
Decision Diagrams

and Dynamic Programming

J. N. Hooker
Carnegie Mellon University

INFORMS 2013

Decision Diagrams & Dynamic Programming

● Binary/multivalued decision diagrams are related to dynamic

programming.

– But there are important

differences.

Decision Diagrams & Dynamic Programming

● Binary/multivalued decision diagrams are related to dynamic

programming.

– But there are important

differences.

– Dynamic programming

has state variables

and state-dependent

costs.

Decision Diagrams & Dynamic Programming

● We extend the theory of decision diagrams to accommodate

state-dependent-costs.

– We prove uniqueness

theorem for weighted

DDs using canonical

costs.

Decision Diagrams & Dynamic Programming

● We extend the theory of decision diagrams to accommodate

state-dependent-costs.

– We prove uniqueness

theorem for weighted

DDs using canonical

costs.

• We can now view DP

state transition graph

as a decision diagram.

– And perhaps reduce

the decision diagram

to simplify the DP

model.

Outline

● Dynamic programming example

● Weighted decision diagrams

and canonical costs

● Application to the example

● Ongoing research

Dynamic Programming

• Dynamic programming (including the name) was introduced by

Richard Bellman in 1950s.

– Different concept than decision diagram, caching, etc.

– But DP state transition graph can be viewed as a weighted

decision diagram.

• Illustration: a very basic inventory management problem.

– In the literature at least 50 years.

Inventory Management Example

• In each period i, we have:

– Demand di

– Unit production cost ci

– Warehouse space m

– Unit holding cost hi

• In each period, we decide:

– Production level xi

– Stock level si

• Objective:

– Meet demand each period while minimizing production and

holding costs.

0
2 1

0
2 1

0
2 1

0

0

Period i = 1

i = 2

i = 3

i = 4

State si = stock level

Demand di = 2 in each period i

State transition graph

0
2 1

0
2 1

0
2 1

0

0

Period i = 1

i = 2

i = 3

i = 4

State si = stock level

Demand di = 2 in each period i

Transition xi = 4 units manufactured

State transition graph

0
2 1

0
2 1

0
2 1

0

0

Period i = 1

i = 2

i = 3

i = 4

State si = stock level

Demand di = 2 in each period i

Transition xi = 4 units manufactured

Each path

represents a

solution

State transition graph

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

Transition cost

(immediate cost)

h2 = 2

h3 = 1

h4 = 2

c1 = 2

c2 = 3

c3 = 5

c4 = 6

Unit holding cost = hi

Unit manufacturing cost = ci

i i i ih s c x

Transition costs

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

h2 = 2

h3 = 1

h4 = 2

c1 = 2

c2 = 3

c3 = 5

c4 = 6

Cost to go gi (si)

Backward recursion

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12 8 4

1() ()i i i i i i i i i ig s h s c x g s x d


    

Backward recursion

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12 8 4

22 18 14

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Backward recursion

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12 8 4

22 18 14

26 2

5

2

4

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Backward recursion

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12 8 4

22 18 14

26 2

5

2

4

30

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Backward recursion

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12 8 4

22 18 14

26

30

Optimal solution

Trace forward to find optimal path

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12 8 4

14

26

30

Optimal solution

Trace forward to find optimal path

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

0

12

14

26

30

Optimal solution

Trace forward to find optimal path

Dynamic Programming Recursion

• In general, the state transition is

• Cost is a function of state and control pairs

• The recursion is

– with boundary condition

– and optimal value for starting state s1

1 (,), 1, ,i i i is s x i n

 

1

() (,)
n

i i i

i

f x c s x




  1() min (,) (,)
i

i i i i i i i i i
x

g s c s x g s x


 

1 1 1() 0, all n n ng s s
  



1 1()g s

Dynamic Programming Characteristics

• There are state variables in addition to decision variables.

• Costs are function of state variables as well as decision variables.

• State transitions are Markovian.

– Current state determines possible transitions and costs.

• Problem is solved recursively.

– Often by moving backward through stages.

• The art of dynamic programming:

– Find a small state description that is Markovian.

DP vs Caching

• Dynamic programming  caching

– Yes, DP identifies equivalent subproblems.

DP vs Caching

• Dynamic programming  caching

– Yes, DP identifies equivalent subproblems.

– But not by identifying distinct states.

– All states are treated separately (except in approximate DP).

• The intelligence is in the state description.

DP vs Caching

• However, caching can be applied on top of DP.

– We will use the concept of reduced decision diagram

(reduced MDD) to identify equivalent states.

• Problem: how to deal with state-dependent costs.

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

Arcs leaving each node are

very similar.

• Transition to the same

states.

• Have the same costs,

up to an offset.

Reducing the Transition Graph

2+5

1+15

4+3

2+9

0+6

0
2 1

0
2 1

0
2 1

0

0

0+8

0+6 0+4

0+12

0+9

0+10

0+20

0+15

4+6

4+0

2+10

2+0

4+0

0+12

2+3

2+6

1+5

1+10

2+6

Arcs leaving each node are

very similar.

• Transition to the same

states.

• Have the same costs,

up to an offset.

Incidentally, there is also a

bang-bang solution.

Reducing the Transition Graph

12

0

Reducing the Transition Graph

13 14

10 9 8

6 7 8

4

By rearranging the costs, we

can collapse the states in

each period.

x1 = 2
x1 = 3

x1 = 4

12

0

Reducing the Transition Graph

13 14

10 9 8

6 7 8

4

By rearranging the costs, we

can collapse the states in

each period.

Now it is easier to compute

the optimal solution

0

0

12

20

26

30

x1 = 2
x1 = 3

x1 = 4

12

0

Reducing the Transition Graph

13 14

10 9 8

6 7 8

4

By rearranging the costs, we

can collapse the states in

each period.

Now it is easier to compute

the optimal solution

This looks like reduction of a

decision diagram (MDD).

We will develop this idea in

general.

0

0

12

20

26

30

x1 = 2
x1 = 3

x1 = 4

Decision Diagrams

Set covering example

Select a minimum-weight

family of sets that contain

all 4 elements A, B, C, D

xi = 1 when we select set i

Weight 3 5 4 6

Decision Diagrams

Decision diagram

Each path corresponds

to a feasible solution.

xi = 1 when we select set i

Weight 3 5 4 6

x1 = 0 x1 = 1

Weighted Decision Diagrams

Separable cost function

Just label arcs with weights.

Shortest path corresponds

to an optimal solution.

xi = 1 when we select set i

Weight 3 5 4 6

Weighted Decision Diagrams

• State-dependent costs in dynamic programming imply a

nonseparable cost function:

 where

– We need a theory of decision diagrams that deals with

nonseparable costs.

1

() (,)
n

i i i

i

f x c s x




1 (,), 1, ,i i i is s x i n

 

Weighted Decision Diagrams

Nonseparable cost

function

Now what?

Weighted Decision Diagrams

Nonseparable cost function

Put costs on leaves

of branching tree.

Weighted Decision Diagrams

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

Weighted Decision Diagrams

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

Weighted Decision Diagrams

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

0

6

0 1

7

0

5

0 2 0 2

6 7

Weighted Decision Diagrams

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 1 0

5 6

Weighted Decision Diagrams

Nonseparable cost function

Put costs on leaves

of branching tree.

But now we can’t

reduce the tree

to an efficient

decision diagram.

We will rearrange

costs to obtain

canonical costs.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 1 0

5 6
0 0 1

6 5

Weighted Decision Diagrams

Nonseparable cost function

Now the tree can

be reduced.

0

6

0 1

7

0

5

0 2 0 2

6 7
0 1

6

0 1 0

5 6
0 0 1

6 5

Weighted Decision Diagrams

Nonseparable cost function

Now the tree can

be reduced.

Weighted Decision Diagrams

Nonseparable cost function

Note that DD is larger than

reduced unweighted DD,

but still compact.

Weighted Decision Diagrams

Nonseparable cost function

We can represent any

discrete optimization

problem with such a

decision diagram…

even if the costs are

nonseparable.

Weighted Decision Diagrams

Nonseparable cost function

We know that without weights,

there is a unique reduced

decision diagram for a given

variable ordering.

Is this true for decision

diagrams with canonical

weights?

Yes.

Weighted Decision Diagrams

Definition. Costs on a decision diagram are canonical if for every

node in layer i, the costs cij leaving that node satisfy

for fixed i (e.g., 0).
 min ij i

j
c 

Weighted Decision Diagrams

Definition. Costs on a decision diagram are canonical if for every

node in layer i, the costs cij leaving that node satisfy

for fixed i (e.g., 0).

Theorem. Any given discrete optimization problem is uniquely

represented by a weighted decision diagram with canonical costs,

for a given variable ordering.

 min ij i
j

c 

Weighted Decision Diagrams

Definition. Costs on a decision diagram are canonical if for every

node in layer i, the costs cij leaving that node satisfy

for fixed i (e.g., 0).

Theorem. Any given discrete optimization problem is uniquely

represented by a weighted decision diagram with canonical costs,

for a given variable ordering.

• Similar result proved for Affine Algebraic Decision Diagrams

(AADDs) by Sanner and McAllester (IJCAI 2005).

– Definition of canonical is somewhat different.

 min ij i
j

c 

Weighted Decision Diagrams

• Converting to canonical costs does not destroy the benefits of

separability.

Definition. A decision diagram is separable when arc costs

represent terms of a separable cost function.

Theorem. A separable decision diagram that is reduced when

costs are ignored is also reduced when costs are converted to

canonical costs.

Weighted Decision Diagrams

Example

Reduced

unweighted DD

Add separable

costs

Reduced weighted DD

with canonical costs

has same shape

0
2 1

0
2 1

0
2 1

0

0

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Application to Inventory Problem

1 2x  1 3x 
1 4x 

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

2

3

4 1
2 3 0

1

2

0
2 1

0
2 1

0
2 1

0

0

 1() min ()
i

i i i i i i i i i i
x

g s h s c x g s x d


    

Application to Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   

7

16

7

11

6

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

0

1

2 0
1 2 0

1

2

7

16

7

11

6

0
2 1

0
2 1

0
2 1

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem

1 0x   1 1x  
1 2x  

To equalize controls, let

Be the stock level in next period.
i i i ix s x d   

0

1

2 0
1 2 0

1

2

New recursion:

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

()i i i ic m s h s 

7

16

7

11

6

0
2 1

0
2 1

0
2 1

0

0

8

6
4

12

9

10

20

15

10

4

12

2

4

12

5

8

6
11

8

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

()i i i ic m s h s 

5

10

3

6

0

0
2 1

0
2 1

0
2 1

0

0

4

2
0

6

3

0

10

5

6

0

10

0

4

0

0

3

0
5

0

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

()i i i ic m s h s 

13

14

9

8

10

0
2 1

0
2 1

0
2 1

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem

To obtain canonical costs,

subtract

from cost on each arc (si,si+1).

Add these offsets to incoming

arcs.

Now outgoing arcs look alike.

And all arcs into state si

have the same cost

()i i i ic m s h s 

1 1 1 1 1 1() () ()i i i i i i i i ic s s h c d s m c m s
     

     

13

14

9

8

10

0
2 1

0
2 1

0
2 1

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

4

 1() min () ()
i

i i i i i i i i i i
x

g s h s c x s d g x




     

Application to Inventory Problem

These are canonical costs with

13

14

9

8

10

0
2 1

0
2 1

0
2 1

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

 
1

1min ()
i

i i i
s

c s





4

 1 1 1min () ()
i

i i i i i i i i i
x

g h x c x m d c m x g
  



        

Application to Inventory Problem

13

14

9

8

10

0
2 1

0
2 1

0
2 1

0

0

8

7
6

8

9

12

14

13

8

10

14

12

0

0

10

9

12
13

0

New recursion:

These are canonical costs with

 
1

1min ()
i

i i i
s

c s





4

 1 1 1min () ()
i

i i i i i i i i i
x

g h x c x m d c m x g
  



        

Application to Inventory Problem

Now there is only one state per period.

New recursion:

12

0

13 14

10 9 8

6 7 8

4

0

0

12

20

26

30

 1 1 1min () ()
i

i i i i i i i i i
x

g h x c x m d c m x g
  



        

Application to Inventory Problem

Now there is only one state per period.

Note that computational tests are not

necessary.

We immediately see the speedup from the

reduction in the state space.

New recursion:

12

0

13 14

10 9 8

6 7 8

4

0

0

12

20

26

30

Ongoing Research

• DP model simplification

– Go through the classical DP models and see under what

conditions they can be simplified.

Ongoing Research

• DP model simplification

– Go through the classical DP models and see under what

conditions they can be simplified.

• DP models for optimization based on decision diagrams

– Use DP model as basis for building relaxed decision diagram.

– Relaxed decision diagram provides bounds and branching

mechanism.

