Dynamic Programming Bounds from Decision Diagrams

John Hooker

ISAIM 2018

Objective

- Find a general method to relax dynamic programming models.
 - Job sequencing problems in particular.
 - With state dependent processing times.

Objective

- Find a general method to relax dynamic programming models.
 - Job sequencing problems in particular.
 - With state dependent processing times.
- Why? To obtain **bounds** on the optimal value.
 - Useful for heuristics and exact methods

Objective

- Find a general method to relax dynamic programming models.
 - Job sequencing problems in particular.
 - With state dependent processing times.
- Why? To obtain **bounds** on the optimal value.
 - Useful for heuristics and exact methods
- How? Using relaxed decision diagrams
 - Constructed with **node merger**

Why Dynamic Programming?

- Highly flexible modeling.
 - Costs and constraints need not be convex, linear, or even in closed form.
 - Exploits recursive structure.

Why Dynamic Programming?

- Highly flexible modeling.
 - Costs and constraints need not be convex, linear, or even in closed form.
 - Exploits recursive structure.
- Good relaxations often unavailable.
 - Due to the very generality of the model.

Why Dynamic Programming?

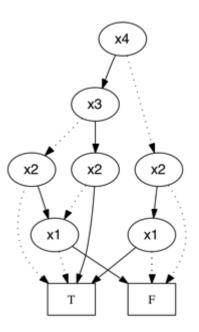
- Highly flexible modeling.
 - Costs and constraints need not be convex, linear, or even in closed form.
 - Exploits recursive structure.
- Good relaxations often unavailable.
 - Due to the very generality of the model.
- Focus on discrete, deterministic DP.
 - Extension to **stochastic** DP possible.

Why Decision Diagrams?

- A potentially useful discrete relaxation.
 - Obtained by node **splitting** or node **merger**.
 - We focus on node merger.
- Can provide relaxations where **none previously existed**.
 - As in job sequencing problems with state-dependent processing times..

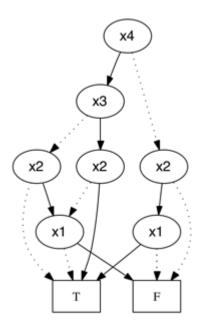
Decision Diagrams

- Graphical encoding of a boolean function
 - Historically used for circuit design & verification
 - Binary diagrams easily extended to multivalued diagrams.
 - Unique reduced diagram for a given variable ordering.



Decision Diagrams

- Adapt to optimization and constraint programming
 - Paths from top to bottom (T) represent feasible solutions
 - Path lengths represent costs.
 - Shortest path is optimal solution.



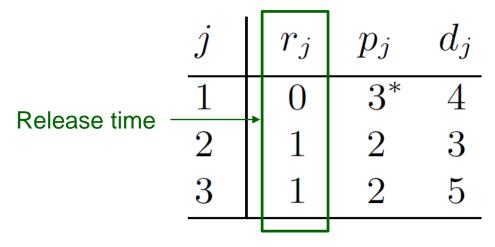
Hadžić and JH (2006, 2007)

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows
 - Processing time may depend on previous jobs
 - For example, some necessary components may have been made for previous jobs

*2 when job 2 has previously been processed.

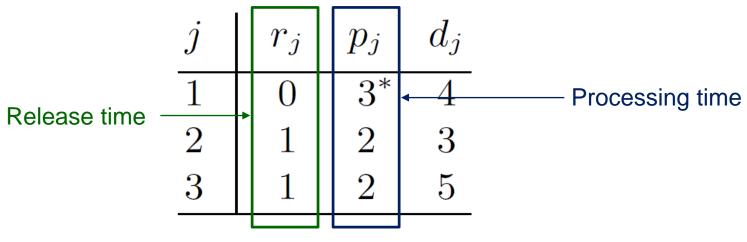
11

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows
 - Processing time may depend on previous jobs
 - For example, some necessary components may have been made for previous jobs



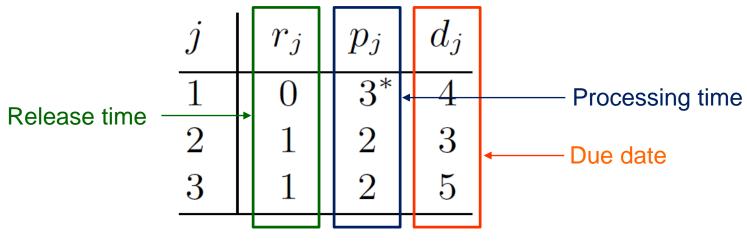
*2 when job 2 has previously been processed. 12

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows
 - Processing time may depend on previous jobs
 - For example, some necessary components may have been made for previous jobs

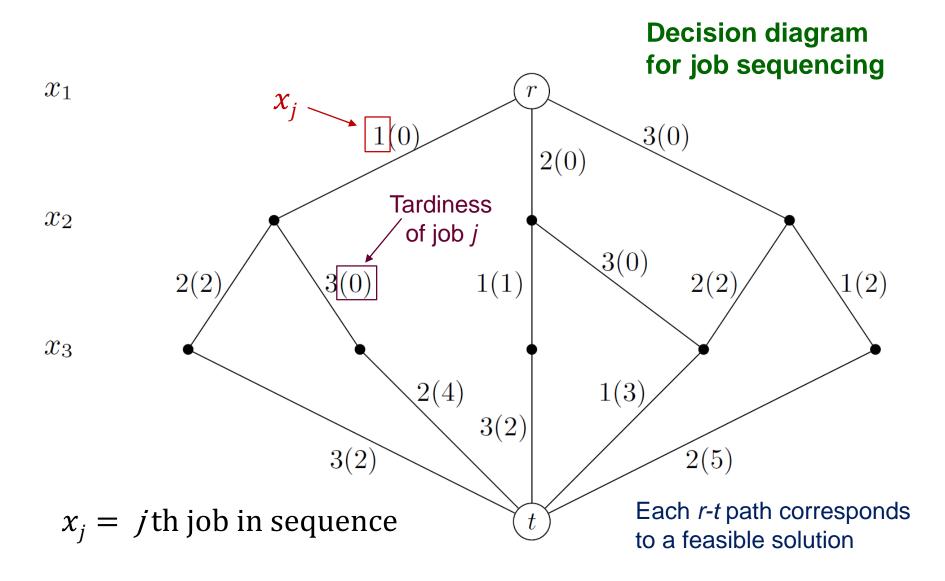


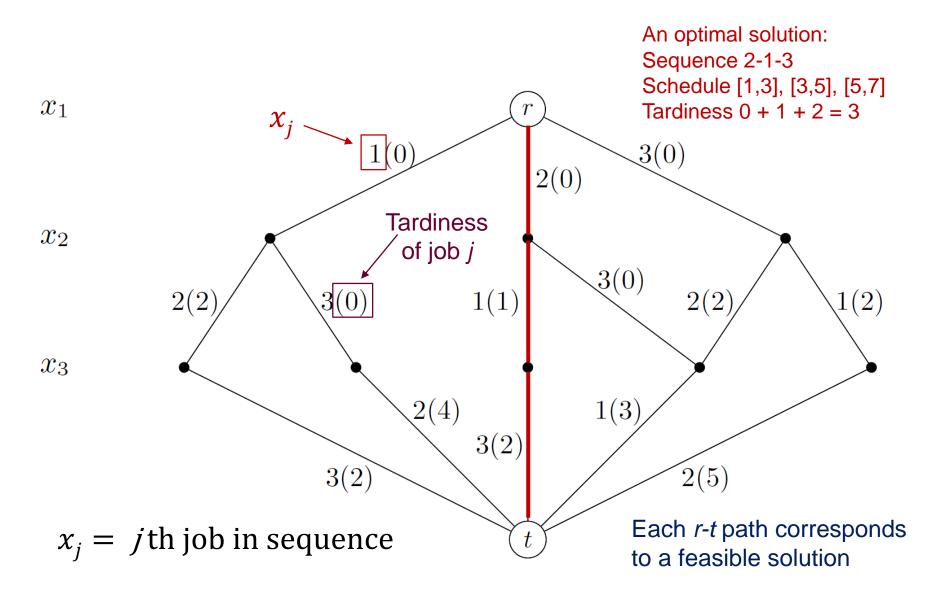
*2 when job 2 has previously been processed. 13

- Problem: sequence jobs with given processing times
 - Minimize tardiness subject to time windows
 - Processing time may depend on previous jobs
 - For example, some necessary components may have been made for previous jobs



*2 when job 2 has previously been processed. 14





Building a Decision Diagram

- Our approach:
 - Associate dynamic programming **states** with nodes..
 - ...as in a state transition graph.

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

General recursive model

$$h_j(S) = \min_{x_j \in X_j(S)} \left\{ c_j(S, x_j) + h_{j+1} \left((\phi_j(S, x_j)) \right) \right\}$$

State in stage j

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

General recursive model

$$h_{j}(S) = \min_{\substack{x_{j} \in X_{j}(S) \\ \uparrow}} \left\{ c_{j}(S, x_{j}) + h_{j+1} \left((\phi_{j}(S, x_{j})) \right) \right\}$$

State in stage j
Set of possible controls

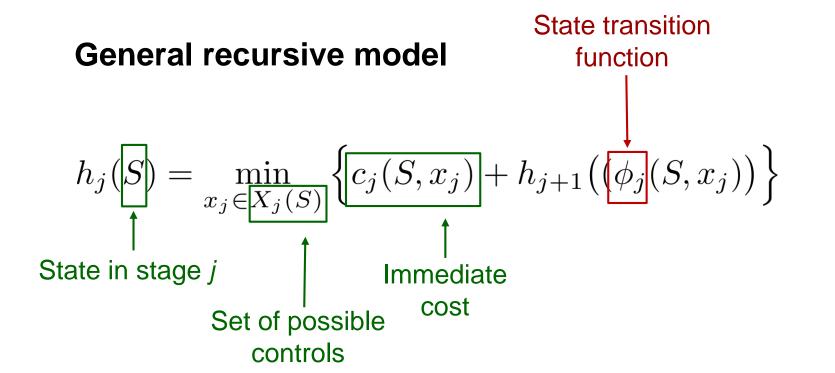
- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.

General recursive model

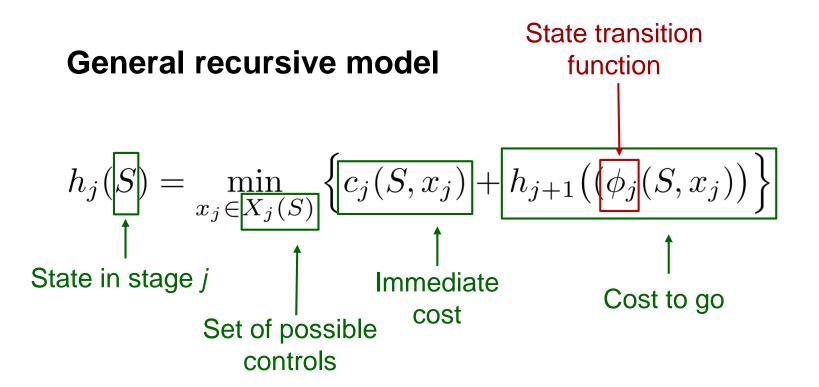
$$h_{j}(S) = \min_{\substack{x_{j} \in X_{j}(S) \\ \uparrow}} \left\{ c_{j}(S, x_{j}) + h_{j+1} \left((\phi_{j}(S, x_{j})) \right) \right\}$$

State in stage j
Set of possible cost cost cost cost cost cost controls

- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.



- Our approach:
 - Associate dynamic programming states with nodes..
 - ...as in a state transition graph.



Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

State: S = (V, f) Finish time of last job scheduled

$$h_{j}(S) = \min_{\substack{x_{j} \in X_{j}(S) \\ \uparrow}} \left\{ c_{j}(S, x_{j}) + h_{j+1}((\phi_{j}(S, x_{j}))) \right\}$$

State in stage j
State in stage j
Set of possible controls
$$f$$

Cost to go

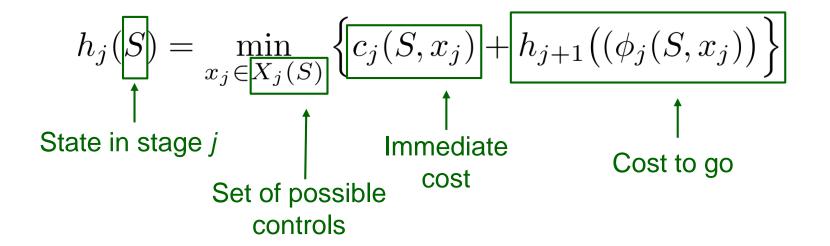
Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

Finish time of last job scheduled

Controls: $x_j(V, f) = \{1, \ldots, n\} \setminus V$

State: S



Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

Finish time of last job scheduled

Controls: $x_j(V, f) = \{1, \ldots, n\} \setminus V$

State: S =

Immediate cost: $c_j((V, f), x_j) = (\max\{r_{x_j}, f\} + p_{x_j}(V) - d_{x_j})^+$

State-dependent processing time

$$h_{j}(S) = \min_{\substack{x_{j} \in X_{j}(S) \\ \uparrow}} \left\{ c_{j}(S, x_{j}) + h_{j+1}((\phi_{j}(S, x_{j}))) \right\}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
State in stage j

$$f$$
Immediate
$$cost$$

$$Cost to go$$
Set of possible
$$controls$$

Set of jobs scheduled so far

Initial state = $(\emptyset, 0)$

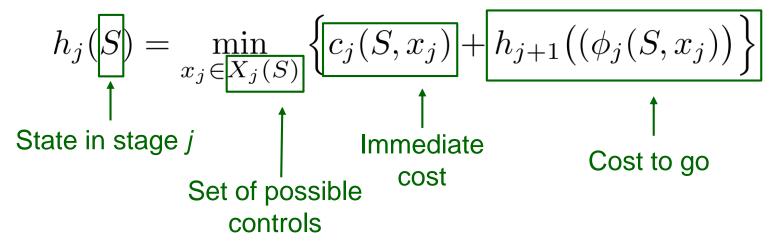
26

Finish time of last job scheduled

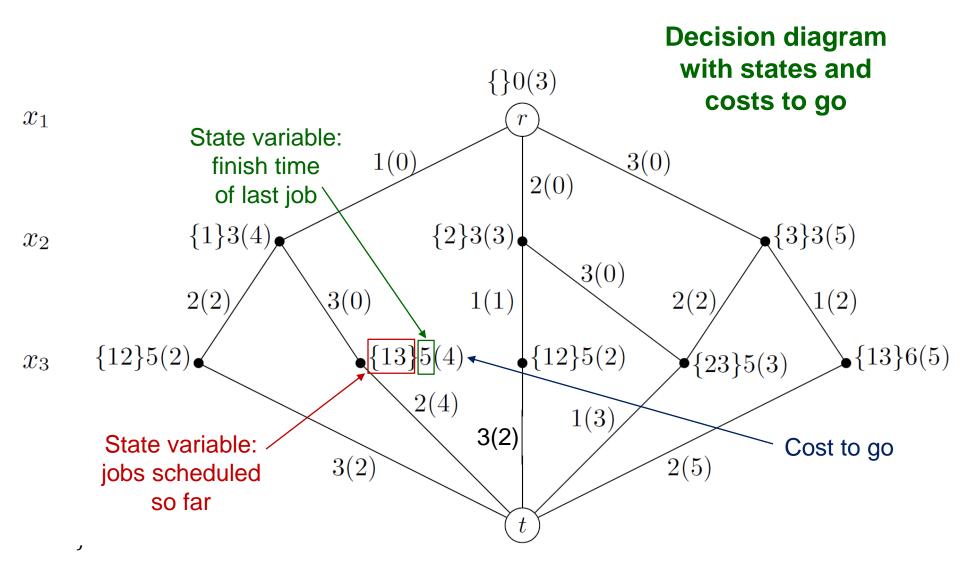
Controls: $x_j(V, f) = \{1, \ldots, n\} \setminus V$

State: S = (V, f)

Immediate cost: $c_j((V, f), x_j) = (\max\{r_{x_j}, f\} + p_{x_j}(V) - d_{x_j})^+$ Transition: $\phi_j((V, f), x_j) = (V \cup \{x_j\}, \max\{r_{x_j}, f\} + p_{x_j}(V))$



Job Sequencing Diagram



Relaxed Decision Diagram

- Definition
 - Every *r*-*t* path of the original diagram appears in the relaxed diagram with equal or smaller cost.
 - So a relaxed diagram may represent some infeasible solutions.
- Motivation
 - Shortest path in the relaxed diagram provides a lower bound on the optimal value.

Andersen, Hadžić, JH, Tiedemanmn (2007)

Building a Relaxed Diagram

- Node splitting
 - Start with a diagram that represents all solutions (feasible and infeasible) and refine it.

Andersen, Hadžić, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

Building a Relaxed Diagram

- Node splitting
 - Start with a diagram that represents all solutions (feasible and infeasible) and refine it.
- Node merger examined here
 - Merge some nodes in the exact diagram.
 - ...to make the diagram smaller while excluding no feasible solutions and introducing some infeasible low-cost solutions.

Andersen, Hadžić, JH, Tiedemanmn (2007)

Ciré and van Hoeve (2013)

Bergman, Ciré, van Hoeve, JH (2013)

Node Merger

- Don't begin with exact diagram
 - It is too large
- Merge nodes as the diagram is constructed
 - In particular, nodes that are not likely to lie on an optimal path.
 - Combine states of the merged nodes in a way that yields a valid relaxation.
 - This often requires additional state variables.
 - As in the job sequencing case.

Bergman, Ciré, van Hoeve, JH (2013, 2016)

Relaxed DP Model

Set of jobs scheduled in **all** feasible solutions so far

Initial state = $(\emptyset, \emptyset, 0)$

New state variable: set of jobs scheduled in some feasible solution so far

S

Earliest possible finish time of immediately previous job

$$h_j(S) = \min_{x_j \in X_j(S)} \left\{ c_j(S, x_j) + h_{j+1} \left((\phi_j(S, x_j)) \right) \right\}$$

Relaxed DP Model

Set of jobs scheduled in **all** feasible solutions so far

Initial state = $(\emptyset, \emptyset, 0)$

New state variable: set of jobs scheduled in some feasible solution so far

Earliest possible finish time of immediately previous job

Transition:

$$\phi_j((V, U, f), x_j) = (V \cup \{x_j\}, U \cup \{x_j\}, \max\{r_{x_j}, f\} + p_{x_j}(U))$$

Processing time depends on U, not $V \checkmark$ (state variable V can be dropped if desired)

$$h_j(S) = \min_{x_j \in X_j(S)} \left\{ c_j(S, x_j) + h_{j+1} \left((\phi_j(S, x_j)) \right) \right\}$$

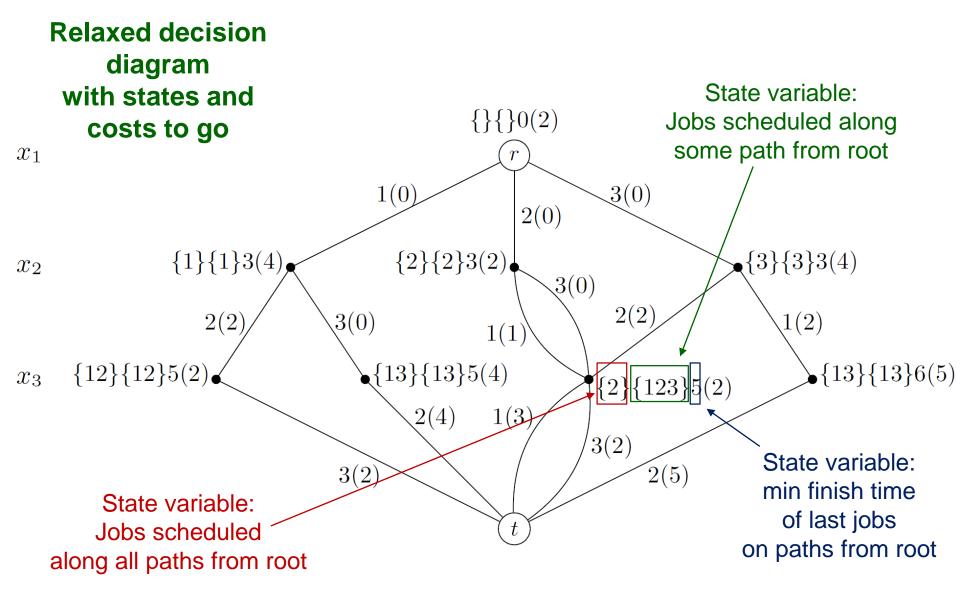
Node Merger in Relaxation

- Merge nodes as the diagram is constructed States S, T merge to form state $S \oplus T$
- Merger operation must yield valid relaxation

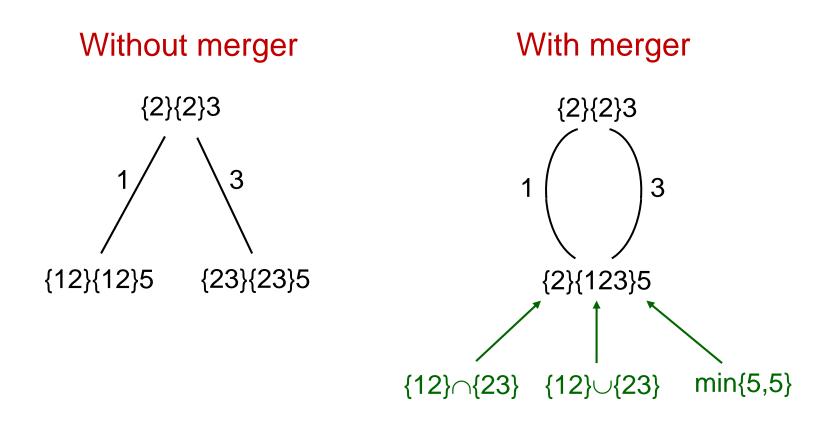
- In state-dependent job sequencing,

 $(V, U, f) \oplus (V', U', f') = (V \cap V', U \cup U', \min\{f, f'\})$

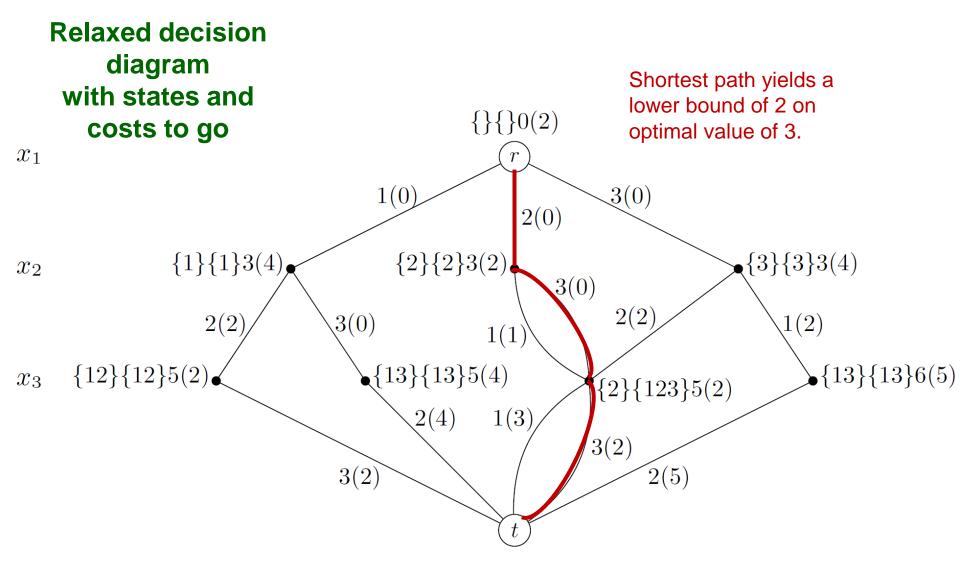
Job Sequencing Relaxed Diagram



Job Sequencing Node Merger



Job Sequencing Relaxed Diagram



- There are two **jointly sufficient conditions** for obtaining a relaxed diagram from node merger.
 - A condition on the transition function
 - And a condition on the merger operation $\,S\oplus T\,$

- There are two **jointly sufficient conditions** for obtaining a relaxed diagram from node merger.
 - A condition on the transition function
 - And a condition on the merger operation $\,S\oplus T\,$
- First we need a definition: state S' relaxes state S in the same stage if
 - Every control feasible in S is feasible in S'

$$X_j(S) \subseteq X_j(S')$$

- The immediate cost of a control feasible in S is no greater in S'.

$$c_j(S, x_j) \ge c_j(S', x_j), \text{ all } x_j \in X_j(S)$$

Theorem. The merger of states S and T in layer j of diagram D yields a relaxation of D if:

• S' relaxes S implies that $\phi_j(S', x_j)$ relaxes $\phi_j(S, x_j)$ for any control x_i feasible in S.

• $S \oplus T$ relaxes both S and T.

Proof by induction.

This generalizes to stochastic decision diagrams, where the conditions are much more complicated.

Check whether node merger for **job sequencing** satisfies the conditions.

• S' relaxes S implies that $\phi_j(S', x_j)$ relaxes $\phi_j(S, x_j)$ for any control x_j feasible in S.

• $S \oplus T$ relaxes both S and T.

Check whether node merger for **job sequencing** satisfies the conditions.

• S' relaxes S implies that $\phi_j(S', x_j)$ relaxes $\phi_j(S, x_j)$ for any control x_j feasible in S. (V', U', f') relaxes (V, U, f) when $\begin{array}{c} V' \subseteq V \\ U' \supseteq U \\ f' \leq f \end{array}$ Now...

$$\phi_j \big((V', U', f'), x_j \big) \text{ relaxes } \phi_j \big((V, U, f), x_j \big) \text{ because}$$

$$V' \cup \{x_j\} \subseteq V \cup \{x_j\}$$

$$U' \cup \{x_j\} \supseteq U \cup \{x_j\}$$

$$\min\{r_{x_j}, f'\} + p_{x_j}(U') \leq \min\{r_{x_j}, f\} + p_{x_j}(U)$$

Check whether node merger for **job sequencing** satisfies the conditions.

• $S \oplus T$ relaxes both S and T.

 $(V, U, f) \oplus (V', U', f)$ relaxes (V, U, f)

 $\begin{array}{ll} \text{because} & V \cap V' \subseteq V \\ & U \cup U' \supseteq U \\ & \min\{f,f'\} \leq f \end{array}$

...and similarly for (V^\prime, U^\prime, f)

- Goal:
 - Merge nodes that are **not likely to lie on short paths**.
 - This reduces the likelihood of creating a superoptimal path, which would weaken the bound.
 - Keep merging nodes until desired width is obtained.

- Goal:
 - Merge nodes that are **not likely to lie on short paths**.
 - This reduces the likelihood of creating a superoptimal path, which would weaken the bound.
 - Keep merging nodes until desired width is obtained.
- Underlying idea
 - Preserve accuracy in the region of the diagram that is likely to contain the best solutions.
 - Analogous to using smaller finite elements in models of the atmosphere in regions with more activity.

- Finish time heuristic
 - Merge nodes whose last finish time states are large.
 - Paths through these nodes are likely to be longer.
 - Information readily available in the state description.

- Finish time heuristic
 - Merge nodes whose last finish time states are large.
 - Paths through these nodes are likely to be longer.
 - Information readily available in the state description.
- Shortest path heuristic
 - Merge nodes whose shortest-path distances from root are large.
 - This requires recursively computing shortest paths to root as we go along

- Finish time heuristic
 - Merge nodes whose last finish time states are large.
 - Paths through these nodes are likely to be longer.
 - Information readily available in the state description.
- Shortest path heuristic
 - Merge nodes whose shortest-path distances from root are large.
 - This requires recursively computing shortest paths to root as we go along
- Random heuristic
 - Randomly choose nodes for merger..

Experimental Design

- Question 1
 - What is the relationship between the width of the relaxed diagram and the quality of the bound?
- Question 2
 - Which node merger heuristic is best?

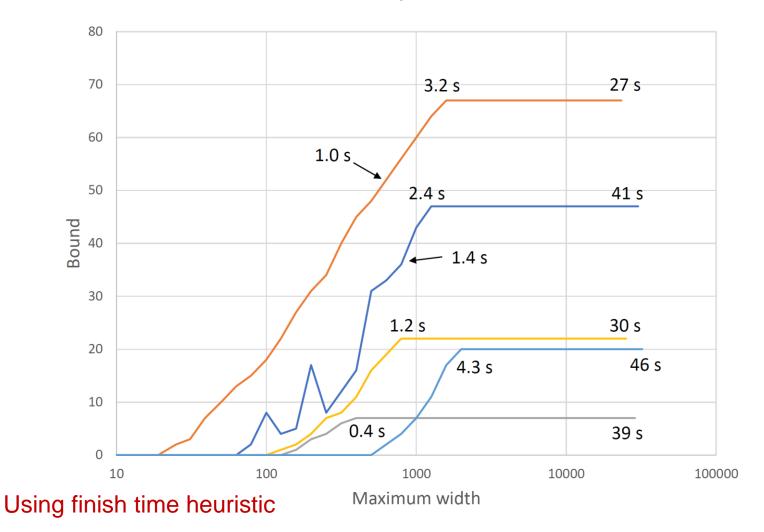
Experimental Design

- Problem instances
 - State-dependent processing times.
 - In particular, processing times depend on state variable U
- Benchmark instances?
 - Apparently, none exist for state-dependent processing times.
- Random instances?
 - Must generate random instances.

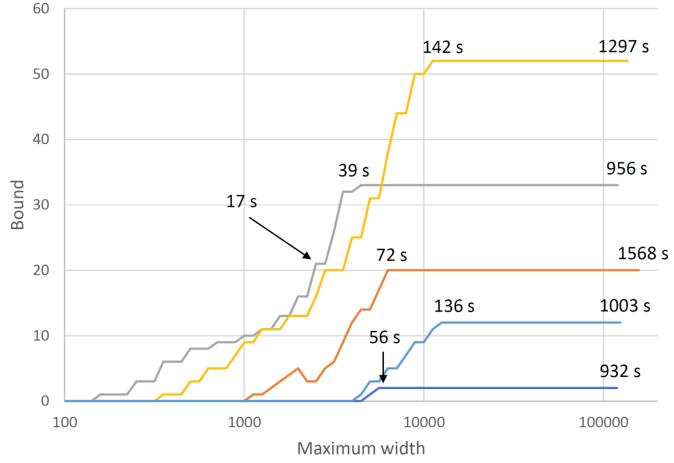
Experimental Design

- Optimal solutions
 - Must have optimal value to assess quality of bound.
 - Because instances frequently have min tardiness = zero.
- How to obtain optimal solutions?
 - Dynamic programming is the only practical method for state-dependent processing times.
 - Due to state-space explosion, instances with more than 15 jobs are very hard to solve.
 - Solution with DP is equivalent to generating an exact diagram.
 - Solve instances with 12 and 14 jobs.

12 jobs

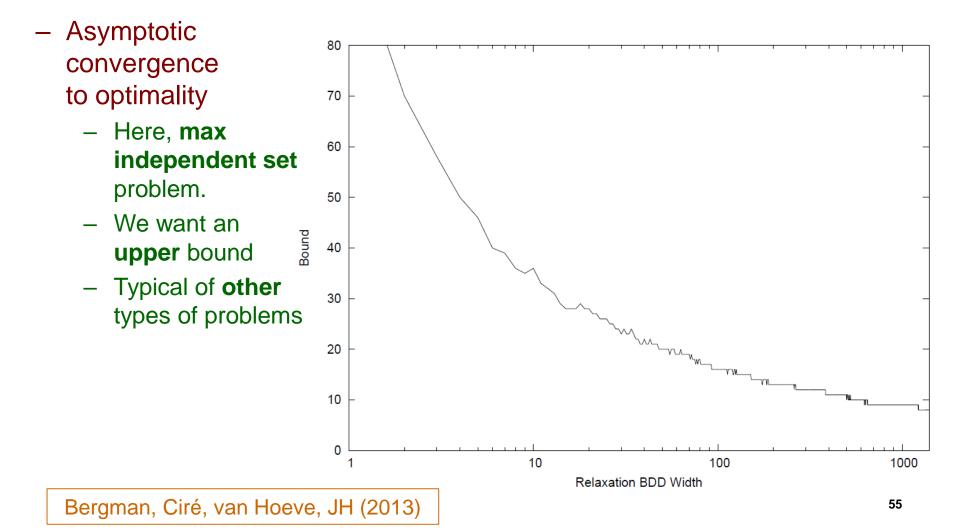


14 jobs

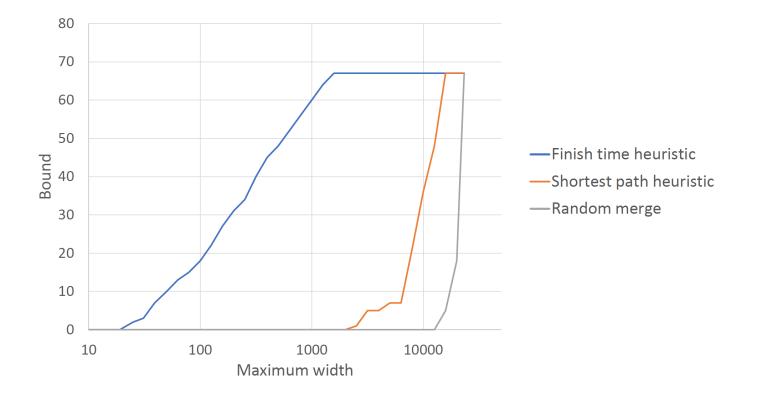


Using finish time heuristic

- Consistent results
 - ...across instances. May extend to larger instances.
- Early convergence to optimality
 - For 12 jobs, optimal value achieved when relaxed diagram is 1/32 to 1/15 width of exact diagram.
 - For 14 jobs, optimal value achieved when relaxed diagram is 1/26 to 1/10 width of exact diagram.
- ...rather than asymptotic improvement
 - As in studies on other types of problems.



Comparison of node merger heuristics on a 12-job instance



- Finish time heuristic is vastly superior to others.
 - Shortest path heuristic fails because shortest distance to root is usually zero in the upper part of the diagram.
 - This means the heuristic provides no guidance until it is too late.
 - Random heuristic provides useless bound.
 - This confirms the importance of a good heuristic.
 - ...and potential for further improvement.

Future Work

- Problem: diagrams of a **fixed size** lose their ability to generate bounds as instances scale up.
 - Bound does not rise above zero until relaxed diagram width is 1/1000 to 1/25 that of exact diagram

Future Work

- Problem: diagrams of a **fixed size** lose their ability to generate bounds as instances scale up.
 - Bound does not rise above zero until relaxed diagram width is 1/1000 to 1/25 that of exact diagram
- This suggests a combination with other bounding techniques
 - ...that can yield a nonzero bound in smaller relaxed diagrams.
 - Such as Lagrangean relaxation obtained by modifying costs in the diagram..

Bergman, Ciré, van Hoeve (2015)

Future Work

Bounds for stochastic dynamic programming

- From stochastic diagrams.
- Node merger can again provide a valid relaxation.
- A theoretical result is available.
- Awaiting good merger heuristics and computational tests.