Logic-based Formulation of Ethical Principles

John Hooker Carnegie Mellon University

ICLP 2021

Some results represent joint work with

Thomas Donaldson University of Pennsylvania

Tae Wan Kim *CMU*

Ethics in Al

• There is rapidly growing interest in AI ethics

- Mainly to avoid **bias** in AI-based decisions.
- But also to incorporate **general ethical principles** into AI systems.
 - "Value alignment"

Ethics in Al

• There is rapidly growing interest in AI ethics

- Mainly to avoid **bias** in AI-based decisions.
- But also to incorporate **general ethical principles** into AI systems.
 - "Value alignment"
- Our goals:
 - Show that principles can be stated **rigorously** enough to allow **logic-based formulation**.
 - This requires some background in **deontological ethics**.
 - Show that logic-based formulation enables value alignment to incorporate the ethical principles.

Basic assumptions

Acting for reasons

• Freely chosen action is based on a rationale.

Universality of reason

• Justification is independent of the reasoner.

Basic assumptions

- Freely chosen action is based on a rationale.
- Universality of reason
 - Justification is independent of the reasoner.
- We **deduce** ethical principles from these assumptions.
 - This is the *deontological* approach to ethics.
 - **Deontology** = What is required.
 - Ethical principles represent what is required for the possibility of free action.

- Basic premise: We always act for a reason.
 - Every action has a rationale.
- Why?
 - This is how we distinguish *freely chosen action* from mere behavior.
 - An MRI machine can detect our decisions **before we make them**.
 - If decisions are determined by **biological causes**, how can they be freely chosen?

- Solution:
 - Freely chosen actions have **two kinds of explanation**:
 - A biological cause
 - A rationale provided by the agent
 - For example:
 - A hiccup has **only** a biological explanation. Not a freely chosen action.
 - Drinking water to stop hiccups has
 2 explanations: a biological cause and a rationale. A freely chosen action.

- Dual standpoint theory
 - Originally proposed by Immanuel Kant.
 - Grundlegung zur Metaphysik der Sitten (1785)
 - Recent versions: *Nagel (1986), Korsgaard (1996), Nelkin (2000), Bilgrami (2006).*
 - Provides a **basis for ethics**.
 - Ethical principles are **necessary conditions** for the logical coherence of an action's rationale.

Universality of reason

• What is rational does not depend on who I am.

- I don't get to have my own logic.
- In particular, if I view a reason as justifying an action for me, I must view it as justifying the same action for anyone to whom the reason applies.
- The assumption underlies science and all forms of rational inquiry.
 - Ethics assumes nothing more.

Principles

- We sketch **deontological arguments** for three ethical principles.
 - Based on assumptions just stated.
 - Generalization principle
 - Autonomy principle
 - Utilitarian principle
- We show how to express the principles in **quantified modal logic**.
 - To allow application to value alignment.

Generalization principle

• Example

- Suppose I steal a watch from a shop.
- I have 2 reasons:
 - I want a new watch.
 - I won't get caught.
 - Security at the shop is lax.

Generalization principle

• Example

- Suppose I steal a watch from a shop.
- I have 2 reasons:
 - I want a new watch.
 - I won't get caught.
 - Security at the shop is lax.

- These are not psychological causes or motivations.
 - They are consciously adduced reasons for the theft.
 - There may be other reasons, of course.

- Due to universality of reason, I am making a decision for everyone:
 - All who want a watch and think they won't get caught should steal one.

- Due to universality of reason, I am making a decision for everyone:
 - All who want a watch and think they won't get caught should steal one.
- But I know that if all do this, they will get caught.
 - The shop will install security.
 - My reasons will no longer apply to me.

- Due to universality of reason, I am making a decision for everyone:
 - All who want a watch and think they won't get caught should steal one.
- But I know that if all do this, they will get caught.
 - The shop will install security.
 - My reasons will no longer apply to me.
- I am not saying that all these people actually will steal watches.
 - Only that if they did, my reasons would no longer apply.

- My reasons are **inconsistent** with the assumption that people will act on them.
- I am caught in a contradiction.
 - I am deciding that these reasons justify theft for **me**.
 - But I am **not** deciding that these reasons justify theft for **others**.
 - I can't have it both ways.

- My reasons are **inconsistent** with the assumption that people will act on them.
- I am caught in a contradiction.
 - I am deciding that these reasons justify theft for **me**.
 - But I am **not** deciding that these reasons justify theft for **others**.
 - I can't have it both ways.
- More generally...
 - Universal theft merely for personal benefit would **undermine the institution of property**.
 - Purpose of theft is to benefit from property rights.

Generalization principle

- It should be rational for me to believe that the reasons for my action are consistent with the assumption that everyone to whom the same reasons apply acts the same way.
 - Historically inspired by Kant's Categorical Imperative, but different and more precise.
 - Takes "rationality" as a primitive and unexplained notion, but this is true to some extent of all science.

Example - Cheating

- What is wrong with cheating on an exam?
- My reasons:
 - I will get a better grade and therefore a better job.
 - I can get away with it.
- I know that these reasons apply to nearly all students.
 - If they act accordingly, grades will be meaningless, or exams strictly proctored.
 - This defeats one or both of my reasons.
 - So, cheating for these reasons **violates** the generalization principle.

Example - Agreements

- Breaking an agreement normally violates the generalization principle.
- Reason:
 - Convenience or profit.
- These reasons apply to most agreements
 - If agreements were broken for mere convenience, it would be impossible to **make** agreements.
 - And therefore impossible to **achieve one's purposes** by **breaking** them.
 - The whole point of having an agreement is that you keep it when **you don't want to keep it**.

Example - Lying

- Lying for mere convenience violates the generalization principle.
 - ...if the reason for lying assumes that people will believe the lie.
 - If everyone lied when convenient, no one would believe the lies.
 - The possibility of **communication** presupposes a certain amount of credibility.

Example - Lying

- Lying can be generalizable, depending on the reasons.
- Popular "counterexample"
 - Similar to one posed in Kant's day.
 - Workers in an Amsterdam office building lied to Nazi police, to conceal whereabouts of Anne Frank and family.

- This is generalizable.
 - If everyone lied for this reason, it would still accomplish the purpose, perhaps even more effectively.
 - There is no need for police to believe the lies.

Scope of the rationale

- Scope = an agent's necessary and jointly sufficient conditions for performing an act.
 - An ambulance driver uses the siren, but with no patient.
 - *His reasons:*
 - He is late picking up his kids at day care, because he misplaced his car keys.
 - The siren will allow him to arrive on time.
 - He can get away with it.
 - This is generalizable
 - These reasons seldom apply to an ambulance driver.

Scope of the rationale

- Scope = an agent's necessary and jointly sufficient conditions for performing an act.
 - An ambulance driver uses the siren, but with no patient.
 - His reasons:
 - He is late picking up his kids at day care, because he misplaced his car keys.
 - The siren will allow him to arrive on time.
 - He can get away with it.
 - This is generalizable
 - These reasons seldom apply to an ambulance driver.
 - But the scope is too narrow
 - The details are not necessary.
 - The real reason is that it is important to be on time.

Action plans

- Since actions always have a rationale, we treat them as **action plans**.
 - If X, then do Y.
 - For example,
 - If I would like to have an item on display in a shop, and I can get away with stealing it, then I will steal it.
- An **agent** is a bundle of action plans.
 - ...that are executed when the antecedents are satisfied.

• The first step is to formulate action plans as conditionals.

 $C_1(a) = \text{Agent } a \text{ wants an item on display in a shop.}$ $C_2(a) = \text{Agent } a \text{ can get away with stealing the item.}$ A(a) = Agent a will steal the item.

The action plan is: $(C_1(a) \land C_2(a)) \Rightarrow_a A(a)$

 \Rightarrow_a is not logical entailment but indicates that agent a regards $C_1(a)$ and $C_2(a)$ as justifying A(a).

• Modal operators.

 $\Box_a S = \text{agent } a \text{ must assent to } S \text{ to be rational}$ $\Diamond_a S = \text{agent } a \text{ can be rational in assenting to } S$

Thus $\Diamond_a S \equiv \neg \Box_a \neg S$, as usual.

We will also say $\Box_a S = \text{agent } a \text{ is rationally constrained to believe } S$ $\Diamond_a S = \text{agent } a \text{ can rationally believe } S$

The operators have different interpretations than in traditional alethic, epistemic and doxastic logics.

Note that we don't have $\Box_a S \to S$

• Possibility predicate

P(S) = S is possible

Possibility is **not** a modal operator here.

We can regard this as physical (as opposed to logical) possibility.

It is not essential to be more precise at this point.

Let C(a) ⇒_a A(a) be an action plan
 where C(a) is a conjunction of a's reasons for A(a)

• The generalization principle is

$$\Diamond_a P\Big(\forall x \big(C(x) \to A(x)\big) \land C(a) \land A(a)\Big)$$

Agent a can rationally believe that it is possible to take action A when reasons C apply, and when all agents to whom reasons C apply take action A.

Autonomy

- There is a fundamental obligation to respect autonomy.
 - This rules out murder, most coercion, slavery, etc.
 - But autonomy must be carefully defined.

Autonomy

- There is a fundamental obligation to respect autonomy.
 - This rules out murder, most coercion, slavery, etc.
 - But autonomy must be carefully defined.
- Autonomy is more than "self-law."
 - I act autonomously when I freely make up my own mind about what to do, based on coherent reasons I give for my decision
 - An agent is a being that can act autonomously (sometimes called a "moral agent").
 - Today's "autonomous cars" are not autonomous.

Violation of autonomy

- Coercion violates autonomy if it **interferes with an ethical action plan**.
 - Example.
 - Action plan: "If I want to catch a bus, and the bus stop is across the street, and no cars are coming, the I will cross the street."
 - If you pull me off the street when no cars are coming, this is a **violation** of my autonomy.
 - If you pull me out of the path of a car I fail to see, this is coercion but no violation of autonomy.

• My action plan is unethical if I am **rationally constrained to believe it interferes** with the **ethical action plan** of some other agent.

- I must be **rationally constrained** to believe there is a conflict of action plans.
 - That is, it is **irrational** not to believe this.
 - If someone falls into a maintenance hole I leave uncovered, this is **not** a violation of autonomy.
 - It is only possible/probable that someone will fall in (a violation of the **utilitarian principle**).

- I must be **rationally constrained** to believe there is a conflict of action plans.
 - That is, it is **irrational** not to believe this.
 - If someone falls into a maintenance hole I leave uncovered, this is **not** a violation of autonomy.
 - It is only possible/probable that someone will fall in (a violation of the **utilitarian principle**).
 - But suppose it has a cover that will collapse when someone steps on it and is on 5th Ave NYC (a booby trap).
 - I am rationally constrained to believe someone will fall in.
 - | violate autonomy.

- Coercion does not violate autonomy if there is **informed consent**.
 - Suppose I attend a concert with strict rules against recording the performance.
 - Ushers compel me to leave when I record it anyway.
 - This is **coercion** but **no violation of my autonomy**.
 - I gave informed consent to this possibility.
 - The consent is part of the **antecedent** of my action plan.
 - "If I want to record the performance and am not kicked out for doing so, then I will record it."

- Interference with an **unethical** action plan is **not** a violation of autonomy.
 - An unethical action plan is not a freely chosen action, because it has no coherent rationale.
 - There is **no denial of agency**.
 - You can defend yourself, because an attack on you is unethical.

- Interference with an **unethical** action plan is **not** a violation of autonomy.
 - An unethical action plan is not a freely chosen action, because it has no coherent rationale.
 - There is **no denial of agency**.
 - You can defend yourself, because an attack on you is unethical.
 - Is this a circular reference to "unethical"?
 - We define "unethical" recursively.
 - An action plan is unethical if it violates the **generalization** of **utilitarian** principle, **or** interferes with an ethical action plan.

Agent *a*'s action plan $C(a) \Rightarrow_a A(a)$ interferes with agent *b*'s action plan $C'(b) \Rightarrow_b A'(b)$ when $\Box_a \neg P(A(a) \land A'(b)) \land \Diamond_a P(C(a) \land C'(b))$

Agent a is rationally constrained to believe that the two actions are incompatible, and can rationally believe that that the reasons for the two actions can both apply.

• Example $C_1(b)$ = agent b wants to catch a bus $C_2(b)$ = there is a bus stop across the street from b $C_3(b)$ = cars are approaching b $C_4(b)$ = agent b is about to cross the street $A_1(b)$ = agent b will cross the street $A_2(a, b)$ = agent a will pull b off the street *No cars coming* Agent a's plan: $\left(\neg C_3(b) \land C_4(b) \right) \Rightarrow_a A_2(a, b)$

Agent b's plan:
$$(C_1(b) \land C_2(b) \land \neg C_3(b)) \Rightarrow_b A_1(b)$$

Agent a's plan interferes with agent b's plan:

• Example $C_1(b)$ = agent b wants to catch a bus $C_2(b)$ = there is a bus stop across the street from b $C_3(b)$ = cars are approaching b $C_4(b)$ = agent b is about to cross the street $A_1(b)$ = agent b will cross the street $A_2(a, b)$ = agent a will pull b off the street No cars coming

Agent *a*'s plan:
$$\left(\neg C_3(b) \land C_4(b)\right) \Rightarrow_a A_2(a,b)$$

Agent *b*'s plan: $\left(C_1(b) \land C_2(b) \land \neg C_3(b)\right) \Rightarrow_b A_1(b)$

Agent a's plan interferes with agent b's plan:

 $\Box_{a} \neg P\Big(A_{1}(b) \land A_{2}(a,b)\Big) \land \text{ True due to mutually consistent reasons} \\ \Diamond_{a} P\Big(C_{1}(b) \land C_{2}(b) \land \neg C_{3}(b) \land C_{4}(b)\Big)$

• Example $C_1(b)$ = agent b wants to catch a bus $C_2(b)$ = there is a bus stop across the street from b $C_3(b)$ = cars are approaching b $C_4(b)$ = agent b is about to cross the street $A_1(b)$ = agent b will cross the street $A_2(a, b)$ = agent a will pull b off the street

Cars are coming

Agent *a*'s plan:
$$\left(C_3(b) \land C_4(b)\right) \Rightarrow_a A_2(a, b)$$

Agent *b*'s plan: $\left(C_1(b) \land C_2(b) \land \neg C_3(b)\right) \Rightarrow_b A_1(b)$

There is no interference:

$$\Box_{a} \neg P\Big(A_{1}(b) \land A_{2}(a,b)\Big) \land \text{ False due to logical contradiction} \\ \Diamond_{a} P\Big(C_{1}(b) \land C_{2}(b) \land C_{3}(b) \land \neg C_{3}(b) \land C_{4}(b)\Big)$$

- Why a strong "rationally constrained" provision?
 - It is a consequence of the **deontological argument** for the autonomy principle.
 - Strictly speaking, I adopt an **entire action policy** rather than individual action plans.
 - If I am to be rational, the plans must be **mutually consistent** (same for beliefs in general that I adopt).
 - Inconsistency is a strong condition: I am rationally constrained to acknowledge it.
 - The **universality of reason** says that when adopting a policy, I adopt it for **everyone** (Kant says I "legislate").
 - So, the action plans I rationally attribute to **everyone** must be mutually consistent.
 - If I adopt a plan that **conflicts** with the plans I rationally attribute to others, I am **rationally constrained** to acknowledge the inconsistency.
 - My policy is **irrational** and therefore **unethical**.

- This principle asks us to maximize total net expected "utility."
 - As best we can estimate it.
 - *"Greatest good for the greatest number," in Jeremy Bentham's formulation.*
 - Utility = what the agent regards as inherently valuable.
 - That is, the end(s) to which one's actions are a means.

- It was happiness/pleasure for classical utilitarians.
- There must be an **ultimate end** to avoid infinite regress in the rationale for an act.

- Deontological argument in brief.
 - Due to **universality of reason**, if I regard an end as intrinsically valuable, I must regard it as valuable for **anyone**.
 - It shouldn't matter who I am.
 - My actions should take everyone else's utility as seriously as my own.
 - This may not imply strict maximization of net expected utility.
 - For example, it may require some degree of distributive justice, as in the difference principle of John Rawls.

- What about **futility arguments**?
 - My commanding officer orders me to torture a prisoner.
 - The results are the same (or worse) if I refuse, as **someone else** will obey the order.
 - This shows that the torture passes the **utilitarian** test.

Abu Ghraib Prison, Iraq

- What about **futility arguments**?
 - My commanding officer orders me to torture a prisoner.
 - The results are the same (or worse) if I refuse, as **someone else** will obey the order.
 - This shows that the torture passes the **utilitarian** test.
 - Yet it violates the prisoner's **autonomy**.
 - The willingness of others to do it is irrelevant.
 - What matters is the **incompatibility** of action plans.

Abu Ghraib Prison, Iraq

Let social welfare function W(C(a), A(a)) evaluate the expected utility distribution resulting from action plan $C(a) \Rightarrow_a A(a)$, which satisfies the utilitarian principle if and only if

$$\Diamond_a \forall A' \Big(W \big(C(a), A(a) \big) \ge W \big(C(a), A'(a) \big) \Big)$$

where A' ranges over all otherwise ethical actions available to agent a in circumstances C(a).

We move into 2nd order logic by quantifying over action predicates, but this can be avoided by introducing typed variables for actions.

- This is the incorporation of human values into AI-based decision making.
 - But "values" is ambiguous.
 - Values = what humans prefer
 - Values = what is preferable
 - Value alignment normally uses **machine learning** to identify human **preferences**.

- This is the incorporation of human values into AI-based decision making.
 - But "values" is ambiguous.
 - Values = what humans prefer
 - Values = what is preferable
 - Value alignment normally uses machine learning to identify human preferences.
 - Example: MIT's "Moral Machine" MAC learns preferred driving behavior by presenting scenarios to drivers worldwide.

• Our goal is to incorporate **ethics** as well: what is preferable.

- Goal: avoid **naturalistic fallacy** by combining empirical VA with independently derived ethical principles.
 - Naturalistic fallacy = inferring "ought" from "is".
 - For example, the fact that people prefer something doesn't imply they **should** prefer it.

David Hume

G. E. Moore

- To evaluate an action plan in an AI rule base:
 - Makes sure the antecedent is stated in full generality.
 - Apply the 3 ethical principles to the plan to generate 3 **test propositions**.
 - Each test proposition is a necessary condition for the plan to be ethical.
 - Empirically determine the truth of the test propositions.
 - By means of machine learning, etc.
 - The action plan is ethical only if all 3 test propositions are **true**.

• Example.

 $C_1(a) =$ An ambulance under the control of agent a can reach its destination sooner by using the siren $C_2(a) =$ There is an emergency patient in the ambulance. A(a) = The ambulance will use the siren.

Consider the action plan: $C_1(a) \Rightarrow_a A(a)$

The generalization principle is $\Diamond_a P\Big(\forall x \big(C(x) \to A(x) \big) \land C(a) \land A(a) \Big)$

This generates the test proposition $\Diamond_a P \Big(\forall x \big(C_1(x) \to A(x) \big) \land C_1(a) \land A(a) \Big)$

• Example.

 $C_1(a) =$ An ambulance under the control of agent a can reach its destination sooner by using the siren $C_2(a) =$ There is an emergency patient in the ambulance. A(a) = The ambulance will use the siren.

Consider the action plan: $C_1(a) \Rightarrow_a A(a)$

The generalization principle is $\Diamond_a P\Big(\forall x \big(C(x) \to A(x) \big) \land C(a) \land A(a) \Big)$

This generates the test proposition $\Diamond_a P\Big(\forall x \big(C_1(x) \to A(x)\big) \land C_1(a) \land A(a)\Big)$

This is empirically **false**, since the agent cannot rationally believe that such general use of sirens would permit an ambulance to arrive sooner with a siren. **Violation.**

• Example.

 $C_1(a) =$ An ambulance under the control of agent a can reach its destination sooner by using the siren $C_2(a) =$ There is an emergency patient in the ambulance. A(a) = The ambulance will use the siren.

Consider the action plan: $(C_1(a) \land C_2(a)) \Rightarrow_a A(a)$

The generalization principle is $\Diamond_a P\Big(\forall x \big(C(x) \to A(x) \big) \land C(a) \land A(a) \Big)$

This generates the test proposition $\Diamond_a P\Big(\forall x \big((C_1(x) \land C_2(x)) \to A(x) \big) \land C_1(a) \land C_2(a) \land A(a) \Big)$

This is empirically **true**, since evidence shows that ambulances can arrive sooner with a siren when it is always used for emergency transport. **No violation.**

• Example that combines preferences with ethics.

 $C_1(a) = \text{Driver } a$ wishes to enter a main thorough fare. $C_2(a) = \text{There are no gaps in the stream of traffic.}$ $A_1(a) = \text{Driver } a$ will enter the main thorough fare now. $A_2(a) = \text{Driver } a$ will wait for a gap in the traffic.

Consider the action plan: $(C_1(a) \land C_2(a)) \Rightarrow_a A_1(a)$

The **utilitarian principle** generates the test proposition $\Diamond_a \Big(W(C_1(a), C_2(a), A_1(a)) \ge W(C_1(a), C_2(a), A_2(a)) \Big)$

• Example that combines preferences with ethics.

 $C_1(a) = \text{Driver } a$ wishes to enter a main thorough fare. $C_2(a) = \text{There are no gaps in the stream of traffic.}$ $A_1(a) = \text{Driver } a$ will enter the main thorough fare now. $A_2(a) = \text{Driver } a$ will wait for a gap in the traffic.

Consider the action plan: $(C_1(a) \land C_2(a)) \Rightarrow_a A_1(a)$

The **utilitarian principle** generates the test proposition $\Diamond_a \Big(W(C_1(a), C_2(a), A_1(a)) \ge W(C_1(a), C_2(a), A_2(a)) \Big)$ This is **false** in some Western countries, where drivers expect one to wait for a gap. Pulling into traffic risks an accident.

• Example that combines preferences with ethics.

 $C_1(a) = \text{Driver } a$ wishes to enter a main thorough fare. $C_2(a) = \text{There are no gaps in the stream of traffic.}$ $A_1(a) = \text{Driver } a$ will enter the main thorough fare now. $A_2(a) = \text{Driver } a$ will wait for a gap in the traffic.

Consider the action plan: $(C_1(a) \land C_2(a)) \Rightarrow_a A_1(a)$

The **utilitarian principle** generates the test proposition $\Diamond_a \Big(W(C_1(a), C_2(a), A_1(a)) \ge W(C_1(a), C_2(a), A_2(a)) \Big)$ This is **false** in some Western countries, where drivers expect one to wait for a gap. Pulling into traffic risks an accident.

It may be **true** in some other areas, where drivers make allowances for entering traffic.

Empirical value alignment (ML) can resolve the issue.

- Example involving a nursing home robot.
 - Similar to an example in Anderson and Anderson (2015).
 - A robot dispenses medications to a nursing home patient.
 - The patient **refuses** to take the pills.
 - The robot is programmed to **report** this to the head nurse.
 - This will result in **confinement** to a certain ward, because the pills prevent dangerous disorientation.

- Example involving a nursing home robot.
 - Similar to an example in Anderson and Anderson (2015).
 - A robot dispenses medications to a nursing home patient.
 - The patient **refuses** to take the pills.
 - The robot is programmed to **report** this to the head nurse.
 - This will result in **confinement** to a certain ward, because the pills prevent dangerous disorientation.
 - The patient complains that the nursing home violates her autonomy, because she wants to visit a relative.
 - Autonomy principle doesn't require us to allow people to do whatever they want.
 - However, confinement to a ward is **coercion**.
 - On entering the nursing home, the patient signed a consent form with full awareness and understanding of nursing home policy.

 $C_1(b) = \text{Patient } b \text{ takes the pills.}$ $C_2(b) = \text{Patient } b \text{ signed the consent form.}$ $C_3(b) = \text{Patient } b \text{ wants to visit relatives.}$ $A_1(a) = \text{Robot } a \text{ informs the head nurse.}$ $A_2(b) = \text{Patient } b \text{ visits relatives.}$

The robot's action plan: $(\neg C_1(b) \land C_2(b)) \Rightarrow_a A_1(a)$ The patient's action plan: $((C_1(b) \lor \neg C_2(b)) \land C_3(b)) \Rightarrow_b A_2(b)$

We have interference if

 $\Box_a \neg P(A_1(a) \land A_2(b)) \land$ $\Diamond P(\neg C_1(b) \land C_2(b) \land (C_1(b) \lor \neg C_2(b)) \land C_3(b))$

True because nursing home prohibits excursions when patient refuses the pills

 $C_1(b) = \text{Patient } b \text{ takes the pills.}$ $C_2(b) = \text{Patient } b \text{ signed the consent form.}$ $C_3(b) = \text{Patient } b \text{ wants to visit relatives.}$ $A_1(a) = \text{Robot } a \text{ informs the head nurse.}$ $A_2(b) = \text{Patient } b \text{ visits relatives.}$

The robot's action plan: $(\neg C_1(b) \land C_2(b)) \Rightarrow_a A_1(a)$ The patient's action plan: $((C_1(b) \lor \neg C_2(b)) \land C_3(b)) \Rightarrow_b A_2(b)$

We have interference if

 $\Box_{a} \neg P(A_{1}(a) \land A_{2}(b)) \land \\ \Diamond_{a} P(\neg C_{1}(b) \land C_{2}(b) \land (C_{1}(b) \lor \neg C_{2}(b)) \land C_{3}(b))$

False because one cannot rationally believe a logical contradiction

 $C_1(b) = \text{Patient } b \text{ takes the pills.}$ $C_2(b) = \text{Patient } b \text{ signed the consent form.}$ $C_3(b) = \text{Patient } b \text{ wants to visit relatives.}$ $A_1(a) = \text{Robot } a \text{ informs the head nurse.}$ $A_2(b) = \text{Patient } b \text{ visits relatives.}$

The robot's action plan: $(\neg C_1(b) \land C_2(b)) \Rightarrow_a A_1(a)$ The patient's action plan: $((C_1(b) \lor \neg C_2(b)) \land C_3(b)) \Rightarrow_b A_2(b)$

So there is **no autonomy violation**.

Postscript

- Nothing in deontological ethics presupposes that agents are **human**.
 - A reasons-responsive machine can, in principle, be an *autonomous agent*.
 - It **explains** the rationale for its actions on demand.
 - It doesn't matter if its actions are determined by a program (our actions are determined).
 - It can have obligations to us, and we to it.
 - Although **utilitarian** obligations are tricky for machines.
 - Since they are **nonhuman**.

References

J. N. Hooker and T. W. Kim, Toward non-intuition-based machine and AI ethics: A deontological approach based on modal logic, *AIES 2018*, 130-136.

J. N. Hooker and T. W. Kim, Truly autonomous machines are ethical, *AI Magazine* **40** (2020) 66-73.

T. W. Kim, J. N. Hooker, and T. Donaldson, Taking principles seriously: A hybrid approach to value alignment in artificial intelligence, *Journal of AI Research* **70** (2021) 871-890.

Conscious rationale?

- A flaw in rationality-based ethics?
 - Most of our actions are not consciously justified.
 - We can't devise a rationale for everything we do.
 - We are creatures of habit.
 - Dual process theory agrees.
 - **System 1 thinking** is fast and unconscious.
 - System 2 thinking is slow and based on conscious reasoning.
 - We usually rely on System 1.
 - Kahneman (2011)

Slow Thinking

Conscious rationale?

- Ethicists are well aware of this
 - Going back at least to Aristotle.
 - We deliberately initiate habits.
 - We allows habits to continue.

- If I continue smoking, I decide not to break the habit.
- We can invoke system 2 thinking when needed.
 - Part of being ethical is being autonomous agents.
 - That is, making conscious decisions based on reasons at strategic junctures.