
Dynamic Programming Bounds

from Decision Diagrams

John Hooker

ISAIM 2018

Objective

• Find a general method to relax dynamic

programming models.

• Job sequencing problems in particular.

• With state dependent processing times.

2

Objective

• Find a general method to relax dynamic

programming models.

• Job sequencing problems in particular.

• With state dependent processing times.

• Why? To obtain bounds on the optimal value.

• Useful for heuristics and exact methods

3

Objective

• Find a general method to relax dynamic

programming models.

• Job sequencing problems in particular.

• With state dependent processing times.

• Why? To obtain bounds on the optimal value.

• Useful for heuristics and exact methods

• How? Using relaxed decision diagrams

• Constructed with node merger

4

Why Dynamic Programming?

• Highly flexible modeling.

– Costs and constraints need not be convex, linear, or even

in closed form.

– Exploits recursive structure.

5

Why Dynamic Programming?

• Highly flexible modeling.

– Costs and constraints need not be convex, linear, or even

in closed form.

– Exploits recursive structure.

• Good relaxations often unavailable.

– Due to the very generality of the model.

6

Why Dynamic Programming?

• Highly flexible modeling.

– Costs and constraints need not be convex, linear, or even

in closed form.

– Exploits recursive structure.

• Good relaxations often unavailable.

– Due to the very generality of the model.

• Focus on discrete, deterministic DP.

– Extension to stochastic DP possible.

7

Why Decision Diagrams?

• A potentially useful discrete relaxation.

– Obtained by node splitting or node merger.

– We focus on node merger.

• Can provide relaxations where none previously

existed.

– As in job sequencing problems with state-dependent

processing times..

8

Decision Diagrams

• Graphical encoding of a

boolean function

– Historically used for circuit design

& verification

– Binary diagrams easily extended

to multivalued diagrams.

– Unique reduced diagram for

a given variable ordering.

9

Lee (1959), Bryant (1986)

Decision Diagrams

• Adapt to optimization and

constraint programming

– Paths from top to bottom (T)

represent feasible solutions

– Path lengths represent costs.

– Shortest path is optimal solution.

10

Hadžić and JH (2006, 2007)

Job Sequencing

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

– Processing time may depend on previous jobs

– For example, some necessary components may have

been made for previous jobs

11

Job Sequencing

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

– Processing time may depend on previous jobs

– For example, some necessary components may have

been made for previous jobs

12

Release time

Job Sequencing

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

– Processing time may depend on previous jobs

– For example, some necessary components may have

been made for previous jobs

13

Release time
Processing time

Job Sequencing

• Problem: sequence jobs with given processing times

– Minimize tardiness subject to time windows

– Processing time may depend on previous jobs

– For example, some necessary components may have

been made for previous jobs

14

Release time

Due date

Processing time

Job Sequencing

𝑥𝑗 = j th job in sequence

Decision diagram

for job sequencing

𝑥𝑗

Each r-t path corresponds

to a feasible solution

Tardiness

of job j

Job Sequencing

𝑥𝑗 = j th job in sequence

An optimal solution:

Sequence 2-1-3

Schedule [1,3], [3,5], [5,7]

Tardiness 0 + 1 + 2 = 3𝑥𝑗

Each r-t path corresponds

to a feasible solution

Tardiness

of job j

Building a Decision Diagram

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

17

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

18

General recursive model

State in stage j

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

19

General recursive model

State in stage j

Set of possible

controls

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

20

General recursive model

State in stage j

Set of possible

controls

Immediate

cost

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

21

General recursive model

State in stage j

Set of possible

controls

Immediate

cost

State transition

function

Dynamic Programming Model

• Our approach:

– Associate dynamic programming states with nodes..

– …as in a state transition graph.

22

General recursive model

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

State transition

function

DP Model for Job Sequencing

State:

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

23

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

State:

Controls:

24

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

DP Model for Job Sequencing

State:

Controls:

Immediate cost:

State-dependent processing time

25

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

DP Model for Job Sequencing

State:

Controls:

Immediate cost:

Transition:

26

State in stage j

Set of possible

controls

Immediate

cost
Cost to go

Set of jobs scheduled so far

Finish time of last job scheduled

Initial state =

DP Model for Job Sequencing

Job Sequencing Diagram

𝑥𝑗 = j th job in sequence

𝑥𝑗
State variable:

finish time

of last job

State variable:

jobs scheduled

so far

Cost to go

Decision diagram

with states and

costs to go

3(2)

Relaxed Decision Diagram

• Definition

– Every r-t path of the original diagram appears in the

relaxed diagram with equal or smaller cost.

– So a relaxed diagram may represent some infeasible

solutions.

• Motivation

– Shortest path in the relaxed diagram provides a lower

bound on the optimal value.

28

Andersen, Hadžić, JH, Tiedemanmn (2007)

Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible

and infeasible) and refine it.

29

Ciré and van Hoeve (2013)

Andersen, Hadžić, JH, Tiedemanmn (2007)

Building a Relaxed Diagram

• Node splitting

– Start with a diagram that represents all solutions (feasible

and infeasible) and refine it.

• Node merger – examined here

– Merge some nodes in the exact diagram.

– …to make the diagram smaller while excluding no

feasible solutions and introducing some infeasible low-cost

solutions.

30

Andersen, Hadžić, JH, Tiedemanmn (2007)

Bergman, Ciré, van Hoeve, JH (2013)

Ciré and van Hoeve (2013)

Node Merger

• Don’t begin with exact diagram

– It is too large

• Merge nodes as the diagram is constructed

– In particular, nodes that are not likely to lie on an optimal

path.

– Combine states of the merged nodes in a way that yields a

valid relaxation.

– This often requires additional state variables.

– As in the job sequencing case.

31

Bergman, Ciré, van Hoeve, JH (2013, 2016)

Relaxed DP Model

Set of jobs scheduled in all feasible

solutions so far

Earliest possible finish time of

immediately previous job

Initial state =

New state variable: set of jobs

scheduled in some feasible

solution so far

Relaxed DP Model

Set of jobs scheduled in all feasible

solutions so far

Earliest possible finish time of

immediately previous job

Initial state =

Transition:

New state variable: set of jobs

scheduled in some feasible

solution so far

Processing time depends on U, not V

(state variable V can be dropped if desired)

Node Merger in Relaxation

• Merge nodes as the diagram is constructed

– States S, T merge to form state

• Merger operation must yield valid relaxation

– In state-dependent job sequencing,

34

Job Sequencing Relaxed Diagram

State variable:

Jobs scheduled along

some path from root

State variable:

Jobs scheduled

along all paths from root

State variable:

min finish time

of last jobs

on paths from root

Relaxed decision

diagram

with states and

costs to go

Job Sequencing Node Merger

{2}{2}3

{12}{12}5 {23}{23}5

Without merger With merger

1 3

{2}{123}5

{2}{2}3

1 3

{12}{23} {12}{23} min{5,5}

Job Sequencing Relaxed Diagram

Shortest path yields a

lower bound of 2 on

optimal value of 3.

Relaxed decision

diagram

with states and

costs to go

Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation

38

Conditions for a Valid Relaxation

• There are two jointly sufficient conditions for

obtaining a relaxed diagram from node merger.

– A condition on the transition function

– And a condition on the merger operation

• First we need a definition: state S relaxes state S

in the same stage if

– Every control feasible in S is feasible in S

– The immediate cost of a control feasible in S is no greater

in S.

39

Theorem. The merger of states S and T in layer j

of diagram D yields a relaxation of D if:

• S relaxes S implies that relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation

40

Proof by induction.

This generalizes to stochastic decision diagrams,

where the conditions are much more complicated.

Check whether node merger for job sequencing

satisfies the conditions.

• S relaxes S implies that relaxes

for any control xj feasible in S.

• relaxes both S and T.

Conditions for a Valid Relaxation

41

Check whether node merger for job sequencing

satisfies the conditions.

• S relaxes S implies that relaxes

for any control xj feasible in S.

Conditions for a Valid Relaxation

42

when Now…

because

Check whether node merger for job sequencing

satisfies the conditions.

• relaxes both S and T.

Conditions for a Valid Relaxation

43

because

…and similarly for

Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

44

Merger Heuristics

• Goal:

– Merge nodes that are not likely to lie on short paths.

– This reduces the likelihood of creating a superoptimal

path, which would weaken the bound.

– Keep merging nodes until desired width is obtained.

• Underlying idea

– Preserve accuracy in the region of the diagram that is

likely to contain the best solutions.

– Analogous to using smaller finite elements in models of

the atmosphere in regions with more activity.

45

Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

– Information readily available in the state description.

46

Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

– Information readily available in the state description.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root

are large.

– This requires recursively computing shortest paths to root

as we go along

47

Merger Heuristics

• Finish time heuristic

– Merge nodes whose last finish time states are large.

– Paths through these nodes are likely to be longer.

– Information readily available in the state description.

• Shortest path heuristic

– Merge nodes whose shortest-path distances from root

are large.

– This requires recursively computing shortest paths to root

as we go along

– Random heuristic

– Randomly choose nodes for merger..

48

Experimental Design

• Question 1

– What is the relationship between the width of the relaxed

diagram and the quality of the bound?

• Question 2

– Which node merger heuristic is best?

49

Experimental Design

• Problem instances

– State-dependent processing times.

– In particular, processing times depend on state variable U

• Benchmark instances?

– Apparently, none exist for state-dependent processing

times.

• Random instances?

– Must generate random instances.

50

Experimental Design

• Optimal solutions

– Must have optimal value to assess quality of bound.

– Because instances frequently have min tardiness = zero.

• How to obtain optimal solutions?

– Dynamic programming is the only practical method for

state-dependent processing times.

– Due to state-space explosion, instances with more than

15 jobs are very hard to solve.

– Solution with DP is equivalent to generating an exact

diagram.

– Solve instances with 12 and 14 jobs.

51

Computational Results

12 jobs

Using finish time heuristic

Computational Results

14 jobs

Using finish time heuristic

Computational Results

• Consistent results

– …across instances. May extend to larger instances.

• Early convergence to optimality

– For 12 jobs, optimal value achieved when relaxed diagram

is 1/32 to 1/15 width of exact diagram.

– For 14 jobs, optimal value achieved when relaxed diagram

is 1/26 to 1/10 width of exact diagram.

• …rather than asymptotic improvement

– As in studies on other types of problems.

54

Computational Results

– Asymptotic

convergence

to optimality

– Here, max

independent set

problem.

– We want an

upper bound

– Typical of other

types of problems

55Bergman, Ciré, van Hoeve, JH (2013)

Computational Results

Comparison of node merger heuristics

on a 12-job instance

Computational Results

• Finish time heuristic is vastly superior to others.

– Shortest path heuristic fails because shortest distance

to root is usually zero in the upper part of the diagram.

– This means the heuristic provides no guidance until it is

too late.

– Random heuristic provides useless bound.

– This confirms the importance of a good heuristic.

– …and potential for further improvement.

57

Future Work

• Problem: diagrams of a fixed size lose their ability

to generate bounds as instances scale up.

– Bound does not rise above zero until relaxed diagram

width is 1/1000 to 1/25 that of exact diagram

58

Future Work

• Problem: diagrams of a fixed size lose their ability

to generate bounds as instances scale up.

– Bound does not rise above zero until relaxed diagram

width is 1/1000 to 1/25 that of exact diagram

• This suggests a combination with other bounding

techniques

– …that can yield a nonzero bound in smaller relaxed

diagrams.

– Such as Lagrangean relaxation obtained by modifying

costs in the diagram..

59

Bergman, Ciré, van Hoeve (2015)

Future Work

• Bounds for stochastic dynamic programming

– From stochastic diagrams.

– Node merger can again provide a valid relaxation.

– A theoretical result is available.

– Awaiting good merger heuristics and computational tests.

60

