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Abstract It is often useful in practice to explore near-optimal solutions of
an integer programming problem. We show how all solutions within a given
tolerance of the optimal value can be efficiently and compactly represented in
a weighted decision diagram, once the optimal value is known. The structure of
a decision diagram facilitates rapid processing of a wide range of queries about
the near-optimal solution space. To obtain a more compact diagram, we exploit
the property that such diagrams may become paradoxically smaller when they
contain more solutions. We use sound decision diagrams, which innocuously
admit some solutions that are worse than near-optimal. We describe a simple
“sound reduction” operation that, when applied repeatedly in any order, yields
a smallest possible sound diagram for a given problem instance. We find that
sound reduction yields a structure that is typically far smaller than a tree that
represents the same set of near-optimal solutions.

Keywords decision diagrams - integer programming - postoptimality

1 Introduction

An integer programming model contains a wealth of information about the
phenomenon it represents. An optimal solution of the model, or even a set
of optimal solutions, captures only a small portion of this information. In
many applications, it is useful to probe the model more deeply to explore
alternative solutions, particularly solutions that are suboptimal as measured
by the objective function but attractive for other reasons.
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For example, in a recent study [7] an integer programming (IP) model was
formulated to relocate distribution centers across Europe. In the absence of
reliable estimates for fixed costs, the client opted for a suboptimal solution that
relocated one rather than three distribution centers for only a 0.4% increase
over the optimal cost. One may also wish to know which decisions are invariant
across all near-optimal solutions. This was a key question in a nature reserve
planning study [4] that sought to identify areas that are critical to protect
native species. In addition, there are applications that require the solution
of minor variations of a problem. In some combinatorial auctions [14], for
example, a winners determination problem is first solved to maximize the sum
of winning bids, and then re-solved with each winner removed by fixing certain
variables to zero.

In general, one may wish to know which solutions are optimal or near-
optimal when certain variables are fixed to desired values, or which values a
given variable can take without sacrificing near-optimality. One may also wish
to determine how much a cost coefficient can be perturbed without changing
the optimal cost more than a certain amount.

These questions can be answered if the space of near-optimal solutions is
compactly represented in a transparent data structure; that is, a data structure
that can be efficiently queried to find near-optimal (or optimal) solutions that
satisfy desired properties. In fact, the task of solving an IP model can be more
generally conceived as the process of transforming an opaque data structure
to a transparent data structure. The constraint set and objective function
comprise an opaque structure that defines the problem but does not make good
solutions apparent. A conventional solver transforms the problem statement
into a very simple transparent structure: an explicit list of one or more optimal
solutions. The ideal would be to derive a more general data structure that
compactly but transparently represents the space of near-optimal solutions
and how they relate to each other.

We propose a weighted decision diagram for this purpose. Binary and
multivalued decision diagrams have long been used for circuit design, formal
verification, and other purposes [2,6,21,24,28], but they can also compactly
represent solutions of a discrete optimization problem [3,5,16,19]. A weighted
decision diagram represents the objective function values as well. Such a
diagram can be built to represent only near-optimal solutions, and it can
can be easily queried for solutions that satisfy desired properties. This is
because solutions correspond straightforwardly to paths in the diagram, and
their objective function values to the length of the paths.

A simple example illustrates the idea. The IP problem

minimize 4x1 + 3x2 + 223
subject to z1 +x3>1, xo+ax3>1, 1+ 20+ 23 <2 (1)
Xr1,T2,T3 € {07 1}

has optimal value 2. The branching tree of Fig. 1(a) represents the three feasi-
ble solutions that have a value within 4 of the optimum, namely (z1, z2, 3) =
(1,0,1), (0,1,1), (0,0,1). A dashed arc represents setting =; = 0, and a solid
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Fig. 1: (a) Branching tree for near-optimal solutions of (1). (b) Reduced weighted decision
diagram representing the same solutions. (c¢) Sound decision diagram for (1).

arc represents setting z; = 1. Figure 1(b) is a decision diagram that represents
the same solutions. The solid arcs are assigned weights (lengths) equal to the
corresponding objective function coefficients, while the dashed arcs have length
zero. Each path from the root r to the terminus ¢ represents a feasible solution
with cost at most 6, where the cost of the solution is the length of the path.
The decision diagram is reduced, meaning that it is the smallest diagram that
represents this set of solutions. It is well known that, for a given ordering of
the variables, there is a unique reduced diagram representing a given set of
solutions [6].

Although reduced decision diagrams tend to provide a much more compact
representation than a branching tree, they can nonetheless grow rapidly. To
address this issue, we take advantage of the fact that modifying a diagram to
represent a larger solution set can, paradoxically, result in a smaller diagram.
We adopt the concept of a sound decision diagram, introduced by [18], which is
a diagram that represents all near-optimal solutions along with some spurious
solutions whose objective function values are worse than near-optimal. The
spurious solutions may be feasible or infeasible. By judiciously admitting
spurious solutions into the diagram, one can significantly reduce its size while
maintaining soundness of the near-optimal solution set.

In particular, we show that a certain sound reduction operation, which
replaces a pair of nodes with a single node, yields a smaller sound diagram.
Our main theoretical result is that repeated application of sound reduction
operations, in any order, results in a smallest possible sound diagram for a
given problem and variable ordering. It is smallest in the sense that it has a
minimum number of arcs and a minimum number of nodes. We call such a
diagram sound reduced. A problem may have multiple sound-reduced diagrams,
but they all have the same minimum size.

Sound diagrams have several advantages for postoptimality analysis. Aside
from their smaller size, they allow for easy extraction of near-optimal solutions.
One need only to enumerate paths in the diagram while discarding those that
represent spurious solutions, which are easily identified by the fact that their
values are too far from the optimum. In order to infer that solutions are



4 Thiago Serra, J. N. Hooker

spurious while constructing and when querying such diagrams, the optimal
value is first obtained by solving the problem with a conventional solver.

For example, Fig. 1(c) illustrates a sound diagram for problem (1). It
represents the three solutions within 4 of the optimal value, plus a spurious
solution (z1,x2,23) = (1,1,1) that is discarded because its value is greater
than 6. This solution happens to be infeasible, but it is not necessary to check
feasibility, which is time-consuming. It is only necessary to compute the path
length.

A further advantage of sound diagrams is that the presence of spurious
solutions has no effect whatever on the implementation or complexity of many
types of postoptimality analysis. It is enough that the diagram represent all
near-optimal solutions.

We begin below with a review of related work, followed by four sections that
develop the underlying theory of sound diagrams. Section 3 introduces some
basic concepts and properties of decision diagrams. Section 4 develops the idea
of soundness and shows that it is a useful concept only when suboptimal (as
well as optimal) solutions are represented. Section 5 proves the main result
that sound reduction yields a sound diagram of minimum size. It also shows
by counterexample that there need not be a unique sound-reduced diagram
for a given problem. Section 6 explains why it is not practical to admit
superoptimal solutions into sound diagrams, even though this may result in
smaller diagrams.

The remaining sections apply the theory of sound diagrams to integer
programming. Section 7 presents an algorithm that constructs a sound diagram
for a given integer programming problem, assuming that the optimal value has
been obtained by solving the problem with a conventional solver. Section 8
shows how to introduce sound reduction into the algorithm, thereby obtaining
a smallest possible sound diagram for the problem. Section 9 then describes
several types of postoptimality analysis that can efficiently be performed on
a sound diagram. Section 10 reports computational tests that measure how
compactly sound diagrams can represent near-optimal solutions, and the time
required to compute the diagrams. Based on instances from MIPLIB, it is
found that decision diagrams represent near-optimal solutions much more
compactly than a branching tree, and that in most instances, sound reduction
substantially reduces the size of the diagrams. The paper concludes with a
summary and agenda for future research.

2 Related Work

To our knowledge, no previous study addresses the issue of how to represent
near-optimal solutions of IP problems in a compact and transparent fashion. A
few papers have proposed methods for generating multiple solutions. Scatter
search is used in [13] to generate a set of diverse optimal and near-optimal
solutions of mixed integer programming (MIP) problems. However, since it
is a heuristic method, it does not obtain an exhaustive set of solutions for
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any given optimality tolerance. Diverse solutions of an MIP problem have
also been obtained by solving a sequence of MIP models, beginning with the
given problem, in which each seeks a solution different from the previous ones.
This approach is investigated in [15], where it is compared with solving a
much larger model that obtains multiple solutions simultaneously. However,
neither method is scalable, as there may be a very large number of near-optimal
solutions.

The “one-tree” method of [8] generates a collection of optimal or near-
optimal solutions of a mixed-integer programming problem by extending a
branching tree that is used to solve the problem. While possible, the collection
is not intended to be exhaustive, and there is no indication of how to represent
the collection compactly or query more easily. A “branch-and-count” method
is presented in [1] for generating all feasible solutions of an IP problem, based
on the identification of “unrestricted subtrees” of the branching tree. These are
subtrees in which all values of the unfixed variables are feasible. We use a sim-
ilar device as part of our mechanism for constructing sound decision diagrams.
However, we focus on compact representation of near-optimal solutions.

The commercial solver CPLEX has offered a “solution pool” feature since
version 11.0 [22] that relies on the one-tree method. The solution pool has
been supported by the the GAMS modeling system since version 22.6 [11]. By
contrast, postoptimality software based on decision diagrams operates apart
from the solution method, requiring only the optimal value from the solver.
It also differs by generating an exhaustive set of near-optimal solutions and
organizing them in a decision diagram that is convenient for postoptimality
analysis.

Integer programming sensitivity analysis has been investigated for some
time, as for example in [9,10,12,20,23,26,27]. Sound decision diagrams can be
used to analyze sensitivity to perturbations in objective coefficients, because
these appear as arc lengths in the diagram, and we show how to do so. However,
our main interest here is in probing the near-optimal solution set that results
from the original problem data.

Decision diagrams were first proposed for IP postoptimality analysis in
[17], and the concept of a sound diagram was introduced in [18]. The present
paper extends this work in several ways. It proves several properties of sound
diagrams, introduces the sound reduction operation, and proves that sound
reduction yields a sound diagram of minimum size. It also presents algo-
rithms for generating sound-reduced diagrams for IP problems and conducting
postoptimality analysis on these diagrams, as well as reporting computational
tests on the representational efficiency of the diagrams.

3 Decision Diagrams for Discrete Optimization Problems

For our purposes, we associate a decision diagram with a discrete optimization
problem of the form

min{f(z) | z € S} (P)
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where S C S x ... x S, and each variable domain S; is finite. A decision
diagram associated with (P) is a multigraph D = (U, A, ¢) with the following
properties:

— The node set U is partitioned U = Uy U -+ U Uyp41, where Uy = {r} and
Unt1 = {t}. We say r is the root node, t the terminal node, and U; is layer
j of D for each j.

— The arc set A is partitioned A = Ay U ---U A,, where each arc in A;
connects a node in U; with a node in Ujyy, for j =1,...,n.

— Each arc a € A; has a label ¢(a) € S; for j =1,...,n, representing a value
assigned to variable x;. The arcs leaving a given node must have distinct
labels.

The labels on each path p of D from r to t represent an assignment to x, which
we denote z(p). We let Sol(D) denote the set of solutions represented by the
r—t paths. We say that D ezactly represents S when Sol(D) = S.

A weighted decision diagram associated with (P) is a multigraph D(U, A, £, w)
that satisfies the above properties, plus the following:

— Each arc a € A has a weight w(a), such that > . w(a) = f(z(p)) for
any r—t path p of D. Thus the total weight w(p) of an r—t path p is the
objective function value of the corresponding solution.

A weighted decision diagram associated with problem (P) exactly represents
(P) when Sol(D) = S. In this case, the optimal value z* of (P) is the weight of
any minimum-weight r—t path of D, and the optimal solutions of (P) are those
corresponding to minimum-weight r—t paths. From here out, we will refer to
a weighted decision diagram simply as a decision diagram, and to a diagram
without weights as an unweighted decision diagram.

An unweighted decision diagram D is reduced when redundancy is removed.
To make this precise, let a suffiz of uw € U; be any assignment to z;,...,zy
represented by a u—t path in D, and let Suf(u) be the set of suffixes of w.
Then D is reduced when Suf(u) # Suf(v) for all u,v € U; with u # v and all
j=1,...,n. As noted earlier, for any fixed variable ordering, there is a unique
reduced unweighted decision diagram that exactly represents a given feasible
set S, and this diagram is the smallest one that exactly represents S [6].

Given a path 7 from a node in layer j to a node in layer k, it will be
convenient to denote by z(7) the assignment to (z;,...,zr—1) indicated by
the labels on path w. We also let z;(7) denote the the assignment to z; in
particular, and we let w(mw) denote the weight of 7. A summary of notation
used throughout the paper can be found in Table 1.

The following simple property of decision diagrams will be useful.

Lemma 1 Given any pair of distinct nodes u,v in layer j of a decision
diagram, let m be an r—u path and p an r—v path. Then x(m) # x(p).

Proof If z(m) = x(p), then in particular z1(mw) = x1(p). This implies that 7
and p lead from r to the same node u in Us, since distinct arcs leaving r must
have distinct labels. Arguing inductively, m and p lead from the same node in
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Table 1: List of symbols.

r root node of a decision diagram

t terminal node of a decision diagram

U; set of nodes in layer j of a diagram

Aj set of arcs connecting nodes in U; with nodes in Uj

£(a) label of arc a, representing value of z; if a € A;

w(a) weight (cost, length) of arc a

z(p) assignment to z represented by r—t path p

w(p) weight of r—t path p

z(m) assignment to xj,...,x,_1 represented by u—v path 7 (u € Uj, ve Uy)

xi(m) assignment to x; represented by 7, where j <i < k

w(m) weight of path 7

w(u,u’) weight of minimum-weight path from node u to node u’

Sol(D) set of solutions represented by r—t paths in diagram D

z* optimal value of problem (P)

P(A) problem of finding A-optimal solutions of (P)

S(4Q) set of A-optimal solutions of (P)

ILP(A) problem of finding A-optimal solutions of (ILP)

Pre(u) set of prefixes of node u

Suf (u) set of suffixes of node u

Suf A (u) set of A-suffices of node u of a diagram D; i.e., set of suffixes of u
that are part of some A-optimal solution represented by D

lhs.u left-hand-side state at node u

LCDS;[u,v]  weight of least-cost differing suffix when reducing u into v
maximum width of (number of nodes in) layers of a diagram
Smax size of largest variable domain

U to the same node in Uiy for k = 1,...,7 — 1. This implies that v = v,
contrary to hypothesis. [

4 Sound Decision Diagrams

We are interested in constructing decision diagrams that represent near-optimal
solutions of (P). Let x be a A-optimal solution of (P) when z € S and
fz) < z*4 A, for A > 0. We denote by S(A) is the set of A-optimal solutions
of (P), so that S(0) is the set of optimal solutions. We let P(A) denote the
the problem of finding A-optimal solutions of (P).

We say that D exactly represents P(A) when Sol(D) = S(A). Since such a
decision diagram can be quite large, we wish to identify smaller diagrams that
approximately represent P(A). We therefore study decision diagrams that are
sound for P(A), which represent a superset of S(A). Specifically, D is sound
when

S(A)=Sol(D)N{z € Sy x--- xSy | f(z) <z*+ A}

Thus a sound diagram can represent, in addition to A-optimal solutions,
feasible and infeasible solutions that are worse than A-optimal. We refer
to these as spurious solutions. A proper sound diagram represents a proper
superset of the A-optimal solutions and therefore represents some spurious
solutions.
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We prefer a sound diagram D that is minimal for P(A), meaning that
every node of D, and every arc of D, lies on some r—t path that represents a
solution in S(A). If a sound diagram is not minimal, nodes and/or arcs can be
removed without destroying soundness. Since their removal does not enlarge
the set represented by the diagram, we obtain a smaller diagram that is an
equally accurate approximation of S(A).

It is easy to check whether a node or arc can be removed while preserving
soundness. For any two nodes u, v’ in different layers of D, let w(u,u’) be the
weight of a minimum-weight path from « to ' (infinite if there is no path).
Then node u can be removed if and only if

w(r,u) +wlu,t) > 2"+ A
An arc a connecting u € U; with v/ € Uj41 can be removed if and only if
w(r,u) +w(a) +wu',t) > 2"+ A (2)

Interestingly, a proper sound diagram for P(0) is never minimal. This
implies that there is no point in considering sound diagrams to represent the
set of optimal solutions. They are useful only for representing sets of near-
optimal solutions.

Theorem 1 No proper sound decision diagram is minimal for P(0).

Proof Suppose to the contrary that diagram D is a minimal for P(0) and
contains a suboptimal r—¢ path p. For any given node v in p, let w(u) be the
portion of p from r to u. Select a node u* in p that maximizes the number
of arcs in m(u*) subject to the condition that 7(u*) is part of some optimal
(minimum-weight) r—t path in D (Fig. 2). We note that u* &€ Up,41, since
otherwise p would be an optimal r—t path. Thus p contains an arc a from u*
to some node u’. Furthermore, u* ¢ U; since otherwise arc a would prevent D
from being minimal. Now since D is minimal, arc a belongs to some optimal
r—t path, which we may suppose consists of 7', a, and ¢’. Hence, 7(u*) and
7' are both optimal r—u* paths, and thus the r—t path consisting of m(u') and
o’ is also optimal. This implies that m(u'), which contains one more arc than
m(u*), is part of an optimal r—¢ path, contrary to the definition of w*. O

The following property of sound diagrams is easily verified.

Lemma 2 If a decision diagram D is sound for P(A), then D is sound for
P(3) for any ¢ € [0, A].

Thus the set of sound decision diagrams of P(A) is a subset of that of P(J)
for any ¢ € [0, 4].

Corollary 1 The size of a smallest sound diagram for P(A), as measured by
the number of arcs or the number of nodes, is monotone nondecreasing in A.
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Fig. 2: Illustration of the proof of Theorem 1.

5 Sound Reduction

Sound reduction is a tool for reducing the size of a given sound diagram, gen-
erally at the cost of increasing the number of spurious solutions it represents.
Given distinct nodes u,v € U; for 1 < j < n, we can sound-reduce u into v
when diverting to v the arcs coming into u, and deleting u from the diagram,
removes no A-optimal solutions and adds only spurious solutions. Thus sound
reduction removes at least one node without destroying soundness. In fact, we
will see that repeated sound reduction yields the smallest sound diagram for
a given A.

Let a A-suffiz of node u € U; be any suffix in Suf(u) that is part of a
A-optimal solution, and let Suf A(u) be the set of A suffixes of u. Also let a
prefiz of u be any assignment to (z1,...,2;_1) represented by an r—u path,
and let Pre(u) be the set of prefixes of u. Then u can be sound-reduced into v
if:

Suf A (u) C Suf(v) (3)
w(m) +w(o) > 2" + A when x(7) € Pre(u) and z(o) € Suf(v) \ Suf(u) (4)

Sound reduction is accomplished as follows. For every arc a from some node
g € Uj_1 to u, remove a and create an arc from ¢ to v with label ¢(a) and
weight w(a). Then remove u and any successor of u that is disconnected from
r. That is, remove u and any successor v’ of u for which all r—u' paths in D
contain u.

Condition (3) ensures that any A-optimal solution whose r—¢ path passes
through u remains in the diagram after sound reduction, with the same cost.
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Condition (4) ensures that only spurious solutions are added to the diagram.
So we have,

Theorem 2 Sound reduction preserves soundness.

Figure 3 illustrates sound reduction. Figure 3(a) is a reduced diagram that
is sound for a problem P(A) with z* = 2 and A = 6. Dashed arcs have label
0 and weight 0, and solid arcs have label 1 and weights as shown. Figure 3(b)
shows the result of sound-reducing node u; into node v;. Condition (3) is
satisfied because Suf a(u;) = {(1,1,0,0)} C {(1,1,0,0),(1,1,0,1)} = Suf(vy).
Condition (4) is satisfied because Pre(u;) = {(1,1)}, Suf(vy) \ Suf(uy) =
{(1,1,0,1)}, and the solution (z1,...,z¢) = (1,1,1,1,0,1) has cost 9 > z*+A.
We could have also reduced wugy into vs, ug into vz, or uz into q.

A sound diagram for P(A) is sound-reduced if no further sound reductions
are possible. We can show that a minimal sound-reduced diagram is the
smallest diagram that is sound for P(A). For example, the diagram in Fig. 3(b)
is sound-reduced, and it is in fact the smallest sound diagram for P(A) with
A = 6. Establishing this result requires two lemmas.

Lemma 3 Given a sound-reduced diagram D for P(A), any two distinct nodes
u,v € Uj of D satisfy Suf o(u) # Suf A (v).

Proof Suppose to the contrary that Suf A(u) = Sufa(v), and assume without
loss of generality that w(r,u) > w(r,v). We will show that u can be sound-
reduced into v, contrary to hypothesis. Condition (3) for sound reduction is
obviously satisfied. Also condition (4) is satisfied, because if z(7) € Pre(u) and
z(o) € Suf(v) \ Suf(u), then xz(o) & Suf a(u), and therefore x(c) ¢ Suf a(v).
This implies w(r,v) + w(o) > z* + A. But w(r) + w(o) > w(r,u) +w(o) >
w(r,v) + w(o), and (4) follows. OJ

(@ (b)
r
X1
// 4
x2 e e
1 1 \\ 1
N
X3 ui Vi
1 1 1 1
X4 u V2
| 1 1 |
| |
s q u3 V3 q
\ 2 | | \
N | | N '
X6 ~_ _ - -~ _ - =
| g | g
1/ 2 1/ 2
t t

Fig. 3: Reduced (a) and sound-reduced (b) decision diagrams for z* = 2 and A = 6.
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Fig. 4: llustration of the proof of Lemma 4.

Lemma 4 Let D be a minimal sound-reduced diagram for P(A). For any
node u in layer j of D, and any other diagram D’ with the same variable
ordering that is sound for P(A), there is a node u' in layer j of D’ with
Suf a(u) = Suf A(w).

Proof Suppose to the contrary that there is a node w in layer j of D, and some
sound diagram D’ in which layer j contains no node with the same A-suffixes
as u. We will show that D must then contain a node v into which u can be
sound-reduced, contrary to hypothesis.

Let m be a minimum-weight r—u path in D. Since D is minimal, node
u belongs to some path that represents a A-optimal solution. So since 7 is a
minimum-weight r—u path, z(7) is the prefix of some A-optimal solution. Thus
since D’ is sound for P(A), layer j of D’ must contain a node v’ and an r—u’
path 7/ with z(7") = z(7). Since every A-optimal solution represented by D is
also represented by D', we have that Suf A (u) C Suf A(u'), due to the fact that
7 is a minimum-weight path. However, by hypothesis Suf a(u) # Suf a(u’),
and so we have Suf 5 (u’) \ Suf o(u) # 0.

Now consider any u'—t path o’ for which z(0’) € Suf a(v') \ Suf A (). This
implies that z(o’) is the suffix of some A-optimal solution, and so there must
be an r—u’ path p’ with

w(p) +w(o’) < 2"+ A (5)

However, we can see as follows that (z(7'), 2(¢")) is not a A-optimal solution.
Note that by Lemma 1, 7 is the only path in D representing z(7) = z(n’).
Thus if (z(7"),z(0")) were A-optimal, the soundness of D would imply that
z(0’") = x(0) € Suf A(u) for some u—t path o, which contradicts the fact that
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x(o’) € Suf a(u') \ Suf a(w). So (z(n'),x(c")) is not A-optimal, which means
w(n') + w(c’) > z* + A. This and (5) imply w(p’) < w(x"). But (5) also
implies that the sound diagram D must contain a node v and an r—v path p
with z(p’) = x(p), so that w(p) < w(w). Since 7 is a minimum-weight r—u
path, this implies u # v.

We now show that u can be sound-reduced into v by verifying conditions
(3) and (4). To show (3), consider any u~t path 7 with z(7) € Suf A(u). Since
7 is a minimum-weight r—u path, (z(7),z(7)) is a A-optimal solution. Now
since D’ is sound for P(A) and z(w) = x(x'), there is a u'~¢ path 7’ in D’
for which (x(7'),z(7")) is A-optimal. This means (z(p’), z(7")) is A-optimal
because w(p') < w(n’), which implies that (z(p),z(7)) is A-optimal. Since by
Lemma 1, p is the only path representing x(p), there must be a v—¢ path 7
with (7) = () and z(7) € Suf A(v). This implies z(7) € Suf(v) and (3).

Finally, to show (4), let @ be an r—u path with z(7) € Pre(u), and let & be
a v—t path with z(a) € Suf(v)\Suf(u). Note that if w(p)+w(d) > 2z*+ A, then
since w(7) > w(w) > w(p), we have w(T)+w(F) > z*+ A, and (4) follows. We
may therefore suppose w(p) + w(5) < z* + A, which means that (z(p), (7))
is A-optimal because D is sound. Since D’ is sound and z(p) = z(p’), by
Lemma 1 there must be a 't path ¢’ for which 2(¢") = z(7) and (z(p’), x(3"))
is A-optimal. This means that D’ represents the solution (x(7’), (")), which
is the same as (x(7),x(5)). But since 2(7) ¢ Suf(u), D does not represent
the solution (x(7), (7)), which therefore cannot be A-optimal. Thus since D’
represents this solution, it must be spurious, and we have w(w)+w(7) > z*+A.
This implies w(7) + w(g) > z* + A and (4). O

Theorem 3 A sound decision diagram D for P(A) has a minimum number
of nodes and a minimum number of arcs, among diagrams that are sound for
P(A) and have the same variable ordering, if and only if D is minimal and
sound-reduced.

Proof If D is not minimal, we can remove one or more nodes or arcs, and if
D is not sound-reduced, we can remove at least one node. Thus D is minimal
and sound-reduced if it has a minimum number of nodes and arcs.

To prove the converse, suppose D is minimal and sound-reduced. Due to
Lemma 3, all nodes in any given layer j of D have sets of A-suffixes. By
Lemma 4, these distinct sets of A-suffixes exist for nodes in layer j of any
sound diagram for P(A). Thus any sound diagram for P(A) has at least as
many nodes as D. Furthermore, the minimality of D implies that any arc a
leaving a node w in layer j of D is part of some A-optimal solution. Given
any diagram D’ that is sound for P(A), the node «’ in layer j of D’ with
Sufa(u’) = Sufa(u) must have an outgoing arc with the same label as a.
Thus D’ has at least as many arcs as D.

Although all sound-reduced diagrams for a given P(A) have minimum size,
they are not necessarily identical. For example, while all sequences of sound
reductions of Fig. 3(a) terminate in the same diagram Fig. 3(b), this is not
the case for the slightly different diagram of Fig. 5(a). Sound-reducing us into
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Fig. 5: Distinct sound-reduced diagrams (b) and (c) obtained from diagram (a), where z* = 2
and A = 6.

q yields the sound-reduced diagram of Fig. 5(b), and sound-reducing us into
vz yields Fig. 5(c). Both diagrams are of minimum size and satisfy Lemma 4,
but they are distinct.

6 Two-Sided Soundness

A sound diagram is permitted to represent feasible and infeasible solutions
that are worse than A-optimal. A natural question is whether it would be
useful to allow (infeasible) solutions that are better than optimal. Superoptimal
solutions, like solutions that are worse than A-optimal, can be filtered out
during postoptimality analysis by examining only objective function values.

Since such a diagram D requires excluding solutions with values on either
side of the interval [z*, z* + A], we will say that it has two-sided soundness,
meaning that it satisfies

S(A) =Sol(D) N {w € 81 x -+ x 8y | 2" < flz) < =" + A}

Conceivably, this weaker condition for including solutions could allow more
flexibility for finding a small sound diagram.

There is a theoretical reason, however, that two-sided soundness is less
suitable for practical application. In a one-sided sound diagram, it is easy to
check whether a given r—u path of cost w can be completed to represent a
d-optimal solution. Namely, find a shortest u—t path and check whether its
length is at most z* — w 4 §. In a two-sided sound diagram, this decision
problem is NP-complete. It is therefore difficult to extract §-optimal solutions
from a two-sided sound diagram.

Theorem 4 Checking whether some r—t path in a given decision diagram has
cost that lies in an given interval [z*, z* + 0] is NP-complete.
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Proof The problem belongs to NP because an r—t path with cost in [z*, 2* + ]
is a polynomial-size certificate. It is NP-complete because we can reduce the
subset sum problem to it. Given a set S = {s1,...,s,} of integers, the subset
sum problem is to determine whether some nonempty subset of these integers
sums to zero. We can solve the problem by constructing a decision diagram as
follows. Let Uy = {r}, U; = {uj1,...,ujn} for j =2,...,n, and U,41 = {t}.
There is one arc with weight si from r to each usg, £ = 1,...,n. There are
two arcs from each ;i to ujyq x for j = 2,...,n—1, one with weight zero, and
the other with weight s; if j —1 < k and weight s;4; otherwise. There are two
arcs from each u, to t, one with weight zero, and the other with weight s,,_1
if K = n and weight s,, otherwise. Then there is a one-to-one correspondence
between r—t paths and nonempty subsets of S. The subset sum problem has
a solution if and only if there is an r—t path with cost in the interval [0, 0]. O

Corollary 2 Checking whether a given r—u path can be extended to a path
with cost in [2*, 2* 4 8] is NP-complete.

Proof Let the given r—u path in diagram D have cost w, and consider the
decision diagram D’ consisting of all u—t paths of D. The path extension
problem is equivalent to checking whether some u—t path in D’ has cost in the
interval [z* —w, z* — w + 0], which by Theorem 4 is an NP-complete problem.
O

7 Sound Diagrams for Bounded Integer Linear Programs

We now specialize problem (P) to an integer linear program:
min{cr | Az > b, x € S1 X ... x S, } (ILP)

in which A is an m x n matrix and each S; is a finite set of integers. We
wish to build a sound decision diagram that represents A-optimal solutions of
(ILP); that is, a sound diagram for ILP(A). We assume that (ILP) has been
solved to optimality and the optimal value z* is known. This will accelerate
the construction of a sound diagram.

We build the diagram by constructing a branching tree, identifying nodes
that necessarily have the same set of A-suffixes, and removing some nodes
that cannot be part of a A-optimal solution. To accomplish this, we associate
with every node u € U; a state (u.lhs, w(r,u)). In the simplest case, u.lhs is an
m-~tuple in which component 7 is the sum of left-hand-side terms of inequality
constraint 7 that have been fixed by branching down to layer j. The root node
r initially has state (0,0), where 0 is a tuple of zeros. We can identify nodes
u,u’ that have the same lhs state, because they necessarily have the same
A-suffixes. The resulting node v has state (v.lhs, w(r,v)), where v.lhs = w.lhs
and w(r,v) = min{w(r,u), w(r,u’)}. Thus the state variable w(r, v) maintains
the weight of a minimum-weight r—v path in the current diagram.

We can also observe that inequality constraint ¢ is satisfied at node u € Uy,
for any values of x;,...,z,, when the sum of the fixed terms on the left-hand
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side is sufficiently large. Specifically, inequality 4 is necessarily satisfied when
the sum of these terms is at least b; — M;;, where

Mij = Zmin {Aikxk | T € Sk}
k=j

This allows us to update the lhs state to min{u.lhs, b — M;} and still iden-
tify nodes that have the same state. Here, M; = (Mj,..., M,,;), and the
minimum is taken componentwise.

We can remove a node u € U; when the cost of any ¢ path through u
must be greater than 2* + A, based on the linear relaxation of (ILP) at node
u. We therefore remove v when w(r, u) + LP;(u.lhs) > 2* + A, where

j—1 n
LP;(u.lhs) = min { chxk ‘ ZAkxk >b—ulhs, xp €Iy, k=17,... ,n}
k=1 k=j

and I}, is the interval [min Sy, max Si]. This can remove some spurious solu-
tions, but not necessarily all, because w(r,u) can underestimate the weight of
r—u paths, and LP;(u.lhs) can underestimate the weight of u—t paths.

The diagram construction is controlled by Algorithm 1, which maintains
unexplored nodes in a priority queue that determines where to branch next.
When exploring node u € U}, the procedure invokes Algorithm 2 to create an
outgoing arc for each value in the domain S; of x;. Some of these arcs may
lead to dead-end nodes based the LP relaxation as described above. If all lead
to dead ends, v and predecessors of u with no outgoing arcs are removed by
the subroutine at the bottom of Algorithm 1.

Each surviving arc a out of w is processed as follows. Let the node ¢ at the
other end of arc a have state (q.lhs, w(r,u) + ¢;¢(a)), where

¢.Ihs = min {b — M;, u.lhs + A;¢(a)}

If no node currently in U;;, has the same lhs state as ¢, add node g to Uj41.
Otherwise, some node v € U;11 has v.lhs = ¢.lhs, and we let arc a run from u
to v, updating w(r, v) if necessary. If v has been explored already, it is revisited
in Algorithm 3, because the updated value of w(r,v) may affect which nodes
and arcs can be deleted.

A key concept in the procedure is that of a closed node. The terminal
node t is designated as closed (t.closed = true) when it is first reached in
Algorithm 2. Higher nodes in the diagram are recursively marked as closed
when all of their successors are closed. The recursion is implemented by main-
taining the number w.openArcs of arcs from node u that do not lead to closed
nodes. When Algorithm 1 pops u from the priority queue and processes it,
u.openArcs is set to the number |S;| of domain elements of z;. Algorithm 1
decrements this number for each dead-end arc, and Algorithm 2 decrements
it for each arc leading to a pre-existing node that is closed. Node u is closed
when u.openNodes reaches zero.
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Algorithm 1 Builds sound diagram for (ILP) using an arbitrary search type

1: procedure POPULATESOUNDDIAGRAM()

r + new Node(min{0, M; },0)

3 Ui + {T’}

4 PriorityQueue <+ {(1,7)} > Begins search at root node r
5: RevisitBFSQueue « {}

6: while PriorityQueue # () do
7

8

9

(j,u) < PriorityQueue.pop() > Queue policy defines search type
u.openArcs < |S|
Deadend « true

10: for a € S; do

11: Success < TRYBRANCHING(7, u, @) > Algorithm 2
12: Deadend - Deadend A —Success

13: end for

14: if Deadend then > No branch succeeded
15: REMOVEDEADENDNODE(j, u) > Procedure below
16: else if RevisitBFSQueue # () then > Nodes following u reopened
17: REVISITNODES() > Algorithm 3
18: else if u.openArcs = 0 then > Nodes following u are all closed
19: CLOSENODE(j, u) > Algorithm 4
20: end if

21: u.explored < true

22: end while
23: end procedure

Subroutine: Removes nodes that cannot reach ¢ recursively

24: procedure REMOVEDEADENDNODE(j, u)
25: Uj — Uj \ {u}
26: for all a = (v,u) € A do

27: A<+ A\ {a}

28: v.openArcs < v.openArcs — 1

29: if fa’ = (v,u') € A: v’ # u then > Node above is a deadend
30: REMOVEDEADENDNODE(j — 1, )

31: else if v.openArcs = 0 then

32: CLOSENODE(j — 1,v)

33: end if

34: end for
35: end procedure

One purpose of the node closing mechanism is to implement a possibly
more effective test for removing nodes than the LP relaxation. When the
terminal node t is reached, a third state variable w(t,t) is set to 0. When
a node u is closed, the state variable w(u,t) is updated to indicate the weight
of a minimum-weight path to ¢. Algorithm 4 then removes node u if w(r,u) +
w(u,t) > z*+ A. It also removes an outgoing arc a to a node v when w(r, u) +
cil(a)+w(v,t) > z*+ A. Even this test, however, may not remove all spurious
solutions.

8 Algorithm for Sound Reduction

Applying the conditions (3)—(4) for sound reduction presupposes that the
suffixes of nodes u and v are known, as well as the weight of a minimum-weight
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Algorithm 2 Tries to branch on value and creates a new node if needed
1: function TRYBRANCHING(j, u, )

2: nodeLhs - min{u.lhs + A o, M;}
3: nodeWeight < w(r,u) + cjo
4: if nodeWeight + LP;(u.lhs) > z* + A then > LP = oo if infeasible
5: return false
6: end if
7 if Jv € Uj41 : v.lhs = nodeLhs then > Found node with same lhs
8: if nodeWeight < w(r,v) then > Improves minimum cost path to r
9: w(r, v) < nodeWeight
10: if v.explored then
11: RevisitBFSQueue.add(j + 1, v) > For Algorithm 3
12: end if
13: end if
14: A+ AU{(u,v)}
15: if v.closed then > Fails if not improving for a closed node
16: u.openArcs < u.openArcs — 1
17: end if
18: else > Creates node for new lhs
19: v < new Node(nodeLhs, nodeWeight)
20: Uj+1 — Uj+1 @] {U}
21: A+ AU{(u,v)}
22: if j < n then > Adds non-terminal node to queue
23: PriorityQueue.add(j + 1, v)
24: else > First reached terminal node ¢
25: v.closed < true
26: w(v,t) < 0
27: end if
28: end if
29: return true

30: end function

path from v to the terminal node. Sound reduction is therefore attempted only
when a node is closed, because it is at this point that the necessary information
becomes available.

Algorithm 5 attempts to sound-reduce u into other closed nodes in the
same layer, and to sound-reduce other nodes in the layer into u. It is invoked
at line 23 in Algorithm 4. To check the conditions for sound-reducing u into v,
Algorithm 5 recursively computes the weight of a minimum-weight suffix of v
that is not a suffix of u (and similarly with u and v reversed). We refer to this
as a least-cost differing suffiz (LCDS) and denote its weight by LCDS;[v, u].
The computation of LCDS;[v, u] and LCDS;[u,v] occurs in lines 4-17 of the
algorithm.

The test for sound-reducing u into v occurs in lines 18-22. To break
symmetry, we attempt the sound-reduction only when w(r,v) < w(r,u). A
failure of condition (3) for sound reduction occurs when a A-suffix of u is
not a suffix of v, so that w(r,u) + LCDS;[u,v] < z* + A. Condition (4) is
violated when v has a suffix that is not a suffix of v and incurs a cost no
greater than z* + A when combined with some prefix of u. This occurs when
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Algorithm 3 Revisits nodes already explored for updating and re-branching
1: procedure REVISITNODES()

2: while RevisitBFSQueue # 0 do

3: (j, u) < RevisitBFSQueue.pop()

4: if u.closed then

5: REOPENNODE(u) > Procedure below
6: end if

7 for a € S; do

8: if fa = (u,v) € A:l(a) = a then > Branches again on absent «
9: u.openArcs < u.openArcs + 1

10: TRYBRANCHING(7, u, @) > Algorithm 2
11: else

12: if w(r,u) + c¢joa < w(r,v) then > Improves w(r, v)
13: w(r,v) < w(r,u) + c;a

14: if v.explored then

15: RevisitBFSQueue.add(j + 1, v)

16: end if

17: end if

18: end if

19: end for

20: if u.openArcs = 0 then > Nodes following u remained closed
21: CLOSENODE(j, u) > Algorithm 4
22: end if

23: end while
24: end procedure

Subroutine: Reopens nodes in bottom-up order recursively

25: procedure REOPENNODE(u)

26: u.closed < false

27: for all a = (v,u) € A do > Opens all nodes above
28: if v.closed then

29: REOPENNODE(v)

30: v.openArcs <+ 1

31: else

32: v.openArcs < v.openArcs + 1

33: end if

34: end for
35: end procedure

w(r,u) +LCDS;[v,u] < z* + A. We can therefore sound-reduce v into v when
w(r,u) + min {LCDS;[u, v], LCDS;[v,u]} > z* + A

The analogous test for sound-reducing v into u occurs in lines 23-26. The
removal of a node during sound reduction may disconnect subsequent nodes
in the diagram, which are removed by the subroutine at the bottom of Algo-
rithm 5.

Sound reduction is relatively efficient. Algorithm 5 is called O(nW) times,
where W is the maximum width of a layer. Each call checks O(W) nodes having
O(Smax) arcs each, where Sp.x is the size of the largest variable domain. This
totals O(nW2S,,.x) operations before node removals. Each call of the bottom
procedure requires time O(Spax), for a total time of O(nW Spax)-
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Algorithm 4 Closes nodes and performs bottom-up processing recursively
1: procedure CLOSENODE(j, u)

2: u.closed < true

3: for all a = (u,v) € A do > Computes minimum cost path to ¢
4: w(u,t) < min{w(u,t), cjl(a) +w(v,t)}

5: end for

6: if w(r,u) +w(u,t) > z* + A then > Node is not minimal
7 REMOVEDEADENDNODE(%, u) > Subroutine in Algorithm 1
8: end if

9: for all a = (u,v) € A do

10: if w(r,u) + ¢j0(a) + w(u,t) > z* + A then > Arc is not minimal
11: A+ A\{a}

12: end if

13: end for
14: ClosingQueue « {}
15: for all a = (v,u) € A do

16: if —wv.closed then

17: v.openArcs < v.openArcs — 1

18: if v.openArcs = 0 then > Closes node above
19: ClosingQueue < ClosingQueue U {(j,u)}

20: end if

21: end if

22: end for

23: COMPRESSDIAGRAM(j, w) > Algorithm ?? or 5
24: while ClosingQueue # () do

25: (j, u) < ClosingQueue.pop()

26: CLOSENODE(j, u)

27: end while
28: end procedure

9 Postoptimality Analysis

Because a sound decision diagram transparently represents all near-optimal
solutions, a wide variety of postoptimality analyses can be conducted with
minimal computational effort. We describe a few of these here.

The most basic postoptimality task is to retrieve all feasible solutions whose
cost is within a given distance of the optimal cost. That is, we wish to retrieve
all 6-optimal solutions from a diagram D that is sound for P(A), for a desired
d € [0, A]. This is accomplished by Algorithm 6. The algorithm assumes that
the weight w(r, u) of a minimum-weight path from r to each node u has been
pre-computed in a single top-down pass. Then, for each desired tolerance 4,
the algorithm finds J-optimal solutions in a bottom-up pass. It accumulates for
each node u a set Suf® (u) of suffixes that could be part of a d-optimal solution,
based on the weight of a minimum-weight r—u path. When the algorithm
reaches the root r, Suf®(r) is precisely the set Sufs(r) of d-optimal solutions,
because at this point the exact cost of solutions is known.

The worst-case complexity of the algorithm is proportional to the number
of solutions D represents, including spurious solutions. However, many spuri-
ous solutions are screened out as the algorithm works its way up, particularly
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Algorithm 5 Sound-reduces node u with another closed node if possible

1: procedure COMPRESSDIAGRAM(J, u)
2: for all v € U; : v # u A w.closed, and v ordered by nondecreasing w(r,d) do

3: LCDS;[u, v], LCDS;[v, u] < oo

4: for all a € S; do

5: if Jay = (u,uy) : £(ay) = a then

6: if da, = (v,v4) : l(ay) = o then

7 LCDS;[u, v] < min{LCDS;[u, v], w(ay) + LCDS;41[ut,v4]}
8: LCDS;[v, u] - min{LCDS;[v, u], w(aw) + LCDS;41[vy, uq]}
9: else

10: LCDS;[u, v] +~ min{LCDS;[u, v], w(av) + w(u4,t)}

11: end if

12: else

13: if Jay, = (v,v4) : £(av) = o then

14: LCDS;[v, u] - min{LCDS;[v, u], w(ay) + w(vy,t)}

15: end if

16: end if

17: end for

18: if w(r,v) <w(r,u) then

19: if w(r,u) + min{LCDS;[u, v], LCDS;[v,u]} > z* + A then

20: SOUNDREDUCE(J, u, v) > First procedure below
21: break

22: end if

23: else if w(r,v) + min{LCDS;[u, v], LCDS;[v,u]} > z* + A then

24: SOUNDREDUCE(J, v, u) > First procedure below
25: break

26: end if

27: end for
28: end procedure

Subroutine: Sound-reduces node u into node v at level j

29: procedure SOUNDREDUCE(j, u, v)
30: for all a = (¢,u) € A do

31: a <+ (gq,v) > Redirects arcs to v
32: end for

33: v.lhs < 0 > Removes v’s state
34: REMOVEIFDISCONNECTED(j, u) > Next procedure below

35: end procedure

Subroutine: Removes node u € U; and subsequent disconnected nodes in D

36: procedure REMOVEIFDISCONNECTED(j, u)
37:  if fa = (v,u) € A then

38: Uj — Uj \ {u}

39: for all a = (u,v) € A do

40: A+ A\ {a}

41: REMOVEIFDISCONNECTED(j + 1, v)
42: end for

43: end if

44: end procedure

because a solution with cost greater than z* 4+ ¢ (where possibly § < A) can
be discarded. Retrieval can therefore be quite fast for small §.

The same algorithm can answer a number of postoptimality questions. For
example, one might ask which solutions are §-optimal when certain variables
are fixed to certain values—or, more generally, when the domains \S; of certain
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Algorithm 6 Retrieves J-optimal solutions from a sound diagram for § €
[0, A]

1: function RETRIEVESOLUTIONS()

2: Suf®(t) = {null} > Suf®(u) = set of possible §-suffixes of u
3: w(null) =0 > null is the zero-length suffix.
4 for j=n—1do > Retrieve §-optimal solutions in bottom-up pass.
5: for all v € U; do

6: Sufd(u) =0

7 for all a = (u,v) € A; do

8 for all s € Suf’(v) do > Examine suffixes of v.
9: if w(r,u)+w(a)+w(s) < z*+ 9 then > Possible new d-suffix of u?
10: Suf® (u) + Sufd(u) U {£(a)]||s} > Append ¢(a) to suffix s.
11: w((a)l|s) = w(l(a)) + w(s) > Compute weight of new suffix.
12: end if

13: end for

14: end for

15: end for

16: end for

17: return Suf’(r) > Returns set of d-optimal solutions.

18: end function

variables are replaced by proper subsets S;- of those domains. This is easily
addressed by removing, for each S}, all arcs leaving layer j with labels that
do not belong to Sg-. Algorithm 6 is then applied to the smaller diagram that
results, after recomputing weights w(r,u). Since the use of smaller domains
does not add any A-optimal solutions, no §-optimal solutions are missed.
Methods for efficient updating of shortest paths are discussed in [25].

One might also ask which solutions are J-optimal when the objective func-
tion coefficients are altered, say to ¢’. Since changing the cost coefficients can
introduce A-optimal solutions, the sound diagram may fail to represent some
solutions that are A-optimal for the altered costs. However, we can identify all
solutions that remain d-optimal after the cost change for § < A— 2;21 [
since all of those were originally A-optimal. This is accomplished simply by
modifying the arc weights to reflect the new costs and running Algorithm 6,
again with recomputed weights w(r, u).

Several additional types of postoptimality analysis can be performed, all
with the advantage that spurious solutions have no effect on the computations.
These types of analysis can therefore be conducted very rapidly.

For example, we can determine the values that a given variable can take
such that the resulting minimum cost is within § of the optimum. We refer
to this as the J-optimal domain of the variable. For each variable z;, we
need only scan the arcs leaving layer j and observe which ones pass test (2)
when A is replaced with §. This is done in Algorithm 7, which computes
0-optimal domains for all variables. In particular, the solution value of x; is
invariant across all §-optimal solutions if its d-optimal domain is a singleton.
The algorithm assumes that shortest path lengths w(r, u) and w(u, t) have been
pre-computed for each node w. Its complexity is dominated by the complexity
O(nW?2) of computing the shortest path lengths. The algorithm can also be
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Algorithm 7 Computes d-optimal domains for all variables, where § € [0, A]
1: procedure COMPUTENEAROPTIMALDOMAINS(S)

2: for j=1—ndo

3 X« 0 > X is the subset of S; in §-optimal solutions.
4 for all a = (u,v) € Aj : {(a) ¢ X; do > Loops on arcs of missing values
5 if w(r,u) +w(a) + w(v,t) < z* + 6 then

6: X+ X;U{{(a) > Found a §-optimal solution where z; = £(a)
7: end if

8 end for

9 end for

10: end procedure

Algorithm 8 Computes the cost coefficient c;- for each variable x; on 0-
1 domains that yields optimal solutions with x; = 0 and x; = 1 among the
solutions of the decision diagram, if the other cost coefficients remain the same

1: function COMPUTEINDIFFERENTCOSTCOEFFICIENTS()

2: for j=1—ndo

3: for a € {0,1} do

4 Zo < 00 > 2o is min Zj/#j cjrxy when z; = o
5: end for

6: for all a = (u,v) € A; do

7 if w(r,u) + w(v,t) < z4(q) then

8 2p(a) + w(r,u) +w(v,t) > Found a lower value of 3=/, ; cjra;
9: end if

10: end for

11: if zg = oo then > There is no solution with z; =0
12: c;- =0

13: else if z; = oo then > There is no solution with z; =1
14: c;- = —00

15: else > There are solutions for both assignments
16: c;- =20 — 21 > Coefficient for which zg = 21 + c;-
17: end if

18: end for

19: return ¢’

20: end function

run after the domains of certain variables are replaced with proper subsets of
those domains, to determine the effect on the d-optimal domains of the other
variables.

We can also perform range analysis for individual cost coeflicients c;. As
with the previous analysis, the presence of spurious solutions has no effect.
For each variable z;, we can look for the values of c¢; that would make each
value in the domain of x; optimal, provided that the other cost coefficients are
unchanged. This idea is particularly simple and insightful when the domains
are binary, as described in Algorithm 8: if there are solutions in the diagram
for which z; = 0 and z; = 1, there is a unique value c;» for which there
are alternate optima with both values. Any ¢; > c;- makes solutions where
x; = 1 suboptimal, and conversely any c; < c;» makes solutions where x; = 0
suboptimal. If applied to solutions that were originally A-optimal, the outcome
remains valid as long as ¢; does not change more than A.
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10 Computational Experiments

The experiments were designed to assess the compactness of sound decision
diagrams, based on 0-1 problem instances in MIPLIB. We constructed three
data structures for each of 12 instances and a range of tolerances A. The first
structure is a branching tree T that represents all A-optimal solutions. The
second is the sound diagram U that is obtained from Algorithms 1-4, but
omitting the sound-reduction step in Algorithm 5. The third is the sound-
reduced diagram S that is obtained by applying Algorithms 1-5. Diagram
S is therefore a smallest possible sound diagram for the problem instance.
By comparing the size U with the size of T, we can see the advantage of
representing solutions with a sound decision diagram in which equivalent states
are unified. By comparing the size of S with the size of U, we can measure the
additional advantage obtained by sound reduction.

We carried out the experiments for tolerances A that range over a wide
interval from zero to A, in increments of 0.1 A ,.«. For the smaller instances,
we set Apnax large enough to encompass all feasible solutions; that is, large
enough so that all feasible solutions are A, -optimal. These instances are
bm23, enigma, p0033, p0040, stein9, steinlb, and stein27. Thus for these
instances, A is the difference in value between the best and worst solutions.
For the remaining instances, we set Apax equal to the median absolute value
of nonzero objective coefficients. This allows us to test variations of up to
100% in objective coefficients of half of these variables. If the runtime was less
that 1000 seconds, we kept doubling Ay . until the runtime exceeded 1000
seconds, but stopped short of a doubling that resulted in a runtime of more
than 24 hours.

In all experiments, the branching priority is DF'S, variables are ordered by
increasing index, and O-arcs are explored before 1-arcs. The code is written in
C++ (gee version 4.8.24), uses the COIN-OR CLP solver! (version 1.16.10),
and ran in Ubuntu 14.04.2 LTS on a machine with Intel(R) Xeon(R) CPU
E5-2680 v3 @ 2.50GHz processors and 128 GB of RAM.

Table 2 displays the statistics for the maximum tolerance Ap,.x, including
the number of optimal and A,,.x-optimal solutions, and the size and con-
struction time for 7', U, and S. The sound-reduced diagram S is dramatically
smaller than the branching tree T for all the instances except enigma. It is also
significantly smaller than the unified diagram U except in the cases of air0O1
and enigma, and smaller by at least an order of magnitude in three instances.
On the other hand, sound reduction added significantly more computation
time to the diagram construction in seven of the instances.

In practice, the desired tolerance A is typically much less than Ay .. We
therefore display in Figs. 6-7 how the diagram sizes and computation times
depend on A for six of the instances. Note that the diagram sizes and runtimes
are plotted on a logarithmic scale. As predicted by Corollary 1, the diagram
size is monotone nondecreasing in A.

L projects.coin-or.org/Clp
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Table 2: Solution counts, with diagram sizes and construction times, for MIPLIB instances
using a maximum tolerance Amax-

Instance A Solutions Size (nodes) Runtime (s)
max | Opt. Amax-opt. T U S U S
air01 3194 2 16,899 | 5,058,113 61,652 61,652 340 11,000
bm23* 59 1 2,168 23,620 20,356 5,460 31 40
enigma’™ 1 2 4 278 243 243 41 41
Iseu 236.16 2 67,250 | 2,057,264 294,108 53,465 2,900 8,600
mod008 21 6 4,954 891,543 188,359 38,292 | 15,000 16,000
p0033™ 2112 9 10,746 55,251 847 449 5.8 33
p0040™ 7102 1 519,216 | 2,736,899 2,950 831 2.6 620
p0201 375 4 34,504 | 2,326,052 107,312 6,627 1,900 7,700
sentoy 280.8 1 85,401 | 1,868,562 1,754,681 101,618 3,800 12,000
stein9™* 4 54 172 460 137 80 0.02 0.05
steinl5” 6 315 2,809 8,721 2,158 816 0.54 1.6
stein27”" 9 2,106 367,525 | 1,450,702 338,916 25,444 159 1,400

*Amax set large enough to include all feasible solutions.

The sound-reduced diagram S is substantially more compact than the
branching tree T' in every instance. It is also smaller than U in all instances
but one, although one must normally pay a higher computational price for
this reduction. Of course, a sound-reduced diagram need only be generated
once in order to carry out a large number of postoptimality queries. The
sound-reduced diagrams for typical values of A are well within a practical
size range for rapid postoptimality processing, normally a few hundred or a
few thousand nodes. The computation times for constructing diagrams of this
size are likewise modest, ranging from a few seconds to a few minutes.

11 Conclusion

We explored sound decision diagrams as a data structure for concisely and
transparently representing near-optimal solutions of integer programming prob-
lems. We showed that repeated application of a simple sound-reduction step
yields a smallest possible sound diagram for any given discrete optimization
problem. Based on this result, we stated an algorithm for constructing sound-
reduced diagrams for integer programming problems. We showed how the
resulting diagrams permit several types of postoptimality analysis, and that
the presence of spurious solutions in the diagrams has no effect on most
types of analysis. Computational testing indicates that sound-reduced dia-
grams generally offer dramatic reductions in the space required to represent
near-optimal solutions, relative to that required by a branching tree. For the
MIPLIB instances tested, the resulting diagrams are well within a size range
that permits rapid postoptimality processing.

This study is inspired by the idea that solution of an optimization problem
should be viewed more broadly than merely generating one or more optimal
solutions. Rather, it should be seen as transforming an opaque data structure
that defines the problem but does not reveal its solutions, to a transparent data
structure that provides ready access to optimal and suboptimal solutions of
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Fig. 6: Diagram size and computation time vs. A for three smaller instances.

interest. We attempted to lay a foundation for this type of solution for integer
programming, but an obvious research direction is to extend the method to
mixed integer programming. Decision diagrams can continue to play a role,
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Fig. 7: Diagram size and computation time vs. A for three larger instances.

because paths in a diagram can represent values for the integer variables in
the problem.
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