
Dynamic Programming Bounds 

from Decision Diagrams

John Hooker

ISAIM 2018



Objective

• Find a general method to relax dynamic 

programming models.

• Job sequencing problems in particular.

• With state dependent processing times.

2



Objective

• Find a general method to relax dynamic 

programming models.

• Job sequencing problems in particular.

• With state dependent processing times.

• Why?  To obtain bounds on the optimal value.

• Useful for heuristics and exact methods

3



Objective

• Find a general method to relax dynamic 

programming models.

• Job sequencing problems in particular.

• With state dependent processing times.

• Why?  To obtain bounds on the optimal value.

• Useful for heuristics and exact methods

• How? Using relaxed decision diagrams

• Constructed with node merger
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in closed form.

– Exploits recursive structure.
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Why Dynamic Programming?

• Highly flexible modeling.

– Costs and constraints need not be convex, linear, or even 

in closed form.

– Exploits recursive structure.

• Good relaxations often unavailable.

– Due to the very generality of the model.

• Focus on discrete, deterministic DP.

– Extension to stochastic DP possible.
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Why Decision Diagrams?

• A potentially useful discrete relaxation.

– Obtained by node splitting or node merger.

– We focus on node merger.

• Can provide relaxations where none previously 

existed.

– As in job sequencing problems with state-dependent 

processing times..
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Decision Diagrams

• Graphical encoding of a 

boolean function

– Historically used for circuit design 

& verification

– Binary diagrams easily extended 

to multivalued diagrams.

– Unique reduced diagram for 

a given variable ordering.

9
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Decision Diagrams

• Adapt to optimization and

constraint programming

– Paths from top to bottom (T) 

represent feasible solutions

– Path lengths represent costs.

– Shortest path is optimal solution.
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Hadžić and JH (2006, 2007)



Job Sequencing

• Problem: sequence jobs with given processing times 

– Minimize tardiness subject to time windows

– Processing time may depend on previous jobs

– For example, some necessary components may have 

been made for previous jobs
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Job Sequencing

• Problem: sequence jobs with given processing times 

– Minimize tardiness subject to time windows

– Processing time may depend on previous jobs

– For example, some necessary components may have 

been made for previous jobs
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Job Sequencing

𝑥𝑗 = j th job in sequence

Decision diagram 

for job sequencing

𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j



Job Sequencing

𝑥𝑗 = j th job in sequence

An optimal solution:

Sequence 2-1-3

Schedule [1,3], [3,5], [5,7]

Tardiness 0 + 1 + 2 = 3𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j



Building a Decision Diagram

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.
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• Our approach:
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Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.
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General recursive model

State in stage j

Set of possible 

controls

Immediate

cost
Cost to go

State transition 

function



DP Model for Job Sequencing

State:

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 
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State:

Controls:
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State in stage j

Set of possible 

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 

DP Model for Job Sequencing



State:

Controls:

Immediate cost:

State-dependent processing time
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State in stage j

Set of possible 

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 

DP Model for Job Sequencing



State:

Controls:

Immediate cost:

Transition:
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State in stage j

Set of possible 

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state = 

DP Model for Job Sequencing



Job Sequencing Diagram

𝑥𝑗 = j th job in sequence

𝑥𝑗
State variable:

finish time 

of last job

State variable:

jobs scheduled 

so far

Cost to go

Decision diagram 

with states and

costs to go

3(2)



Relaxed Decision Diagram

• Definition

– Every r-t path of the original diagram appears in the 

relaxed diagram with equal or smaller cost.

– So a relaxed diagram may represent some infeasible 

solutions.

• Motivation

– Shortest path in the relaxed diagram provides a lower 

bound on the optimal value.
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Andersen, Hadžić, JH, Tiedemanmn (2007) 



Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible 

and infeasible) and refine it.
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Ciré and van Hoeve (2013) 
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Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible 

and infeasible) and refine it.

• Node merger – examined here

– Merge some nodes in the exact diagram.

– …to make the diagram smaller while excluding no 

feasible solutions and introducing some infeasible low-cost 

solutions.
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Andersen, Hadžić, JH, Tiedemanmn (2007) 

Bergman, Ciré, van Hoeve, JH (2013) 

Ciré and van Hoeve (2013) 



Node Merger

• Don’t begin with exact diagram

– It is too large

• Merge nodes as the diagram is constructed

– In particular, nodes that are not likely to lie on an optimal 

path.

– Combine states of the merged nodes in a way that yields a 

valid relaxation.

– This often requires additional state variables.

– As in the job sequencing case.

31

Bergman, Ciré, van Hoeve, JH (2013, 2016) 



Relaxed DP Model

Set of jobs scheduled in all feasible 

solutions so far

Earliest possible finish time of 

immediately previous job

Initial state = 

New state variable:  set of jobs 

scheduled in some feasible 

solution so far



Relaxed DP Model

Set of jobs scheduled in all feasible 

solutions so far

Earliest possible finish time of 

immediately previous job

Initial state = 

Transition:

New state variable:  set of jobs 

scheduled in some feasible 

solution so far

Processing time depends on U, not V

(state variable V can be dropped if desired)



Node Merger in Relaxation

• Merge nodes as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– In state-dependent job sequencing,

34



Job Sequencing Relaxed Diagram

State variable:

Jobs scheduled along 

some path from root

State variable:

Jobs scheduled

along all paths from root

State variable:

min finish time 

of last jobs 

on paths from root

Relaxed decision 

diagram 

with states and

costs to go



Job Sequencing Node Merger

{2}{2}3

{12}{12}5 {23}{23}5

Without merger With merger

1 3

{2}{123}5

{2}{2}3

1 3

{12}{23} {12}{23} min{5,5}



Job Sequencing Relaxed Diagram

Shortest path yields a 

lower bound of 2 on 

optimal value of 3.

Relaxed decision 

diagram 

with states and

costs to go



Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for 

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation 
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Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for 

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation 

• First we need a definition:  state S relaxes state S

in the same stage if

– Every control feasible in S is feasible in S

– The immediate cost of a control feasible in S is no greater

in S.
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Theorem.  The merger of states S and T in layer j

of diagram D yields a relaxation of D if:

• S relaxes S implies that                    relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation

40

Proof by induction.

This generalizes to stochastic decision diagrams, 

where the conditions are much more complicated.



Check whether node merger for job sequencing 

satisfies the conditions.

• S relaxes S implies that                    relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation
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Check whether node merger for job sequencing 

satisfies the conditions.

• S relaxes S implies that                    relaxes

for any control xj feasible in S.

Conditions for a Valid Relaxation
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when Now…

because



Check whether node merger for job sequencing 

satisfies the conditions.

• relaxes both S and T.

Conditions for a Valid Relaxation

43

because

…and similarly for



Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.
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Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

• Underlying idea

– Preserve accuracy in the region of the diagram that is 

likely to contain the best solutions.

– Analogous to using smaller finite elements in models of 

the atmosphere in regions with more activity.
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Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

– Information readily available in the state description.

46



Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

– Information readily available in the state description.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root 

are large.

– This requires recursively computing shortest paths to root 

as we go along

47



Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

– Information readily available in the state description.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root 

are large.

– This requires recursively computing shortest paths to root 

as we go along

– Random heuristic

– Randomly choose nodes for merger..
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Experimental Design

• Question 1

– What is the relationship between the width of the relaxed 

diagram and the quality of the bound?

• Question 2

– Which node merger heuristic is best?
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Experimental Design

• Problem instances

– State-dependent processing times.

– In particular, processing times depend on state variable U

• Benchmark instances?

– Apparently, none exist for state-dependent processing 

times.

• Random instances?

– Must generate random instances.
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Experimental Design

• Optimal solutions

– Must have optimal value to assess quality of bound.

– Because instances frequently have min tardiness = zero.

• How to obtain optimal solutions?

– Dynamic programming is the only practical method for 

state-dependent processing times.

– Due to state-space explosion, instances with more than 

15 jobs are very hard to solve.

– Solution with DP is equivalent to generating an exact 

diagram.

– Solve instances with 12 and 14 jobs.
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Computational Results

12 jobs

Using finish time heuristic



Computational Results

14 jobs

Using finish time heuristic



Computational Results

• Consistent results

– …across instances.  May extend to larger instances.

• Early convergence to optimality

– For 12 jobs, optimal value achieved when relaxed diagram 

is 1/32 to 1/15 width of exact diagram.

– For 14 jobs, optimal value achieved when relaxed diagram 

is 1/26 to 1/10 width of exact diagram.

• …rather than asymptotic improvement

– As in studies on other types of problems.
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Computational Results

– Asymptotic

convergence 

to optimality

– Here, max 

independent set

problem.

– We want an

upper bound

– Typical of other

types of problems

55Bergman, Ciré, van Hoeve, JH (2013) 



Computational Results

Comparison of node merger heuristics

on a 12-job instance



Computational Results

• Finish time heuristic is vastly superior to others.

– Shortest path heuristic fails because shortest distance 

to root is usually zero in the upper part of the diagram.

– This means the heuristic provides no guidance until it is 

too late.

– Random heuristic provides useless bound.

– This confirms the importance of a good heuristic.

– …and potential for further improvement.
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Future Work

• Problem:  diagrams of a fixed size lose their ability 

to generate bounds as instances scale up.

– Bound does not rise above zero until relaxed diagram 

width is 1/1000 to 1/25 that of exact diagram
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Future Work

• Problem:  diagrams of a fixed size lose their ability 

to generate bounds as instances scale up.

– Bound does not rise above zero until relaxed diagram 

width is 1/1000 to 1/25 that of exact diagram

• This suggests a combination with other bounding 

techniques

– …that can yield a nonzero bound in smaller relaxed 

diagrams.

– Such as Lagrangean relaxation obtained by modifying 

costs in the diagram..
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Bergman, Ciré, van Hoeve (2015) 



Future Work

• Bounds for stochastic dynamic programming

– From stochastic diagrams.

– Node merger can again provide a valid relaxation.

– A theoretical result is available.

– Awaiting good merger heuristics and computational tests.
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