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Learning and Al

« Learning lies at the core of artificial intelligence

Estimated number of clusters: 3
- : =

— Statistical methods

* Regression,
clustering,
pattern recognition

— Neural networks
* “Deep learning” in
multilayer networks
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Learning and Al

 Another type of learning has been developing in the
optimization and constraint solving communities.
— Conflict-directed learning
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Learning and Al

« Conflict-directed learning

— Satisfiability (SAT) solvers

» Conflict-directed clause learning

« Modern solvers can deal with huge problems
— Decomposition methods

 Conflict-directed constraint learning

* Yields logic-based Benders cuts

« Can break huge problems into smaller pieces
— Common strategy: learn from your mistakes



Learning and Al

« Conflict-directed learning

— Satisfiability (SAT) solvers

» Conflict-directed clause learning

« Modern solvers can deal with huge problems
— Decomposition methods

 Conflict-directed constraint learning

* Yields logic-based Benders cuts

« Can break huge problems into smaller pieces
— Common strategy: learn from your mistakes

« This is all coming together
— Conflict clauses = special case of Benders cuts!



Outline

« Learning in satisfiability (SAT) algorithms

Example: product configuration
Example: robot motion planning
Applications of SAT

SAT solvers

« Learning in Benders decomposition

Classical Benders decomposition
Logic-based Benders decomposition
Example: machine scheduling
Applications of logic-based Benders
Example: logical inference

Example: home health care
References



Outline

« Regarding the future of Al
— Caoadifying ethics
— Autonomous machines and ethics



wo SAT Applications

* Product configuration
— Daimler-Benz

* Robot motion planning




Product Configuration

Source: Carsten Sinz, Johannes Kepler University Linz



Product Configuration

Configuration rule Translation to logical clause(s)

not (772 and 550) =772V =550

[

not or



Product Configuration

Configuration rule Translation to logical clause(s)
not (772 and 550) =772V =550
if not(2.6L or 3.2L) 2.6LV 3.2LV =581 V 673

then (581 implies 673)



Product Configuration

More realistic configuration rule:

(-L/AM111+M23+M0O01/M112+M28/M113)+-
(220/248/289/331/480/481/500/540/611/656/657+956/819/875+-(460/M113)/882/W 10/Y94/Y 95/X35/
X59/X62))+-R)+((-LM113+-X62/M112+M28+-(772/774/X62)/M111+M23+M001+-(280+-
460/772/774/X62))+-R)+((-LM112+M28+222+223+231+
254+292+423+(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+(955+265+657
+(140A/200A)/956+570+(201A/208A))+809/M112+M28+221+222+231+254+292+(349/460)+423+
(460/249+461+551+810)+(524+668+634+636/820)+543+581+679+955+265+657+(140A/200A )+
800/M112+M28+221+222+231+254+292+(349/460)+423+(460/249+461+551+810)+(524+668+6
34+636/820)+543+581+679+956+570+(201A/208A)+800/M113+231+249+254+265+441+(460/46
1)+(551/460)+(810/460)+(524+668+634+636/820)+543+580A+809/M113+231+249+254+265+(34
9/460)+441+(460/461)+(551/460)+(810/460)+(524+668+634+636/820)+543+580A+800/M111+M2
3+M001+221+231+249+254+292+423+(524+634 ...
X34/X51/X52/X54/X55/X57/X58/X60/X61/X63/X64))

Combine rules and customer choices to form a clause set.
Solve a SAT problem to check if configuration is feasible.



Robot Motion Planning

State <— State
transition
graph: M1l <—— Motion




Robot Motion Planning

State <— State
transition
graph: M1l <—— Motion

State transition rules

if M1; then (S1; or S3;))
if M2t then (S]_t or S2t)

f (S1; and M1;) then S2;,
(Slt and M2t) then S3t+1
if (S2, and M2;) then S1,.4
(831; and M].t) then 82t+1

Ot(Mlt and M2t)



Robot Motion Planning

State <— State
transition
graph: M1l <—— Motion

State transition rules SAT clauses
if Mlt then (Slt or Sgt) _|M1t V Slt V S?)t
if M2t then (S]_t or S2t) ﬁl\/IQt V S]_t V S2t

(Slt and M1 ) then 82t+1 _|Slt V _lMlt V 82t+1
(Slt and M2t) then S3t+1 _|Slt V _|M2t V 83t+1
if (SQt and MQt) then Slt_|_1 _'8215 V _|M2t V Slt+1
(831; and Mlt) then 82t+1 _|S3t V _IMlt V S2t_|_1

Ot(Mlt and M2t) _\Mlt V _|M2t



SAT Applications

* Model checking
— Microprocessor verification
— Software debugging
— Device driver verification
— EXxpert system verification




SAT Applications

Al Planning

— Robot motion planning

— Autonomous vehicle control
— Spacecraft mission planning
— Equipment maintenance

— Evacuation planning




SAT Applications

« Combinatorial design
— Design of experiments
— Cryptography
— Drug design and testing
— Crop rotation schedules




SAT Applications

* Product configuration

« Other applications
— Test pattern generation
— Traffic network scheduling
— Optimal control
— Multi-agent systems
— Electronic auctions

— Sports scheduling 573]4]6]7]8]0]1]2
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SAT Solver Improvement

« Early 1990s:

— 100 variables, 200 clauses
« Today:

— > 1 million variables, > 5 million clauses

— Mainly algorithmic improvements, not faster computers
 How is this possible?

— Mainly due to conflict-directed clause learning

— That is, generation of conflict clauses



Conflict Clauses

« We wish to solve the SAT Iinstance

1 VgV Is

T VxaV Is

T VsV Ie

T1 Vx5V Te
To Vx5V Tg
T VsV Ie

r3VIxaV Ts
r3VIxsV Is

Find an assignment of True and False to variables x; that
satisfies all clauses

21



Conflict Clauses

Start branching on variables in depth-first fashion.
At each node of the branching tree, check if a clause is
violated

— y
X X1 F/ _

X2
X3 /s
X4 /

X3 /

N \7x5 - Setting X,, Xs = F causes _the \_/iolqtion
Violation (based on analysis o_f an implication graph)
So we add the conflict clause X; v Xz
to avoid this assignment in the future 22



X1

X2

X3

X4

X5

Conflict Clauses

Start branching on variables in depth-first fashion.
At each node of the branching tree, check if a clause is
violated

X,=F _
X, = F/ s
p -
e
7’
7
[ )
/
/
/ X5 =T
/
VR Here we have a conflict clause x; v —Xg
1 5 2 5 €— :
X1V xo Resolve with x; v X, to get X; v X,

Violation
23



X1

X2

X3

X4

X5

Conflict Clauses

Start branching on variables in depth-first fashion.
At each node of the branching tree, check if a clause is
violated

X1 VXxs

X2 V X5
X1 Vxo

Violation

— o

Conflict clauses prevent branching here

24



Conflict Clauses

Start branching on variables in depth-first fashion.
At each node of the branching tree, check if a clause is

X1

X2

X3

X4

X5

violated

Additional conflict clauses

25



X1

X2

X3

X4

X5

Conflict Clauses

Start branching on variables in depth-first fashion.
At each node of the branching tree, check if a clause is
violated

Solution found here
< —
X; =F

Xo =X3=X4=Xsg=Xg =T

26



Decomposition

 Decomposition breaks a large problem into
subproblems that can be solved separately.
— But with some kind of communication among the
subproblems.

— Decomposition is an essential strategy for solving
today’s ever larger and more interconnected models.

27



Benders Decomposition

« Benders decomposition is a classical strategy
that does not sacrifice overall optimality.

— Separates the problem into a master problem and
multiple subproblems.

— Variables are partitioned
between master and Master problem

subproblems.
— Exploits the fact that the
problem may radically

simplify when the master
problem variables are fixed

to a set of values. Subproblems

28



Benders Decomposition

« But classical Benders decomposition has
a serious limitation.

— The subproblems must be linear programming
problems.

— Or continuous nonlinear programming problems.

— The linear programming dual provides the
Benders cuts.

29



Logic-Based Benders

 Logic-based Benders decomposition attempts
to overcome this limitation.

— The subproblems can, in principle, be any kind of

optimization problem.
— The Benders cuts are obtained from an
Inference dual.

— Speedup over state of the art can be several orders

of magnitude.

— Yet the Benders cuts must be designed specifically
for every class of problems.

30



Logic-Based Benders

Number of Articles that Mention Benders Decomposition

1600

1400

Logic-based Benders /
" infroduced \ /

Source: Google Scholar 31



Logic-Based Benders

* Logic-based Benders decomposition solves a
problem of the form
min f(X,y)
(X,y)e$S
XeD,,y €D,

— Where the problem simplifies when x is fixed to a
specific value.

32



Logic-Based Benders

 Decompose problem into master and subproblem.
— Subproblem is obtained by fixing x to solution value in

master problem.
Master problem

min z

z>g.(x) (Benderscuts) ~ Tralvaluex
that solves
XeD, master

Minimize cost z subject to

>

bounds given by Benders <

cuts, obtained from values
: : Z > gy (x)

of x attempted in previous

iterations k.

Benders cut

Subproblem

minf(X,y)
(X,y)eS

Obtain proof of optimality
(solution of inference dual).
Use same proof to deduce
cost bounds for other
assignments, yielding
Benders cut. 33



Logic-Based Benders

* Iterate until master problem value equals best

subproblem value so far.
— This yields optimal solution.

Master problem

min z

>

z>g.(x) (Benderscuts) ~ Tralvaluex
that solves

XeD, master
Minimize cost z subject to <
bounds given by Benders

) Benders cut
cuts, obtained from values 2> gu(x)
of x attempted in previous = Ok

iterations k.

Subproblem

minf(X,y)
(X,y)eS

Obtain proof of optimality
(solution of inference dual).
Use same proof to deduce
cost bounds for other
assignments, yielding
Benders cut. 34



Machine Scheduling

« Assign tasks to machines.

« Then schedule tasks assigned to each machine.
— Subject to time windows.
— Cumulative scheduling: several tasks can run simultaneously,

subject
to resource il
limits. -
— Scheduling ﬁ
problem i
decouples -
into a .-
separate -
problem for -z
each
machine.

35



Machine Scheduling

Assign tasks in master, schedule in subproblem.

— Combine mixed integer programming and constraint

programming

Master problem

Assign tasks to resources

to minimize cost. Trial
assignment
Solve by mixed integer X

programming.
<€

Benders cut
Z > gy(x)

Subproblem

Schedule jobs on each
machine, subject to time
windows.

Constraint programming
obtains proof of optimality
(dual solution).

Use same proof to deduce
cost for some other
assignments, yielding

Benders cut. 26



Machine Scheduling

* ODbjective function
— Cost is based on task assignment only.

cost =Zc.jxij, X; =1 If task ] assigned to resource |
i

— So cost appears only in the master problem.
— Scheduling subproblem is a feasibility problem.

37



Machine Scheduling

* ODbjective function
— Cost is based on task assignment only.

cost =Zcijxij, X; =1 If task ] assigned to resource |
i

— So cost appears only in the master problem.
— Scheduling subproblem is a feasibility problem.

* Benders cuts
— They have the form Z(l— X;)=1 alli
j€d;
— where J; is a set of tasks that create infeasibility when
assigned to resource i.

38



Machine Scheduling

* Resulting Benders decomposition:

Master problem

min z
Z = ZCUXU
1)

Benders cuts

Trial
assignment
X

€
Benders cuts

Z (1_ Xij ) >1,
1<% for infeasible
resources i

Subproblem

Schedule jobs on each
resource.

Constraint programming
may obtain proof of
infeasibility on some resources
(dual solution).

Use same proof to deduce
infeasibility for some other
assignments, yielding
Benders cut. 39



Number of nstances solved
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Logic-Based Benders Applications

* Planning and scheduling:
— Machine allocation and scheduling
— Steel production scheduling
— Chemical batch processing (BASF, etc.)
— Auto assembly line management (Peugeot-Citroén)

— Allocation and scheduling of multicore processors
(IBM, Toshiba, Sony) . _

— Worker assignment
In a queuing
environment




Logic-Based Benders Applications

« Other scheduling
— Lock scheduling
— Shift scheduling

— Permutation flow
shop scheduling
with time lags

— Resource-constrained
scheduling

— Hospital scheduling

— Optimal control of
dynamical systems

— Sports scheduling

42



Logic-Based Benders Applications

* Routing and scheduling

Vehicle routing
Home health care
Food distribution

Automated guided
vehicles in flexible
manufacturing

Traffic diversion
around blocked
routes

Concrete delivery

43



Logic-Based Benders Applications

* Location and Design

— Wireless local area
network design

— Facility location-allocation

— Stochastic facility location
and fleet management

— Capacity and distance-
constrained plant location

— Queuing design and control




Logic-Based Benders Applications

e QOther

— Logical inference
— Logic circuit verification
— Bicycle sharing

— Service restoration
In a network

— Inventory
management

— Supply chain
management
— Space packing

45



Logical Inference

« A fundamental problem in the information age.

— Can use SAT solvers or logic-based Benders to
deduce facts from a knowledge base.

»Knowledge™ %

Base -

46



Logical Inference

* Draw inferences from a clause set
— Infer everything we can about propositions X,, X,, X3

T Vx4V Ts
T1 VxaV Is
We can deduce

T1 Vx5V Tg
X1V X, L1 VIs5V Te
X,V X, To VsV Tg
To VZIsV T

This is a projection T3V T4V Is

onto Xy, X, X3 r3VIaV Is

47



Logical Inference

« Benders decomposition computes a projection!

— Benders cuts describe projection onto master problem
variables.

Current
Master problem

X, V X,

/
/

Benders cut
from previous
iteration

48



Logical Inference

« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

variables.

Current
Master problem

solution of master
X1V X | = (xexe) = (FTF)

Resulting
subproblem

TaV Is
x4V Is
xIr5 \/.’136
Trs V ITg
T4V I
T4V T5

49



Logical Inference

« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

variables.

Current
Master problem

solution of master
X1V X | = (xexe) = (FTF)

Subproblem is
infeasible.
(X1.X3)=(F,F)

creates infeasibility

Resulting
subproblem

TaV Is
x4V Is
xIr5 \/.’136
Trs V ITg
T4V Is
T4V T5

50



Logical Inference

« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

variables.

Current
Master problem

solution of master
X1V X | = (xexe) = (FTF)

X1V X, Benders cut

(nogood)

Subproblem is
infeasible.
(X1.X3)=(F,F)

creates infeasibility

Resulting
subproblem

TaV Is
x4V Is
xIr5 \/.’136
Trs V ITg
T4V Is
T4V T5

51



Logical Inference

« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

variables.
Current Resulting
Master problem subproblem
solution of master
X VX, (e Xoxs) = (FT.T) —> | T4V T5
X, V X, T4V Ts
xIr5 V L6

Trs V ITg

52



Logical Inference

« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

variables.
Current Resulting
Master problem subproblem
solution of master

X VX, (e Xoxs) = (FT.T) —> | T4V T5

X, V X, T4V Ts
xIr5 V L6
Trs V ITg

Subproblem is
feasible



« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

Logical Inference

variables.

Current
Master problem

X, V X,
X, V X,

X, V X, VX,

solution of master
(X1, X5,X3) = (R T,T)
Enumerative

Benders cut

Subproblem is
feasible

Resulting
subproblem

T4V Ts
x4V Is
xIr5 \/.’136
Trs V ITg

54



« Benders decomposition computes a projection!
— Benders cuts describe projection onto master problem

Logical Inference

variables.

Current
Master problem

X, V X,
X, V X,

X, V X, VX,

solution of master
(X1, X5,X3) = (R T,T)
Enumerative

Benders cut

Continue until master
IS infeasible.
Black Benders cuts
describe projection.

Resulting
subproblem

T4V Ts
x4V Is
xIr5 \/.’136
Trs V ITg

55



Logical Inference

« Satisfiability methods solve the problem by
generating Benders cuts!
— Conflict clauses = Benders cuts



Logical Inference

Benders cuts = conflict clauses in a SAT algorithm
— Branch on x4, X,, X; first.

X1 -~
-
e
~
X2 P -~
s
e
y
X3 e e
il i
e Ve

»
X4 / /
/ / \ / / /
¢ B ® » °
X5 /\ X1 Vxy x3VXxy / /
/ X1 Vx3 / /
® o ®

57



Logical Inference

« Benders cuts = conflict clauses in a SAT algorithm
— Branch on x4, X,, X; first.

X1 -~

X2 P -~
e
~
y J
X3 s s
/ /
7 7
[
X4 / /
/ / / / /
- > 9 o
X5 / x1Vxal | x3Vxy / /
/ X1 Vx3 / |
— ° °
X1 VXxsl | x2Vaxs
Conflict YV

clauses 53



Logical Inference

« Benders cuts = conflict clauses in a SAT algorithm
— Branch on x4, X,, X; first.

X1

X2

»
X3 s 7
/ V4
Ve v
[
X4 / /
/
X5 / x1 VX | X3V / /
/ X1 VX3 / I
— ° °
X1 VXxs X2 VXxs
Conflict X1V Backtrack to x, at
clauses feasible leaf nodes

59



Logical Inference

« Benders cuts = conflict clauses in a SAT algorithm
— Branch on x4, X,, X; first.

X1

X2

X3

X4

X5

x>V Xxs

X1 Vxo

X3V Xy I I

X1 VX3 / /

Conflict clauses containing

X1, Xo, X5 describe projection 0



Home Health Care

« General home health care problem.
— Assign aides to homebound patients.

* ...Subject to constraints on aide qualifications
and patent preferences.

* One patient may require a team
of aides.

— Route each aide through assigned
patients, observing time windows.

* ...subject to constraints on
hours, breaks, etc.

T—
—

4l

: -
,' 5 .

)

t
|




Home Health Care

* A large industry, and rapidly growing.
— Roughly as large as all courier and delivery services.

Projected Growth
of Home Health Care Industry

2014 2018
U.S. revenues, $ billions 75 150
World revenues, $ billions 196 306

Increase in U.S. Employment, 2010-2020

Home health care industry 70%
Entire economy 14%



Home Health Care

« Advantages of home health care

— Lower cost
» Hospital & nursing home care is very expensive.

— No hospital-acquired infections
* Less exposure to superbugs.

— Preferred by patients
« Comfortable, familiar surroundings of home.
* Sense of control over one’s life.

— Supported by new equipment & technology
 |IT integration with hospital systems.
* Online consulting with specialists.



Home Health Care

 Critical factor to realize cost savings:
— Aides must be efficiently scheduled.

* This is our task.
— Focus on home hospice care.
— Rolling schedule — update as patient population evolves




Home Health Care

Solve with Benders
decomposition.

— Assign aides to patients
IN master problem.

« Maximize number of
patients served by a
given set of aides.

Master Problem
Solve with MIP

Subproblem
Solve with CP

=



Home Health Care

Solve with Benders
decomposition.

— Assign aides to patients
IN master problem.

« Maximize number of
patients served by a
given set of aides.

— Schedule home visits in
subproblem.

« Cyclic weekly schedule.

 No visits on weekends.

Master Problem
Solve with MIP

Subproblem
Solve with CP

=



Home Health Care

Solve with Benders
decomposition.

— Assign aides to patients
IN master problem.

« Maximize number of
patients served by a
given set of aides.

— Schedule home visits in
subproblem.

« Cyclic weekly schedule.
 No visits on weekends.

— Subproblem decouples
Into a scheduling problem
for each aide and each day of the week.

Master Problem
Solve with MIP

Subproblem
Solve with CP

=



Home Health Care

= 1 if patient ] scheduled

=1 if patient |
assigned to aide i wj{ 253' /
J
assi;nleg foagiednetji Z i = 05, all j Required number
' of visits per week
on day k \ / visits p

Zyijk = ’Uj5j, aHj

ik
Master Yijk < @iy, alli,7,k
Problem Spacing constraints on visit days

Benders cuts
Relaxation of subproblem

dj, Tij, Yijk € 10,1}



Home Health Care

e For arolling schedule:

— Schedule new patients, drop departing patients from
schedule.

* Provide continuity for remaining patients as follows:
— Old patients served by same aide on same days.
* Fix 'y, =1 for the relevant aides, patients, and days.



Home Health Care

Scheduling subproblem for aide i, day k

nth patient in sequence Set of patients

/ assigned to

aide i, day k
alldiff{'zrn ]nzl,---,|Pz'k‘} /

start time\ [si,8; +pj] Clrj,d;], all j € Py

S, _|_p7'l'n + tﬂ'nﬂ'n_|_1 S Swn_|_17 n = 17 SR ’P’Lk‘ —1
Visit duration Travel time

Modeled with interval variables in CP solver.



Home Health Care

« Benders cuts.
— Find a small set of patients that create infeasibility...

* ...by re-solving the each infeasible scheduling problem
repeatedly.

Reduced set of patients whose
assignment to aide 1 on day k
creates infeasibility



Home Health Care

« Auxiliary cuts based on symmetries.

— A cut for valid for aide i, day k is also valid for aide i on
other days.

« This gives rise to a large number of cuts.

— The auxiliary cuts can be summed without sacrificing optimality.
 Original cut ensures convergence to optimum.
» This yields 2 cuts per aide:

> (—yir) >1

JE Py

YY) (1 —yiw) >4

k#k jeP;y,




Home Health Care

 Include relaxation of subproblem in the master problem.
— Necessary for good performance.
— Use time window relaxation for each scheduling problem.
— Simplest relaxation for aide i and day k:

Z P;jYijk < b—a
7€/ (ab)

|

Set of patients whose time window
fits in interval [a, b].

Can use several intervals.



Home Health Care

* Improved relaxation.

— Basic idea: Augment visit duration p; with travel time
to (or from) location j from closest patient or aide home base.



Minutes

100.0

10.0

1.0

0.1

Home Health Care

Computation Time, MIP vs LBBD

10 15 20

New Patients

25

——MIP
——LBBD



Home Health Care

* Practical implications
— LBBD scales up to realistic size
« One month advance planning in 60 patient population
* Assuming 5-8% weekly turnover
— Advantage of exact solution method

« We know for sure whether existing staff will cover
projected demand.



Home Health Care

Effect of Subproblem Relaxation

100.0
10.0
(V]
9
3
-
S —e—No relax
10 —e—Relax
0.1
5 10 15 20 25

New patients



Home Health Care

Effect of Benders Cuts

100.0
10.0
w
2
E ——1 cut
= —e—) cuts
1.0 5 cuts
0.1
5 10 15 20 25

New patients



References
Applications of Logic-Based Benders Decomposition

Benders decomposition [7] was introduced in 1962 to solve applications that become linear program-
ming (LP) problems when certain search variables are fixed. “Generalized” Benders decomposition, pro-
posed by Geoffrion in 1972 [25], extended the method to nonlinear programming subproblems.

Logic-based Benders decomposition (LBBD) allows the subproblem to be any optimization problem.
LBBD was introduced in [32], formally developed in 2000 [33], and tested computationally in [39]. Branch
and check is introduced in [33] and tested computationally in [69]. Combinatorial Benders cuts for mixed
integer programming are proposed in [18].

One of the first applications [43] was a planning and scheduling problem. Updated experiments [17]
show that LBBD is orders of magnitude faster than state-of-the-art MIP, with the advantage over CP even
greater). Similar results have been obtained for various planning and scheduling problems [15, 21, 30, 34,
35,37, 71].

Other successful applications of LBBD include steel production scheduling [29], inventory management
[74], concrete delivery [44], shop scheduling [3, 13, 27, 28, 59], hospital scheduling [57], batch scheduling
in chemical plants [49, 70], computer processor scheduling [8, 9, 12, 22, 31, 46, 47, 48, 58, 62], logic
circuit verification [40], shift scheduling [S, 60], lock scheduling [73], facility location [23, 66], space
packing [20, 50], vehicle routing [19, 51, 53, 56, 61, 75], bicycle sharing [45], network design [24, 52, 63,
65], home health care [16], service restoration [26], supply chain management [68], food distribution [64],
queuing design and control [67], optimal control of dynamical systems [11], propositional satisfiability [1],
quadratic programming [2, 41, 42], chordal completion [10], and sports scheduling [14, 54, 55, 72]. LBBD
is compared with branch and check in [6]. It is implemented in the general-purpose solver SIMPL [76].
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Future of Al

« Superintelligence + autonomy = a threat?
— How do we formulate ethics for a machine?

— Or for humans!
— We are making progress: analytical normative ethics.

« Do autonomous machines have rights and duties?

— Do you have to
be nice to your
robot?

— Atruly
autonomous
machine is
ethical!
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