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Decision Diagrams & Dynamic Programming 

● We extend the theory of decision diagrams to accommodate 

state-dependent-costs. 

– We prove uniqueness 

theorem for weighted 

DDs using canonical 

costs. 

• We can now view DP 

state transition graph 

as a decision diagram. 

– And perhaps reduce  

the decision diagram 

to simplify the DP  

model. 
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Dynamic Programming 

• Dynamic programming (including the name) was introduced by 

Richard Bellman in 1950s. 

– Different concept than decision diagram, caching, etc. 

– But DP state transition graph can be viewed as a weighted 

decision diagram. 

• Illustration: a very basic inventory management problem. 

– In the literature at least 50 years. 



Inventory Management Example 

• In each period i, we have: 

– Demand di 

– Unit production cost  ci 

– Warehouse space m 

– Unit holding cost hi 

• In each period, we decide: 

– Production level xi 

– Stock level si 

• Objective: 

– Meet demand each period while minimizing production and 

holding costs. 
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Dynamic Programming Recursion 

• In general, the state transition is 

 

 

• Cost is a function of state and control pairs 

 

 

• The recursion is 

 

 

– with boundary condition 

 

– and optimal value               for starting state s1 
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Dynamic Programming Characteristics 

• There are state variables in addition to decision variables. 

• Costs are function of state variables as well as decision variables. 

• State transitions are Markovian. 

– Current state determines possible transitions and costs. 

• Problem is solved recursively. 

– Often by moving backward through stages. 

• The art of dynamic programming: 

– Find a small state description that is Markovian. 



DP vs Caching 

• Dynamic programming  caching 

– Yes, DP identifies equivalent subproblems. 



DP vs Caching 

• Dynamic programming  caching 

– Yes, DP identifies equivalent subproblems. 

– But not by identifying distinct states. 

– All states are treated separately (except in approximate DP). 

• The intelligence is in the state description. 



DP vs Caching 

• However, caching can be applied on top of DP. 

– We will use the concept of reduced decision diagram  

(reduced MDD) to identify equivalent states. 

• Problem: how to deal with state-dependent costs. 
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Incidentally, there is also a 

bang-bang solution. 

Reducing the Transition Graph 
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This looks like reduction of a 

decision diagram (MDD). 
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general. 
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Decision Diagrams 

Set covering example 

 

Select a minimum-weight 

family of sets that contain  

all 4 elements  A, B, C, D 

xi = 1 when we select set i 

 

Weight     3   5   4   6 



Decision Diagrams 

Decision diagram 

 

Each path corresponds  

to a feasible solution. 

xi = 1 when we select set i 

Weight     3   5   4   6 

x1 = 0 x1 = 1 



Weighted Decision Diagrams 

Separable cost function 

 

Just label arcs with weights. 

 

Shortest path corresponds 

to an optimal solution. 

xi = 1 when we select set i 

Weight     3   5   4   6 



Weighted Decision Diagrams 

• State-dependent costs in dynamic programming imply a 

nonseparable cost function: 

 

 

 

             where 

 

– We need a theory of decision diagrams that deals with  

nonseparable costs. 
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Weighted Decision Diagrams 

Nonseparable cost  

function 

 

Now what? 
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Weighted Decision Diagrams 

Nonseparable cost function 

 

Put costs on leaves 

of branching tree. 
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Weighted Decision Diagrams 

Nonseparable cost function 

 

Put costs on leaves 

of branching tree. 

 

But now we can’t 

reduce the tree 

to an efficient 

decision diagram. 

 

We will rearrange 

costs to obtain 
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Weighted Decision Diagrams 

Nonseparable cost function 

 

Now the tree can 

be reduced. 
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Weighted Decision Diagrams 

Nonseparable cost function 

 

Now the tree can 

be reduced. 



Weighted Decision Diagrams 

Nonseparable cost function 

 

Note that DD is larger than  

reduced unweighted DD, 

but still compact. 



Weighted Decision Diagrams 

Nonseparable cost function 

 

We can represent any 

discrete optimization 

problem with such a 

decision diagram… 

 

even if the costs are 

nonseparable. 



Weighted Decision Diagrams 

Nonseparable cost function 

 

We know that without weights, 

there is a unique reduced 

decision diagram for a given 

variable ordering. 

 

Is this true for decision  

diagrams with canonical 

weights? 

 

Yes. 

 

 



Weighted Decision Diagrams 

Definition.  Costs on a decision diagram are canonical if for every  

node in layer i, the costs cij leaving that node satisfy 

 

for fixed i  (e.g., 0). 
 min ij i

j
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for fixed i  (e.g., 0). 

 

Theorem.  Any given discrete optimization problem is uniquely 

represented by a weighted decision diagram with canonical costs, 

for a given variable ordering. 
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Weighted Decision Diagrams 

Definition.  Costs on a decision diagram are canonical if for every  

node in layer i, the costs cij leaving that node satisfy 

 

for fixed i  (e.g., 0). 

 

Theorem.  Any given discrete optimization problem is uniquely 

represented by a weighted decision diagram with canonical costs, 

for a given variable ordering. 

 

• Similar result proved for Affine Algebraic Decision Diagrams  

(AADDs) by Sanner and McAllester (IJCAI 2005). 

– Definition of canonical is somewhat different. 

 min ij i
j

c 



Weighted Decision Diagrams 

• Converting to canonical costs does not destroy the benefits of 

separability.  

 

Definition.  A decision diagram is separable when arc costs 

represent terms of a separable cost function. 

 

Theorem.  A separable decision diagram that is reduced when 

costs are ignored is also reduced when costs are converted to 

canonical costs. 



Weighted Decision Diagrams 

Example 

Reduced  

unweighted DD 

Add separable  

costs 

Reduced weighted DD 

with canonical costs 

has same shape 



0 
2 1 

0 
2 1 

0 
2 1 

0 

0 

 1( ) min ( )
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Application to Inventory Problem 

1 2x  1 3x 
1 4x 

To equalize controls, let 

 

Be the stock level in next period. 
i i i ix s x d   

7 

16 

7 

11 

6 

8 

6 
4 

12 

9 

10 

20 

15 

10 

 

4 

12 

2 

4 

12 

5 

8 

6 
11 

8 

2 

3 

4 1 
2 3 0 

1 

2 



0 
2 1 

0 
2 1 

0 
2 1 

0 

0 

 1( ) min ( )
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Application to Inventory Problem 

1 0x   1 1x  
1 2x  

To equalize controls, let 

 

Be the stock level in next period. 
i i i ix s x d   

7 

16 

7 

11 

6 

8 

6 
4 

12 

9 

10 

20 

15 

10 

 

4 

12 

2 

4 

12 

5 

8 

6 
11 

8 

0 

1 

2 0 
1 2 0 

1 

2 



7 

16 

7 

11 

6 

0 
2 1 

0 
2 1 

0 
2 1 

0 

0 

8 

6 
4 

12 

9 

10 

20 

15 

10 

4 

12 

2 

4 

12 

5 

8 

6 
11 

8 

 1( ) min ( ) ( )
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem 

1 0x   1 1x  
1 2x  

To equalize controls, let 

 

Be the stock level in next period. 
i i i ix s x d   

0 

1 

2 0 
1 2 0 

1 

2 

New recursion: 



 1( ) min ( ) ( )
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem 

To obtain canonical costs, 

subtract 

from cost on each arc (si,si+1). 
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Application to Inventory Problem 

To obtain canonical costs, 

subtract 

from cost on each arc (si,si+1). 
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from cost on each arc (si,si+1). 
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Application to Inventory Problem 

To obtain canonical costs, 

subtract 

from cost on each arc (si,si+1). 

 

Add these offsets to incoming  

arcs. 

 

Now outgoing arcs look alike. 

 

And all arcs into state si 
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Application to Inventory Problem 

Now there is only one state per period. 

 

Note that computational tests are not 

necessary. 

 

We immediately see the speedup from the 

reduction in the state space. 

New recursion: 
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Ongoing Research 

• DP model simplification 

– Go through the classical DP models and see under what 

conditions they can be simplified. 



Ongoing Research 

• DP model simplification 

– Go through the classical DP models and see under what 

conditions they can be simplified. 

• DP models for optimization based on decision diagrams 

– Use DP model as basis for building relaxed decision diagram. 

– Relaxed decision diagram provides bounds and branching 

mechanism. 


