x3

1 1

x1

x2 x2

x3 x3 x3 x3

1 0 1 1 1 0 1 1 1 0 1 0 0 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

01

Superimpose identical

subtrees…

1 1 1 0

x0

x2

x1

x2

x3

1 0

x3

1 0

x0

x1

x2 x2

x3

1

x1

x2 x2

0

x3

1 0

x3

1 0

x3

011 1 1 01 0

x0

x2

x1

x2

x3

1 0

x3

1 01 0

Superimpose identical

subtrees…

x0

x2

x1

x2

x3

1 0

x3

1 01 0

x0

x2

x1

x2

x3

1 0 01

x0

x2

x1

x2

x3

1 0 01

Superimpose identical

leaf nodes…

x0

x2

x1

x2

x3

1 0

x0

x2

x1

x2

x3

1 0 01

as generated by software

x0

x2

x1

x2

x3

1 0

Outline

• Decision diagram basics

• Optimization with exact decision

diagrams
• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References
22

Optimization with Exact Decision

Diagrams

23

• Decision diagrams can

represent feasible set

– Remove paths to 0.

– Paths to 1 are feasible

solutions.

– Associate costs with

arcs.

– Reduces optimization

to a shortest path problem

Hadžić and JH (2006, 2007)

1

2 3

5 4

Stable Set Problem

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

Exact DD for

stable set

problem

1

2 3

5 4

x1 = 1x1 = 0

x4

x5

x1

x2

x3

1

2 3

5 4

x1 = 1x1 = 0

Paths from top

to bottom

correspond to

the 9 feasible

solutions x4

x5

x1

x2

x3

1

2 3

5 4

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

Optimal solution

is longest path

1

2 3

5 4

For objective

function,

associate

weights with

arcs

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

20

40 50

30 10

For objective

function,

associate

weights with

arcs x4

x5

x1

x2

x3

20

40

50
50

10

10

30

0

0 0

0
0

0

0
0

0

0
0

Optimal solution

is longest path

1

2 3

5 4

20

40 50

30 10

Exact DD Compilation

• Build an exact DD by associating a state with each

node.

• Merge nodes with identical states.

31

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes

that correspond

to the same

state

{4}

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

Merge nodes

that correspond

to the same

state

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}




To build DD,

associate state

with each node

x1

x2

x3

x4

x5

Exact DD for

stable set

problem

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

{45} {4}

{5}







Resulting DD is not

necessarily reduced

(it is in this case).

DD reduction is a more

powerful simplification

method than DP

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Providing the basic elements of

optimization
– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers

– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References 40

Toward a General-Purpose Solver

• The decision diagram tends to grow exponentially.

• To build a practical solver:

– Use a recursive dynamic programming model.

– Use limited-width relaxed decision diagrams to bound the

objective value.

– Use limited-width restricted decision diagrams for primal

heuristic.

– Use relaxed diagrams for constraint propagation.

– Use novel branching scheme within relaxed decision

diagrams.

– Use sound decision diagrams for postoptimality analysis.

Elements of Optimization

42

Modeling
with recursive

formulations

Relaxation
with relaxed

diagrams

Primal

heuristics
with restricted

diagrams

Constraint

propagation
through a

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Dynamic Programming Model

● Formulate problem with dynamic programming model.

• Rather than constraint set.

– Problem must have recursive structure

• But there is great flexibility to represent constraints and

objective function.

– We don’t care if state space is exponential, because

we don’t solve the problem by dynamic programming.

Dynamic Programming Model

● Max stable set problem on a graph.

– State = set of vertices that can be added to stable set.

Recursion:

Cost-to-go State Immediate

cost

(edge weight)

Vertex j and

neighbors

Boundary condition:

Optimal value:

Elements of Optimization

45

Modeling
with recursive

formulations

Constraint

propagation
through a

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Primal

heuristics
with restricted

diagrams

Relaxation
with relaxed

diagrams

Relaxed Decision Diagrams

• An exact DD can grow too large.

– So we use a smaller, relaxed DD

Relaxed Decision Diagrams

• An exact DD can grow too large.

– So we use a smaller, relaxed DD

• A relaxed DD represents a superset of feasible set.

– Shortest (longest) path length is a bound on optimal value.

– Size of DD is controlled.

– Analogous to LP relaxation in IP, but discrete.

– Does not require linearity, convexity, or inequality constraints.

Andersen, Hadžić, JH, Tiedemann (2007)

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

To build relaxed

DD, merge

some additional

nodes as we go

along

Stable set

problem

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along

Stable set

problem

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {4} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states

Stable set

problem

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

Stable set

problem

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45}  {4}
To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

Stable set

problem

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 

To build relaxed

DD, merge

some additional

nodes as we go

along.

Take the union

of merged

states.

Stable set

problem

x1

x2

x3

x4

x5

1

2 3

5 4

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents 11

solutions,

including 9

feasible

solutions

Width = 2

x1

x2

x3

x4

x5

x1

x2

x3

{12345}

{2345} {34}

{345} {34}

{45} 

{5} 



Represents

11 solutions,

including

9 feasible

solutions

Width = 2

Longest path

(90) gives

bound on

optimal value

(70)

20

40

0

0

050

10

0

0

0

1

2 3

5 4

20

40 50

30 10

50

30

0

0

Relaxed Decision Diagrams

• Alternate relaxation method: node refinement.

– Start with DD of width 1 representing Cartesian product of

variable domains.

– Split nodes so as to remove some infeasible paths.

– Will be illustrated in constraint propagation.

56

Andersen, Hadžić, JH, Tiedemann (2007)

Relaxed Decision Diagrams

– Wider diagrams

yield tighter bounds

– But take longer

to build.

– Adjust width

dynamically.

57Bergman, Ciré, van Hoeve, JH (2013)

Relaxed Decision Diagrams

– DDs vs. CPLEX

bound at root node

for max stable set

problem

– Using CPLEX

default cut

generation

– DD max width

of 1000.

– DDs require

about 5% the

time of CPLEX

58

Bergman, Ciré,

van Hoeve, JH (2014)

CPLEX bound

is better

DD bound

is better

Relaxing DP Models

• Decision diagrams provide a general method for

relaxing dynamic programming models.

– Including problem for which no practical relaxation exists.

• Example: job sequencing with sequence-

dependent setup times and time windows.

– Setup time is less when certain jobs have already been

processed.

– A hard problem to solve exactly.

– No useful relaxation.

59

JH (2017)

State:

Controls:

Immediate cost:

State-dependent processing time

60

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

DP Model for Job Sequencing

State:

Controls:

Immediate cost:

Transition:

61

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

DP Model for Job Sequencing

Relaxed DP Model

Set of jobs scheduled in all feasible

solutions so far

Earliest possible finish time of

immediately previous job

Initial state =

Transition:

New state variable: set of jobs

scheduled in some feasible

solution so far

Processing time depends on U, not V

(state variable V can be dropped if desired)

Node Merger in Relaxation

• Merge nodes as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– In state-dependent job sequencing,

63

Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation

64

Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation

• First we need a definition: state S relaxes state S

in the same stage if

– Every control feasible in S is feasible in S

– The immediate cost of a control feasible in S is no greater

in S.

65

Theorem. The merger of states S and T in layer j

of diagram D yields a relaxation of D if:

• S relaxes S implies that relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation

66

Proof by induction.

This generalizes to stochastic decision diagrams,

where the conditions are much more complicated.

JH (2017)

It is easily checked that node merger for job sequencing

satisfies these conditions.

• S relaxes S implies that relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation

67

Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

68

Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

• Underlying idea

– Preserve accuracy in the region of the diagram that is

likely to contain the best solutions.

– Analogous to using denser finite elements in models of the

atmosphere in regions with more activity.

69

Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

70

Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root

are large.

71

Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root

are large.

– Random heuristic

– Randomly choose nodes for merger..

72

Merger Heuristics

• Finish time heuristic – By far the best

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root

are large.

– Random heuristic

– Randomly choose nodes for merger..

73

Computational Results

12 jobs

Using finish time heuristic

JH (2017)

Computational Results

14 jobs

Using finish time heuristic

JH (2017)

● This is very different from state space relaxation.

– Problem is not solved by dynamic programming.

– Relaxation created by merging nodes of DD

– …rather than mapping into smaller state space.

– Relaxation is constructed dynamically

– …as relaxed DD is built.

– Relaxation uses same state variables as exact

formulation

– …which allows branching in relaxed DD

76

State Space Relaxation?

Christofides, Mingozzi, Toth (1981)

Improving the Bound

● A simple Lagrangian technique can improve the bound

provided by a relaxed DD.

– Increase costs on infeasible paths.

● This is effective on TSPTW, etc.

– May also be useful for general DP models.

Bergman, Ciré, van Hoeve (2015)

Improving the Bound

Bergman, Ciré, van Hoeve (2015)

Effect of

Lagrangian

relaxation on

quality of

bound in

TSPTW

Elements of Optimization

79

Modeling
with recursive

formulations

Relaxation
with relaxed

diagrams

Constraint

propagation
through a

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Primal

heuristics
with restricted

diagrams

Restricted Decision Diagrams

● A restricted DD represents a subset of the feasible set.

● Restricted DDs provide a basis for a primal heuristic.

– Shortest (longest) paths in the restricted DD provide good

feasible solutions.

– Generate a limited-width restricted DD by deleting unpromising

nodes as diagram is constructed top-down

Bergman, Ciré, van Hoeve, Yunes (2014)

Optimality gap for set covering, n variables

Restricted DDs vs

Primal heuristic at root node of CPLEX

IP

DD

Computation time

Restricted DDs vs

Primal heuristic at root node of CPLEX (cuts turned off)

IP

DD

Elements of Optimization

83

Modeling
with recursive

formulations

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Primal

heuristics
with restricted

diagrams

Relaxation
with relaxed

diagrams

Constraint

propagation
through a

relaxed diagram

Constraint Propagation

• Original application: graph coloring

– Use node splitting to create relaxed diagram.

– Propagate through relaxed diagram by removing arcs

that cannot be part of a feasible path.

– In multiple alldiff problem (graph coloring), this reduced

search tree from 1 million nodes to 1 node.

– Order of magnitude reduction in solution time.

84

Andersen, Hadžić, JH, Tiedemann (2007)

Constraint Propagation

● Recent application: TSP with time windows.

● Decision diagram propagator becomes an additional

global constraint in a constraint programming solver.

● The CP solver conducts the search.

● Substantial speedup

● Closed 3 open problem instances in TSPLIB.

Ciré and van Hoeve (2013)

Effect of decision-diagram-based propagation in a

constraint programming solver (ILOG CP Optimizer)

CP optimizer

MDD-16

MDD-32
MDD-64

MDD-128

Ciré and van Hoeve (2013)

Three open instances solved

Ciré and van Hoeve (2013)

Elements of Optimization

88

Modeling
with recursive

formulations

Relaxation
with relaxed

diagrams

Primal

heuristics
with restricted

diagrams

Constraint

propagation
through a

relaxed diagram

Optimization

Postoptimality

analysis
with sound diagrams

Search
with a novel branch-and-

bound method

Branching Algorithm

• Solve optimization problem using a novel

branch-and-bound algorithm.

– Branch on nodes in last exact layer of relaxed decision

diagram.

– …rather than branch on variables.

– Create a new relaxed DD rooted at each branching node.

– Prune search tree using bounds from relaxed DD.

89

Bergman, Ciré, van Hoeve, JH (2016)

1

2

3

4

5

6

Diagram is exact

down to here

Branching in a relaxed

decision diagram

90

Branching Algorithm

Branch on nodes

in this layer

Branching in a relaxed

decision diagram

91

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

92

1

2

3

4

5

6

Branching Algorithm

First branch

New relaxed decision diagram

Branching in a relaxed

decision diagram

93

1

2

3

4

5

6

Branching Algorithm

Prune this branch if cost bound from

relaxed DD is no better than cost

of best feasible solution found so far

(branch and bound).

Second branch

Branching in a relaxed

decision diagram

94

1

2

3

4

5

6

Branching Algorithm

Prune this branch if cost bound from

relaxed DD is no better than cost

of best feasible solution found so far

(branch and bound).

Third branch

Continue recursively

Branching in a relaxed

decision diagram

95

1

2

3

4

5

6

Branching Algorithm

Prune this branch if cost bound from

relaxed DD is no better than cost

of best feasible solution found so far

(branch and bound).

Computational Performance

● Max cut problem on a graph.

– Partition nodes into 2 sets so as to maximize total weight

of connecting edges.

– State = marginal benefit of placing each remaining vertex on left

side of cut.

– State merger =

• Componentwise min if all components  0 or all  0; 0 otherwise

• Adjust incoming arc weights

● Max 2-SAT.

– Similar to max cut.

Max cut

on a graph

Avg. solution time

vs

graph density

30 vertices

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 s

o
lu

ti
o

n
 t
im

e
 (

s
e

c
)

Density of graph

CPLEX

MDDs

Computational performance

Bergman, Ciré, van Hoeve, JH (2016)

Max 2-SAT

Performance

profile

30 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

Bergman, Ciré, van Hoeve, JH (2016)

Max 2-SAT

Performance

profile

40 variables

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

Computational performance

Bergman, Ciré, van Hoeve, JH (2016)

● Potential to scale up

– No need to load large inequality model into solver.

– Parallelizes very effectively

– Near-linear speedup.

– Better than mixed integer programming.

100

Computational performance

Elements of Optimization

101

Modeling
with recursive

formulations

Search
with a novel branch-and-

bound method

Optimization

Primal

heuristics
with restricted

diagrams

Relaxation
with relaxed

diagrams

Constraint

propagation
through a

relaxed diagramPostoptimality

analysis
with sound diagrams

● Decision diagrams open the door to more

comprehensive postoptimality analysis.

– DDs can compactly represent all near-optimal solutions

(within  of optimum).

– They can be efficiently queried with what-if questions.

102

Postoptimality Analysis

Serra and JH (2018)

● Decision diagrams open the door to more

comprehensive postoptimality analysis.

– DDs can compactly represent all near-optimal solutions

(within  of optimum).

– They can be efficiently queried with what-if questions.

● Basic philosophy

– Solution = conversion from an opaque data structure...

– A constraint set

– …to a transparent data structure.

– A decision diagram

103

Postoptimality Analysis

Serra and JH (2018)

● Sound DDs can store solutions more compactly.

– Sound = some bad solutions (feasible and infeasible) are

included

– i.e., solutions that are not within  of optimum.

– These solutions are easily screened out.

– No effect whatever on most queries.

– Paradoxically, this can result in a smaller DD.

104

Postoptimality Analysis

Serra and JH (2018)

● Sound DDs can store solutions more compactly.

– Sound = some bad solutions (feasible and infeasible) are

included

– i.e., solutions that are not within  of optimum.

– These solutions are easily screened out.

– No effect whatever on most queries.

– Paradoxically, this can result in a smaller DD.

Theorem. Repeated application of a certain node

merger operation (in any order) yields a sound

reduced DD – i.e., a DD of minimum size.

…even though the sound reduced DD is not unique!

105

Postoptimality Analysis

106

Postoptimality Analysis

Merger yields this

sound-reduced DD

Serra and JH (2018)

107

Postoptimality Analysis

Merger yields this distinct

sound-reduced DD

Serra and JH (2018)

108

Postoptimality Analysis for IP

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

109

Postoptimality Analysis for IP

T = tree representation

U = reduced DD

S = sound-reduced DD

Includes time to find alternate

optimal solutions, given optimal

value from IP solver

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers
– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References
110

• The separation problem arises when a new constraint

is added.

– As in Benders decomposition.

– We wish to separate solutions that violate the new constraint.

• Example: exclude a given partial assignment

𝑥𝑖 = ҧ𝑥𝑖 for 𝑖 ∈ 𝐼.

– That is, remove all paths in which 𝑥𝑖 = ҧ𝑥𝑖 for 𝑖 ∈ 𝐼.

• Example…

Separation Problem for BDDs

1-arcs from state 1 nodes

preserve state

0-arcs switch state to 0.

Original DD

Remove

partial

assignment
𝑥2, 𝑥4 = (1,1)

1-arcs from state 1 nodes

preserve state

0-arcs switch state to 0.

Original DD Separating DD

Remove

partial

assignment
𝑥2, 𝑥4 = (1,1)

• In principle, a partial assignment can be separated by

conjoining two DDs.

– There are efficient algorithms for this.

Separation Algorithm

Original

DD

Width-2 DD

representing

negation of partial

assignment



Theorem. The separating DD is at most twice as large as

the original DD.

Theorem. In the worst case, the separating DD can grow

exponentially with the number of constraints separated.

Size of Separating Diagram

Ciré and JH (2014)

• How fast does the separating DD grow in a realistic

optimization algorithm?

– We will look at a logic-based Benders algorithm

– …for the home health care delivery problem

• Assign patients to health care aides.

• Route aides to assigned patients.

Empirical Growth

Ciré and JH (2014)

• Solve with logic-based

Benders decomposition.

– Assignment problem in master.

– Subproblem generates Benders

cuts when there is no feasible

schedule.

– Each cut excludes a partial

assignment of aides to

patients.

– Cut is based on inference

dual of subproblem.

Empirical Growth

Master Problem

diagram that represents

relaxation of nurse

assignment problem

Subproblem

Decouples into routing

and scheduling problem

for each nurse.

Solution ҧ𝑥
of master

Benders

cut

JH (2000),

JH & Ottosson (2003)

• Solve with logic-based

Benders decomposition.

– Assignment problem in master.

– Subproblem generates Benders

cuts when there is no feasible

schedule.

– Each cut excludes a partial

assignment of aides to

patients.

– Cut is based on inference

dual of subproblem.

• How fast does the DD grow

as cuts are added?

Empirical Growth

Master Problem

diagram that represents

relaxation of nurse

assignment problem

Subproblem

Decouples into routing

and scheduling problem

for each nurse.

Solution ҧ𝑥
of master

Benders

cut

Growth of separating DD

for all but 3 instances

Remember: The master

problem is a shortest-path

problem, easy for large DDs

Growth of separating DD

for 2 harder instances

Remember: The master

problem is a shortest-path

problem, easy for large DDs

Growth of separating DD

for hardest instance

Remember: The master

problem is a shortest-path

problem, easy for large DDs

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers
– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References
122

● DD reduction can dramatically simplify a

DP problem.

– Arrange arc costs to represent canonical costs

– …while not changing the objective function.

– This may allow radical reduction of state space.

– Illustrate with a textbook inventory problem.

123

Radical Reduction of State Space

Example: Set Covering

DD for a set

covering problem

xi = 1 when we select set i

Suppose we have a

nonseparable cost

function

Example: Set Covering

Obtaining canonical costs

Put costs on leaves

of branching tree.

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.

Modeling the Objective Function

JH (2013)

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.
0

6

0 1

7

0

5

0 2 0 2

6 7

Modeling the Objective Function

JH (2013)

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.

JH (2013)

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6
0 0 1

6 5

Modeling the Objective Function

Obtaining canonical costs

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

as before.

We will rearrange

costs to obtain

canonical costs.

JH (2013)

Obtaining a reduced DD

Now the tree can

be reduced.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 10

5 6
0 0 1

6 5

Modeling the Objective Function

JH (2013)

Obtaining a reduced DD

Now the tree can

be reduced.

Modeling the Objective Function

JH (2013)

Obtaining a reduced DD

DD is larger than reduced

unweighted diagram,

but still compact.

Modeling the Objective Function

Theorem. For a given variable ordering, a given

objective function is represented by a unique

weighted DD with canonical costs.

Modeling the Objective Function

JH (2013),

Similar result for AADDs:

Sanner & McAllester (2005)

Inventory Management Example

● In each period i, we have:

– Demand di

– Unit production cost ci

– Warehouse space m

– Unit holding cost hi

● In each period, we decide:

– Production level xi

– Stock level si

● Objective:

– Meet demand each period while minimizing production and

holding costs.

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

Arcs leaving each node are

very similar.

• Transition to the same

states.

• Have the same costs,

up to an offset.

Reducing the Transition Graph

JH (2013)

0 21

0 21

0 21

0

0

Inventory Problem

1 2x  1 3x 
1 4x 

To equalize controls, let

be the stock level in next period.

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

2

3

4 1
2 3 0

1

2

JH (2013)

0 21

0 21

0 21

0

0

Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

be the stock level in next period.

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

0

1

2 0
1 2 0

1

2

JH (2013)

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

be the stock level in next period.
0

1

2 0
1 2 0

1

2

New recursion:

JH (2013)

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

7

16

7

11

6

0 21

0 21

0 21

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

JH (2013)

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.
5

10

3

6

0

0 21

0 21

0 21

0

0

4

2
0

6

3

0

10

5

6

0

10

0

4

0

0

3

0
5

0

JH (2013)

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.
13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

JH (2013)

Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

Inventory Problem

These are canonical costs with

offset

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

JH (2013)

Inventory Problem

13

14

9

8

10

0 21

0 21

0 21

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

These are canonical costs with

offset

New recursion:

JH (2013)

Now there is only one state per period.

Do this analysis before constructing the

diagram.

12

0

13 14

10 9 8

6 7 8

4

0

0

12

20

26

30

New recursion:

Inventory Problem

JH (2013)

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers
– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References
148

Nonlinear Optimization

● Several research projects now underway.

● If variables are discrete…

● We don’t care whether the “constraints” are nonlinear.

● We need only the state transition function.

● Only the cost function is an issue.

● One study recently published:

– Nonlinear, nonseparable cost function.

Bergman and Ciré (2018)

Nonlinear Optimization

● Approach

– Construct exact diagram for each term of objective function.

• Terms may be nonseparable.

• Practical if limited number of variables in each term.

– Immediate cost (arc cost) in DP model is effect of corresponding

control on objective function value.

– View each diagram as a 0-1 network flow problem with unit flow

from root.

• Equate flow variables in different diagrams that represent

same value of same control variable.

• Solve the resulting MIP.

Bergman and Ciré (2018)

Nonlinear Optimization

Bergman and Ciré (2018)

Portfolio Optimization

Nonlinear Optimization

Bergman and Ciré (2018)

Portfolio Optimization

Nonlinear Optimization

Bergman and Ciré (2018)

Product Assortment
(Latent Class Logit Assortment)

Nonlinear Optimization

Bergman and Ciré (2018)

Workflow Employee Assignment

Nonlinear Optimization

Bergman and Ciré (2018)

Workflow Employee Assignment

Outline

• Decision diagram basics

• Optimization with exact decision diagrams

• Providing the basic elements of optimization

– Modeling, relaxation, primal heuristics,

constraint propagation, search, postoptimality

• Research frontiers
– Separation

– Radical reduction of state space in DP

– Nonlinear optimization

– Nonserial recursion

• References
156

Nonserial Decision Diagrams

● Analogous to nonserial dynamic programming,

independently(?) rediscovered many times:

– Nonserial DP (1972)

– Constraint satisfaction (1981)

– Data base queries (1983)

– k-trees (1985)

– Belief logics (1986)

– Bucket elimination (1987)

– Bayesian networks (1988)

– Pseudoboolean optimization (1990)

– Location analysis (1994)

Set Partitioning example

Find collection of sets that partition elements A, B, C, D

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set selectedjx j 

Set Partitioning example

Dependency graph

1 2 3

2 4

3 5 6

4 6

1

1

1

1

x x x

x x

x x x

x x

  

 

  

 

0-1 formulation

1 set selectedjx j 

x1

x2

x3

x4

x5

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Dependency graph

x1

x2

x3

x4

x5

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Dependency graph

x1

x2

x3

x4

x5

x6

Set Partitioning example

Dependency graph

x1

x2

x3

x4

x5

x6

Induced width = 3

(max in-degree)

Enumeration order

x2

x3

x4

x5

x1

x6

Set Partitioning example

Enumeration order

x2

x3

x4

x5

x1

x6

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

Solution by nonserial DP

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 0 0 1 1 0

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 0 0 1 1 0

0 0 1 1 0 0

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Set Partitioning example

1 2 3 4 5 6

A ● ● ●

B ● ●

C ● ● ●

D ● ●

Sets

1 0 0 1 1 0

0 0 1 1 0 0

0 1 0 0 0 1

Feasible solution

x2
0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5 010 011 110 000 001

x6 0 1

00

1 0

Construct using join tree

Set Partitioning example

Solution by nonserial DP

0 1

00 01 10

01 11

010 011 110 000 001

0 1

00

1 0

Reduced nonserial DD

x2 0 1

x2x3 00 01 10

x3x4 01 11

x1

x3x4x5
011

110
000

x6
0

1

00

0

1

x2

x2x3

x3x4

x1

x3x4x5

x6

JH (2013)

Nonserial Decision Diagrams

● Every technique described here for DDs can be

generalized to nonserial DDs.

Other Ongoing Research

● Solving stochastic DPs with DDs.

● Continuous global optimization with DDs.

● Cutting planes from DDs.

● Etc.

176

Congratulations!

You survived 176 slides!

References

2006

• T. Hadzic and J. N. Hooker. Discrete global optimization with binary decision diagrams. In

Workshop on Global Optimization: Integrating Convexity, Optimization, Logic Programming,

and Computational Algebraic Geometry (GICOLAG), Vienna, 2006.

2007

• Tarik Hadzic and J. N. Hooker. Cost-bounded binary decision diagrams for 0-1

programming. In Proceedings of CPAIOR. LNCS 4510, pp. 84-98. Springer, 2007.

• Tarik Hadzic and J. N. Hooker. Postoptimality analysis for integer programming using binary

decision diagrams. December 2007, revised April 2008 (tech report).

• M. Behle. Binary Decision Diagrams and Integer Programming. PhD thesis, Max Planck

Institute for Computer Science, 2007.

• H. R. Andersen, T. Hadzic, J. N. Hooker, and P. Tiedemann. A constraint store based on

multivalued decision diagrams. In Proceedings of CP. LNCS 4741, pp. 118-132. Springer,

2007.

2008

• T. Hadzic, J. N. Hooker, B. O'Sullivan, and P. Tiedemann. Approximate compilation of

constraints into multivalued decision diagrams. In Proceedings of CP. LNCS 5202, pp. 448-

462. Springer, 2008.

• T. Hadzic, J. N. Hooker, and P. Tiedemann. Propagating separable equalities in an MDD

store. In Proceedings of CPAIOR. LNCS 5015, pp. 318-322. Springer, 2008.

References

2010

• S. Hoda. Essays on Equilibrium Computation, MDD-based Constraint Programming and

Scheduling. PhD thesis, Carnegie Mellon University, 2010.

• S. Hoda, W.-J. van Hoeve, and J. N. Hooker. A Systematic Approach to MDD-Based

Constraint Programming. In Proceedings of CP. LNCS 6308, pp. 266-280. Springer, 2010.

• T. Hadzic, E. O’Mahony, B. O’Sullivan, and M. Sellmann. Enhanced inference for the

market split problem. In Proceedings, International Conference on Tools for AI (ICTAI),

pages 716–723. IEEE, 2009.

2011

• D. Bergman, W.-J. van Hoeve, and J. N. Hooker. Manipulating MDD Relaxations for

Combinatorial Optimization. In Proceedings of CPAIOR. LNCS 6697, pp. 20-35. Springer,

2011.

2012

• A. A. Cire and W.-J. van Hoeve. MDD Propagation for Disjunctive Scheduling. In

Proceedings of ICAPS, pp. 11-19. AAAI Press, 2012.

• D. Bergman, A.A. Cire, W.-J. van Hoeve, and J.N. Hooker. Variable Ordering for the

Application of BDDs to the Maximum Independent Set Problem. In Proceedings of CPAIOR.

LNCS 7298, pp. 34-49. Springer, 2012.

References

2013

• A. A. Cire and W.-J. van Hoeve. Multivalued Decision Diagrams for Sequencing Problems.

Operations Research 61(6): 1411-1428, 2013.

• D. Bergman. New Techniques for Discrete Optimization. PhD thesis, Carnegie Mellon

University, 2013.

• J. N. Hooker. Decision Diagrams and Dynamic Programming. In Proceedings of CPAIOR.

LNCS 7874, pp. 94-110. Springer, 2013.

• B. Kell and W.-J. van Hoeve. An MDD Approach to Multidimensional Bin Packing. In

Proceedings of CPAIOR, LNCS 7874, pp. 128-143. Springer, 2013.

2014

• D. R. Morrison, E. C. Sewell, S. H. Jacobson , Characteristics of the maximal independent

set ZDD, Journal of Combinatorial Optimization 28 (1) 121-139, 2014

• D. R. Morrison, E. C. Sewell, S. H. Jacobson, Solving the Pricing Problem in a Generic

Branch-and-Price Algorithm using Zero-Suppressed Binary Decision Diagrams,

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Optimization Bounds from

Binary Decision Diagrams. INFORMS Journal on Computing 26(2): 253-258, 2014.

• A. A. Cire. Decision Diagrams for Optimization. PhD thesis, Carnegie Mellon University,

2014.

• D. Bergman, A. A. Cire, and W.-J. van Hoeve. MDD Propagation for Sequence Constraints.

JAIR, Volume 50, pages 697-722, 2014.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and T. Yunes. BDD-Based Heuristics for Binary

Optimization. Journal of Heuristics 20(2): 211-234, 2014.

References

2014

• D. Bergman, A. A. Cire, A. Sabharwal, H. Samulowitz, V. Saraswat, and W.-J. van Hoeve.

Parallel Combinatorial Optimization with Decision Diagrams. In Proceedings of CPAIOR,

LNCS 8451, pp. 351-367. Springer, 2014.

• A. A. Cire and J. N. Hooker. The Separation Problem for Binary Decision Diagrams. In

Proceedings of the International Symposium on Artificial Intelligence and Mathematics

(ISAIM), 2014.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, T. Yunes, BDD-based heuristics for binary

optimization, Journal of Heuristics 20, 211-234, 2014.

2015

• D. Bergman, A. A. Cire, and W.-J. van Hoeve. Lagrangian Bounds from Decision Diagrams.

Constraints 20(3): 346-361, 2015.

• B. Kell, A. Sabharwal, and W.-J. van Hoeve. BDD-Guided Clause Generation. In

Proceedings of CPAIOR, 2015.

2016

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker, Decision Diagrams for

Optimization, Springer, 2016.

• D. Bergman, A. A. Cire, W.-J. van Hoeve, and J. N. Hooker. Discrete Optimization with

Decision Diagrams. INFORMS Journal on Computing 28: 47-66, 2016.

References

2017

• J. N. Hooker, Job sequencing bounds from decision diagrams, Proceedings of CP, LNCS

10416, 565-578, 2017

2018

• T. Serra and J. N. Hooker, Compact representation of near-optimal integer programming

solutions, submitted, 2018.

• D. Bergman and A. Cire, Discrete nonlinear decompositions by state-space decompositions,

Management Science, published online March 2018.

• L. Lozano, D. Bergman, J. C. Smith, On the consistent path problem, submitted 2018.

