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What is constraint programming?

• An alternative to optimization methods in operations research.

• Developed in the computer science and artificial intelligence 
communities.

• Over the last 20+ years.

• Particularly successful in scheduling and logistics.
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• Container port scheduling 
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control 
(Siemens, Xerox)

Early commercial successes

CP Tutorial   Slide 4



Applications

• Job shop scheduling

• Assembly line smoothing 
and balancing 

• Cellular frequency 
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning
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• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food, 
nuclear fuel)

• Warehouse management

• Course timetabling

Applications
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Advantages of CP

• Good at scheduling, logistics

• …where other optimization methods may fail.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Simpler models (due to global constraints).

• Constraints convey problem structure to the solver.
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Disdvantages of CP

• Less effective for continuous optimization.

• Relies on interval propagation

• Less robust

• May blow up past a certain problem size,

• Lacks relaxation technology

• Software is less highly engineered

• Younger field
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Comparison with Mathematical Programming

MP CP

Numerical calculation Logic processing

Relaxation Inference (filtering, 
constraint propagation)

Atomistic modeling 
(linear inequalities)

High-level modeling 
(global constraints)

Branching Branching

Independence of model 
and algorithm

Constraint-based 
processing
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Complementary Strengths 

• CP can be profitably combined with other optimization 
methods.

• Integer programming, global optimization

• Combine complementary strengths
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Software for CP
• ECLiPSe (NICTA), open source

– Early CP (and hybrid) solver, still maintained

• CHIP (Cosytec), commercial

– State-of-the-art solver

• OPL CP Optimizer (IBM), commercial (free academic download)

– State-of-the-art solver, originally developed by ILOG

• Gecode (Schulte & Tack), free download

– State-of-the-art toolkit for building CP solvers

• Frontline MIP/CP solver (Frontline Systems), commercial

– Add-in for Excel spreadsheets

• G12  (NICTA), under development

– Major CP and hybrid system

• Google OR-tools (Google), open source

– Includes CP solver
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Tentative Outline

• A First Glimpse at CP

• Basic Ideas of CP

• CP Modeling

• Consistency and Backtracking

• Review of Network Flow Theory

• The Alldiff, Cardinality and Nvalues Constraints

• The Sequence Constraint

• The Regular Constraint

• Disjunctive and Cumulative Scheduling

• Propositional Satisfiability (SAT)

• Symmetry

• Advanced Modeling

• CP/OR Integration
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Calendar

• Quarta-feira: 6 - 8 pm

• Sexta-feira: 10am - 12



References

Constraint-Based Local 
Search, P. Van Hentenryck 

and L. Michel

Constraint 
Processing, 
R. Dechter

Principles of Constraint 
Programming, K. Apt

Programming with 
Constraints, K. Marriott, 
P. J. Stuckey

Handbook of Constraint 
Programming, F. Rossi, 
P. van Beek, T. Walsh, eds.
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References

This tutorial is based partly on:

• J. N. Hooker, Integrated Methods for Optimization, 2nd ed., 
Springer (2012).   Contains references and many exercises.  
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References

Online resources:

• Introductory material on CP in Portuguese (thesis by T. Serra)

• 2011 CP  Summer School (slides only)

• 2009 CPAIOR Tutorial in CP (slides and videos)

• 2008 CP Summer School (slides only)

• 2007 CP Summer School (slides and videos)

• Association for Constraint Programming

• These slides (updated the day after each class).

• Google “John Hooker” to find website.
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Basic Ideas of CP

Procedural and declarative models
Filtering and propagation

Global constraints
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Basic Ideas of CP

• It is both procedural and declarative .

• procedural = write a computer program 

• declarative = state constraints on the solution
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Basic Ideas of CP

• It is both procedural and declarative .

• procedural = write a computer program 

• declarative = state constraints on the solution

• It uses global constraints to exploit problem structure:

• global constraint = constraint that contains many 
simpler constraints
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Basic Ideas of CP

• It is both procedural and declarative .

• procedural = write a computer program 

• declarative = state constraints on the solution

• It uses global constraints to exploit problem structure:

• global constraint = constraint that contains many 
simpler constraints

• It uses filtering and constraint propagation to reduce the
search space.

• filtering = reduce variable domains

• propagation = pass domains to next constraint
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Procedural and Declarative Models

• Example: solve this:

Note that x1 = x2 = x3 = 2 is not allowed.

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, ,  pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈
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Procedural and Declarative Models

• Example: solve this:

• Purely procedural model:

For x1 = 1,2:
For x2 = 1,2:

If  x1 ≠ x2 then 
For x3 = 1,2,3:

If  x1 ≠ x3 and x2 ≠ x3 then
If  3x1 + x2 + x3 = 10  then print x1, x2, x3

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, ,  pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

CP Tutorial   Slide 22



Procedural and Declarative Models

• Example: solve this:

• Purely declarative model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, ,  pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

{ } { }

1 2 3

1 2

1 3

2 3

1 2 3

3 10

, 1,2 , 1,2,3

x x x

x x

x x

x x

x x x

+ + =
≠
≠
≠

∈ ∈
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Procedural and Declarative Models

• Example: solve this:

• Purely declarative model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, ,  pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

{ } { }

1 2 3

1 2

1 3

2 3

1 2 3

3 10

, 1,2 , 1,2,3

x x x

x x

x x

x x

x x x

+ + =
≠
≠
≠

∈ ∈

Looks simple, but how are 
we going to solve this?

Perhaps by integer 
programming…

CP Tutorial   Slide 24



Procedural and Declarative Models

• Example: solve this:

• Purely declarative model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, ,  pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

{ }

1 2 3

1 2 12 2 1 12

1 2 12 2 1 12

1 2 12 2 1 12

1 2 3

1 2 3 12 13 23

3 10

1 2 , 2 1

1 2 , 2 1

1 2 , 2 1

1 , 2, 1 3

, ,  integer,   , , 0,1

x x x

x x y x x y

x x y x x y

x x y x x y

x x x

x x x y y y

+ + =
− ≥ − − ≥ −
− ≥ − − ≥ −
− ≥ − − ≥ −

≤ ≤ ≤ ≤
∈

An integer programming 
model.

Don’t worry about why it 
works.

Can be solved by CPLEX, 
Gurobi, ExpressMP, SCIP, 
etc.
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Procedural and Declarative Models

• Example: solve this:

• CP model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, ,  pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

This global constraint 
(all-different) enforces 
x1 ≠ x2, x1 ≠ x3, x2 ≠ x3.

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈
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Procedural and Declarative

• CP model:

• The model looks declarative .

• It consists of constraints.

• They can be written in any order.

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• But each constraint invokes a procedure .

• The procedure reduces the search space by filtering
and propagation .
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Filtering

• CP model:

• Variable domains: { }
{ }
{ }

1

2

3

1,2,

1,2,

1,2,3

x

x

x

∈
∈
∈

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove 
infeasible values).

• x1, x2 must use the values 1,2.
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Filtering

• CP model:

• Variable domains: { }
{ }
{ }

1

2

3

1,2,

1

, ,3

,2,

x

x

x

∈

∈
∈

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove 
infeasible values).

• x1, x2 must use the values 1,2.  So we filter these 
values from x3’s domain.
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Filtering

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove 
infeasible values).

• x1, x2 must use the values 1,2.  So we filter these 
values from x3’s domain.

• This can be generalized using network flow theory.

{ }
{ }
{ }

1

2

3

1,2,

1,2,

, ,3

x

x

x

∈
∈
∈
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Filtering

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove 
infeasible values).

• x1, x2 must use the values 1,2.  So we filter these values 
from x3’s domain.

• Removing all infeasible values achieves domain 
consistency .

{ }
{ }
{ }

1

2

3

1,2,

1,2,

, ,3

x

x

x

∈
∈
∈
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Propagation

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• We now propagate the reduced domains to the first 
constraint.

• Filter using first constraint: 

• Must have  3x1 ≥ 10 − max{1,2} − max{3} = 5,  or  x1 ≥ 2.

{ }
{ }
{ }

1

2

3

1,2,

1,2,

, ,3

x

x

x

∈
∈
∈

Domain of x2 Domain of x3
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Propagation

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• We now propagate the reduced domains to the first 
constraint.

• Filter using first constraint: 

• Must have  3x1 ≥ 10 − max{1,2} − max{3} = 5,  or  x1 ≥ 2.

• Filter domain of x1.

{ }
{ }
{ }

2

1

3

1,2,

, ,3

,2,

x

x

x

∈

∈
∈
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Propagation

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Propagate this to alldiff constraint.

• Filter domain of x2.

{ }
{ }
{ }

1

2

3

,2,

1,2,

, ,3

x

x

x

∈
∈
∈
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Propagation

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Propagate this to alldiff constraint.

• Filter domain of x2.

{ }
{ }
{ }

2

1

3

1, ,

,2,

, ,3

x

x

x

∈

∈
∈
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Solution Found

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Because each domain is a singleton , we have a solution.

• No more propagation needed.

{ }
{ }
{ }

1

2

3

,2,

1, ,

, ,3

x

x

x

∈
∈
∈
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Branching

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Branching is often necessary.

{ }
{ }
{ }

1

2

3

,2,

1, ,

, ,3

x

x

x

∈
∈
∈
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Branching

• CP model:

• Variable domains:

( )
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Branching is often necessary.

• Suppose we don’t filter x2’s domain.

• Then we can branch:

• Set x2 = 1 and repeat process.

• Set x2 = 2 and repeat process.

{ }
{ }
{ }

2

1

3

1,2,

,2,

, ,3

x

x

x

∈

∈
∈

CP Tutorial   Slide 38



Global constraints

• Global constraints like alldiff exploit 
problem structure .

• Filtering for a global constraint takes 
advantage of the “global” structure of 
the elementary constraints it represents.

• This is more effective than propagating 
the individual constraints
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Global constraints

• Global constraints like alldiff exploit
problem structure .

• Filtering for a global constraint takes 
advantage of the “global” structure of 
the elementary constraints it represents.

• This is more effective than propagating 
the individual constraints

• Example: alldiff(x1,x2,x3) with domains

• Filtering individual constraints 
has no effect:

{ }
{ }
{ }

1

2

3

1,2,

1,2,

1,2,3

x

x

x

∈
∈
∈

1 2

1 3

2 3

x x

x x

x x

≠
≠
≠
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Example: Graph Coloring

• Graph coloring problem: 

• Color vertices so that no two adjacent vertices have 
the same color.

• Constraints are binary :

• xi ≠ xj for each pair i, j of adjacent vertices.

• where xi = color of vertex i.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.

Domain of variable associated with vertex
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.

CP Tutorial   Slide 49



Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Graph coloring problem that can be solved by filtering and 
propagation alone.  Color nodes with red, green, blue.
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Some CP Models

Sudoku
Traveling salesman

Cumulative scheduling
Employee scheduling

Car sequencing
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Sudoku

Fill blanks with numbers1-9.

Thanks to Helmut Simonis for this example.
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Sudoku

Fill blanks with numbers1-9.

Numbers all different in each 
row,
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Sudoku

Fill blanks with numbers1-9.

Numbers all different in each 
row,

In each column,
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Sudoku

Fill blanks with numbers1-9.

Numbers all different in each 
row,

In each column,

And in each 3x3 square.
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Sudoku

Fill blanks with numbers1-9.

Numbers all different in each 
row,

In each column,

And in each 3x3 square.

Use alldiff constraints!
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Sudoku

Let xij = number in cell i,j
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Sudoku

Let xij = number in cell i,j

alldiff(x11, …, x19)
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Sudoku

Let xij = number in cell i,j

alldiff(x11, …, x19)

alldiff(x11, …, x91)
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Sudoku

Let xij = number in cell i,j

alldiff(x11, …, x19)

alldiff(x11, …, x91)

alldiff(x11,x12,x13,x21,x22,x23,x31,x32,x33)

etc.
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Sudoku

Solution
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Sudoku

Solution

How to solve it?

Filtering, propagation, and 
branching (see demonstration).

Solve it first with very simple
filtering (forward checking)
that only checks for constraint
violations.

Then solve it with complete
filter for the alldiffs.
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Traveling Salesman 

Traveling salesman problem:

Let cij = distance from city i to city j.  

Find the shortest route 
that visits each of n cities 
exactly once.

A B

E C

D

5

8

75

7 4

3 5

6

6
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Traveling Salesman 

Traveling salesman problem:

Let cij = distance from city i to city j.  

Find the shortest route 
that visits each of n cities 
exactly once.

A B

E C

D

5

8

75

7 4

3 5

6

6
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Popular 0-1 model

Let xij = 1 if city i immediately precedes city j, 0 otherwise

{ }

{ }

min

s.t. 1,  all 

1,   all 

1,   all disjoint , 1, ,

0,1

ij ij
ij

ij
i

ij
j

ij
i V j W

ij

c x

x j

x i

x V W n

x
∈ ∈

=

=

≥ ⊂

∈

∑

∑

∑

∑∑ …

Subtour elimination constraints
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CP model

Let yk = the kth city visited.

Variable indices

{ }

1

1

min

s.t. alldiff( , , )

1, ,

k ky y
k

n

k

c

y y

y n

+

∈

∑

…

…

In objective function, identify city n + 1 with city 1.
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{ }
1

min

s.t. circuit( , , )

1, ,

kky
k

n

k

c

y y

y n∈

∑

…

…

An alternate CP model

Let yk = the city visited after city k.

Hamiltonian circuit 
constraint
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The constraint xy ≤ 5 can be implemented

Element constraint

The constraint cy ≤ 5 can be implemented:

Assign z the yth 
value in the list

(this is a slightly different constraint)

Add the 
constraint 
z = xy

( )1

5

element ,( , , ),n

z

y c c z

≤
…

( )1

5

element ,( , , ),n

z

y x x z

≤
…
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• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must 
not exceed L.

Job start times
(variables)

Job processing times
Job resource 
requirements

Cumulative scheduling

( )1 1 1cumulative ( , , ),( , , ),( , , ),n n nt t p p c c L… … …

• Time windows (if any) indicated by domains of ti.
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( )1 5

1

5

min

s.t. cumulative ( , , ),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

≥ +

≥ +

…

⋮

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2

3

4

5
time

resources

Job start times

Processing times
Resources used

L

Cumulative scheduling

3
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• The problem

• Examples is from OPL manual.

• Load 34 items on the ship in minimum time (min makespan)

• Each item requires a certain time and certain number of 
workers.

• Total of 8 workers available.

Example: Ship loading
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Item Dura-
tion

Labor

1 3 4

2 4 4

3 4 3

4 6 4

5 5 5

6 2 5

7 3 4

8 4 3

9 3 4

10 2 8

11 3 4

12 2 5

13 1 4

14 5 3

15 2 3

16 3 3

17 2 6

Item Dura-
tion

Labor

18 2 7

19 1 4

20 1 4

21 1 4

22 2 4

23 4 7

24 5 8

25 2 8

26 1 3

27 1 3

28 2 6

29 1 8

30 3 3

31 2 3

32 1 3

33 2 3

34 2 3

Problem data
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1 → 2,4
2 →3
3 →5,7
4 →5
5 →6
6 →8
7 →8
8 →9
9 →10
9 →14
10 →11
10 →12

11 →13
12 →13
13 →15,16
14 →15
15 →18
16 →17
17 →18
18 →19
18 →20,21
19 →23
20 → 23
21 → 22

22 →23
23 →24
24 →25
25 →26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints
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Use the cumulative scheduling constraint.

( )
1 2

1 34

2 1 4 1

min

s.t. 3, 4,  etc.

cumulative ( , , ),(3,4, ,2),(4,4, ,3),8

3,  3,   etc.

z

z t z t

t t

t t t t

≥ + ≥ +

≥ + ≥ +
… … …

Precedence constraints
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Employee scheduling 

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in 
a row.
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Two ways to view the problem

Sun Mon Tue Wed Thu Fri Sat

Shift 1 A B A A A A A

Shift 2 C C C B B B B

Shift 3 D D D D C C D

Assign nurses to shifts

Sun Mon Tue Wed Thu Fri Sat

Nurse A 1 0 1 1 1 1 1

Nurse B 0 1 0 2 2 2 2

Nurse C 2 2 2 0 3 3 0

Nurse D 3 3 3 3 0 0 3

Assign shifts to nurses

0 = day off
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Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff( , , ),   all d d dw w w d The variables w1d, w2d, 
w3d take different values

That is, schedule 3 
different nurses on each 
day
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( )
1 2 3alldiff( , , ),   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6 
times in the array w, and similarly 
for B, C, D.

That is, each nurse works at least 
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take 
at least 1 and at most 2 different 
values.

That is, at least 1 and at most 2 
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d
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Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

( )1 2 3,alldiff ,  all ,d d dy y y d

Assign a different nurse to each 
shift on each day.

This constraint is redundant of 
previous constraints, but 
redundant constraints speed 
solution.
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least 
two days in a row.  

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s, 
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this 
notation.  

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d
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Now we must connect the wsd variables to the yid variables.

Use channeling constraints :

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the 
problem easier to solve.

CP Tutorial   Slide 91



The complete model is:

,   all ,

,   all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

( )
( )

( )

1 2 3

,Sun ,Sat

alldiff , , ,   all 

cardinality | ( , , , ),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 ,  all 

d d d

s s

w w w

w

d

A B C D

w w s

( )
( )

1 2 3

,Sun ,Sat

alldiff ,  all 

stretch , , | (2,3),(2,2),(6,6), ,  all 

, ,d d d

i i

y

P i

y

y y

dy

…
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Car sequencing

• An assembly line produces cars with 2 options.

• Air conditioning and sun roof.

• Four types of cars, each with an output requirement.

Car 
type

Num-
ber

AC 
option

SR 
option

a 1 0 0

b 3 1 0

c 1 0 1

d 2 1 1

• At most 3 cars 
in every sequence of 5 
can have AC

• At most 1 car 
in every sequence of 3 
can have SR.

• How to sequence the 
cars?
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Car sequencing

A feasible 
solution

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1
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Car sequencing

We will use the sequence constraint:

Requires that at least ℓ and at most u ones occur in every 
sequence of q consecutive binary variables yi.

( )1sequence ( , , ), , ,ny y q u… ℓ
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Car sequencing

CP model:

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

( )
( )
( )

( )
( )

{ } { }

1 7

1 7

1 7

cardinality ( , , ),(a,b,c,d),(1,3,1,2),(1,3,1,2)

element ,(0,1,0,1), )

element ,(0,0,1,1), )

sequence ( , , ),5,0,3

sequence ( , , ),3,0,1

a,b,c,d , , 0,1

i i

i i

i i i

x x

x y

x z

y y

z z

x y z∈ ∈

…

…

…

Car type in position i = 1 if AC in position i

= 1 if SR in position i
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Car sequencing

A larger instance:

Sequence constraints

Option 1: ≤ 1 out of 2
Option 2: ≤ 2 out of 3
Option 3: ≤ 1 out of 3
Option 4: ≤ 2 out of 5
Option 5: ≤ 1 out of 5

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

= 1 if SR in position i
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Car sequencing

A solution:

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

18 car types

positions

5 options

CP Tutorial   Slide 98



Car sequencing

A solution:

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

18 car types

positions

5 options

Solve by filtering, propagation and branching (see demonstration)
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Consistency

Domain Consistency
Bounds Consistency

k-consistency and Backtracking
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Domain Consistency

• A constraint set is domain consistent if every value in every 
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.
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Domain Consistency

• A constraint set is domain consistent if every value in every 
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

• For each xi and each value v in the domain of xi, some 
x = (x1,…,xn) with xi = v satisfies the constraint set.
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Domain Consistency

• A constraint set is domain consistent if every value in every 
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

• For each xi and each value v in the domain of xi, some 
x = (x1,…,xn) with xi = v satisfies the constraint set.

• Equivalent terms:

• Hyperarc consistency, generalized arc consistency.
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Domain Consistency

• A constraint set is domain consistent if every value in every 
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

• For each xi and each value v in the domain of xi, some 
x = (x1,…,xn) with xi = v satisfies the constraint set.

• Equivalent terms:

• Hyperarc consistency, generalized arc consistency.

• To achieve domain consistency:

• Filter inconsistent values from the domains.
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Domain consistency

Consider the constraint set

The solutions are (x1,x100) = (1,0), (1,1).

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈
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Domain consistency

Consider the constraint set

The solutions are (x1,x100) = (1,0), (1,1).

It is not domain consistent, because x1 = 0 is infeasible.
No solution has x1 = 0.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈
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Domain consistency

Consider the constraint set

The solutions are (x1,x100) = (1,0), (1,1).

It is not domain consistent, because x1 = 0 is infeasible.
No solution has x1 = 0.

Filtering 1 from the domain of x1 achieves domain 
consistency.

{ } { }

1 100

1 100

1 100

1

0

, 0,1 1

x

x

x x

x

x∈

+ ≥
− ≥

∈
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subtree with 299 nodes
but no feasible solution

By removing 0 from the 
domain of x1, the left 
subtree is eliminated 

{ }

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

+ ≥
− ≥

∈

1 0x = 1 1x =

Domain consistency

Domain consistency 
can reduce branching.
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(1,0)

Domain consistency and projection

A constraint set is 
domain consistent if 
the domain of each 
variable xi is the 
projection of the 
feasible set onto xi.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

x1

x100

(1,1)
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(1,0)

Domain consistency and projection

A constraint set is 
domain consistent if 
the domain of each 
variable xi is the 
projection of the 
feasible set onto xi.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

x1

x100

(1,1)

Projection onto x1 = {1}
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(1,0)

Domain consistency and projection

A constraint set is 
domain consistent if 
the domain of each 
variable xi is the 
projection of the 
feasible set onto xi.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

x1

x100

(1,1)

Projection onto x1 = {1}

Projection onto x100 = {0,1}
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

3

4

min 28

circuit , , ,

2,3,4

1,3,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈
∈

∑
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

3

4

min 28

circuit , , ,

2,3,4

1,3,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

3

4

min 28

circuit , , ,

2,3,4

1,3,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency:  compute projection onto each variable. 
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3

4

1

4

2

3

min 28

circuit ,

2

, ,

1,3,4

1,2,4

1,2,3

,4

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈

∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency:  compute projection onto each variable. 
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

3

4

2

min 28

circuit , , ,

1,3

2,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈

∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency:  compute projection onto each variable. 
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

4

3

min 28

circuit , ,

2

,

2,4

1,3

1,2,

,

3

4

jjx
j

c

x x

x

x x

x

x

x

=

≤

∈
∈

∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency:  compute projection onto each variable. 
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Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

( )
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

4

2

3

min 28

circuit

1,3

, , ,

2,4

1,3

2,4

jjx
j

c

x x x

x

x

x

x

x

=

∈
∈
∈
∈

≤∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency:  compute projection onto each variable. 
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Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution, 
assuming the other domains are replaced by interval 
relaxations.

• Interval relaxation of {2,4,7} is [2,7].
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Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution, 
assuming the other domains are replaced by interval 
relaxations.

• Example:

{ }
{ }

1 2

1

2

2 9

1,2,3,4

1,5

x x

x

x

+ =
∈
∈

(4,1)

x1

x2 (2,5)

Projection for domain consistency:
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Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution, 
assuming the other domains are replaced by interval 
relaxations.

• Example:

{ }
{ }

2

2

1

1 ,2, ,4

9

5

2

1,

x

x

x

x +

∈

=
∈

(4,1)

x1

x2 (2,5)

Projection for domain consistency:

Filtered domain of x1 has a “hole.”
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Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution, 
assuming the other domains are replaced by interval 
relaxations.

• Example:

{ }
{ }

1 2

1

2

2 9

1,2,3,4

1,5

x x

x

x

+ =
∈
∈

(4,1)

x1

x2 (2,5)

Projection for bounds consistency:
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Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution, 
assuming the other domains are replaced by interval 
relaxations.

• Example:

{ }
{ }

2

2

1

1 ,2,3,4

,

2 9

15

x x

x

x

+
∈
∈

=

(4,1)

x1

x2 (2,5)

Projection for bounds consistency:

Filtered domain for x1 has no hole.
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Bounds propagation

• Bounds obtained by achieving bound consistency can be 
propagated.

• This is important in global optimization.

• Example:

[ ]
[ ]

1 2

1 2

1

2

4 1

2 2

0,1

0,2

x x

x x

x

x

=
+ ≤

∈
∈

x1

x2

0 1
0

2
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Bounds propagation

• Bounds obtained by achieving bound consistency can be 
propagated.

• This is important in global optimization.

• Example:

[ ]
[ ]

1 2

1 2

1

2

4 1

2 2

0.125,1

0.25, 2

x x

x x

x

x

=
+ ≤

∈
∈

x1

x2

Filter using constraint 1:

0 1
0

2

1
2

1 1
0.125

4 4 2
x

x
= ≥ =

⋅

2
1

1 1
0.25

4 4 1
x

x
= ≥ =

⋅
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Bounds propagation

• Bounds obtained by achieving bound consistency can be 
propagated.

• This is important in global optimization.

• Example:

x1

x2

Propagate to 
constraint 2::

0 1
0

2

2
1

0.25
1 0.875

2 2
x

x ≤ − ≤ =

2 12 2 2 2 0.125 1.75x x≤ − ≤ − ⋅ =

[ ]
[ ]

1 2

1 2

1

2

4 1

2 2

0.125,0.875

0.25, 1.75

x x

x x

x

x

=
+ ≤

∈
∈
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Bounds propagation

• Bounds obtained by achieving bound consistency can be 
propagated.

• This is important in global optimization.

• Example:

x1

x2

Continuing, bounds asymptotically converge:

0 1
0

2[ ]
[ ]

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x

=
+ ≤

∈
∈
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Bounds propagation

• Bounds obtained by achieving bound consistency can be 
propagated.

• This is important in global optimization.

• Example:

x1

x2

Continuing, bounds asymptotically converge:

Solvers truncate the process.

0 1
0

2[ ]
[ ]

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x

=
+ ≤

∈
∈
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k-consistency

• k-consistency is closely related to backtracking.

• If a  feasible problem is strongly k-consistent, and the 
width of its dependency graph is less than k with 
respect to some ordering of the variables, then forward 
checking with respect to that order solves the problem 
without backtracking.
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k-consistency

• Definition:

• A constraint set is k-consistent if any assignment to k – 1 
variables that violates no constraints can be extended to an 
assignment to k variables without violating any constraints.

kj
x
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k-consistency

• Definition:

• A constraint set is k-consistent if any assignment to k – 1 
variables that violates no constraints can be extended to an 
assignment to k variables without violating any constraints.

• More precisely, given any partial assignment

that violates no constraints, and any other variable
there is a value vk such that

violates no constraints.

• A constraint can be violated only if all of its variables are 
assigned values.

1 1 1 1( , , ) ( , )
kj j kx x v v

− −=… …

kj
x

1 1 1 1( , , , ) ( , , )
k kj j j k kx x x v v v

− −=… …
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k-consistency

• Example

• 1-consistent:  trivial

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈
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k-consistency

• Example

• 1-consistent:  trivial

• 2-consistent:  need only check x1

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈
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k-consistency

• Example

• 1-consistent:  trivial

• 2-consistent:  need only check x1

• not 3-consistent: 
(x1,x2) = (0,0) cannot be extended to (x1,x2,x4) = (0,0,?).
(x1,x3) = (0,0) cannot be extended to (x1,x3,x4) = (0,0,?).

• There are the only pairs that can’t be extended.

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈
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Dependency graph

• Dependency graph :  variables are connected by edges when 
they occur in a common constraint.

• Also called primal graph .

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

x1

x2

x3 x4
Dependency graph 
for ordering 1,2,3,4
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Dependency graph

• Dependency graph :  variables are connected by edges when 
they occur in a common constraint.

• Also called primal graph .

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

x1

x2

x3 x4
Dependency graph for 
ordering 1,2,3,4

Width of the graph is 
the maximum in-degree 
(here, 2).
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Backtracking

Theorem (Freuder).  If a  feasible problem is strongly 
k-consistent, and the width of its dependency graph is less 
than k with respect to some ordering of the variables, then 
forward checking with respect to that order solves the 
problem without backtracking.

• A constraint set is strongly k-consistent if it is i-consistent for 
i = 1,…,k.
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Backtracking

• The example doesn’t satisfy the conditions of the theorem.

• Width = 2, not strongly 3-consistent.

• Backtracking is possible, and it
occurs when we set

(x1,x2,x3,x4) = (0,0,0,?)

• A feasible solution is (x1,x2,x3,x4) = (1,0,0,0).

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

x1

x2

x3 x4
Width = 2
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Backtracking

• Suppose we add two constraints:.

• This is strongly 3-consistent.

• Extra constraints rule out the only
partial solutions that couldn’t be 
extended: 
(x1,x2) = (0,0), (x1,x3) = (0,0)

• Now it satisfies conditions of the theorem.

• Backtracking does not occur.

• For example, (x1,x2,x3,x4) = (0,1,1,0).

{ }

1 2 4

1 2

1

3

4

1

1

2

3

1

1

1

0

0

0,1j

x x x

x x x

x x

x x

x

x

x

+ + ≥
− + ≥

+
+ ≥

− ≥

∈

≥
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• Proof of theorem, by induction on k.

• x1 can be assigned a value without violating a constraint, 
because problem is feasible. 

• Suppose x1, …, xi−1 have been 
assigned values without violating 
a constraint.  Show xi can be 
assigned a value.

• xi occurs in the same constraint
as at most k − 1 earlier variables.

• So these variable assignments
can be extended to xi.

• Thus assignments to x1, …, xi−1
can be extended to xi.

xi−1 = vi−1

Backtracking

x1 = v1

x2 = v2

xi = ?

…
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Review of Network Flow Theory

Min cost network flow
Basis tree theorem

Max flow
Bipartite matching
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Min cost network flow problem

• Example of a min cost network flow problem:

It is a linear 
programming problem:
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Min cost network flow problem

• Example of a min cost network flow problem:

In matrix form:
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Min cost network flow problem

• If the matrix is m x n, it has rank m − 1.

• So a basic solution of the LP has m − 1 basic variables.

• Basis tree theorem: Every 
basis corresponds to a spanning
tree.

CP Tutorial   Slide 144



Min cost network flow problem

• If the matrix is m x n, it has rank m − 1.

• So a basic solution of the LP has m − 1 basic variables.

• Basis tree theorem: Every 
basis corresponds to a spanning
tree.
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Min cost network flow problem

• Optimality test.

• A basic solution (flow) is optimal if all reduced costs are 
nonnegative.

• The reduced cost of a nonbasic flow xij is cij – ui – uj,
where ui is the dual multiplier (potential) for the flow balance 
constraint at node i.

• Due to complementary slackness, we can find the potentials 
ui by solving the equations ui − uj = cij for all basic arcs (i,j).
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Min cost network flow problem

• Finding potentials and reduced costs.

• We find the potentials ui by solving the equations ui − uj = cij
for all basic arcs (i,j).  Then the reduced cost of nonbasic xij
is rij = cij − ui + uj

A basic solution
Potentials and reduced costs
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Min cost network flow problem

• Improving the solution.

• Since x13 has reduced cost r13 < 0, we increase flow on (1,3).

• Adding (1,3) to basis tree creates a cycle.  

A basic solution
Potentials and reduced costs
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Min cost network flow problem

• Improving the solution.

• Remove from cycle the arc on which flow first hits zero.

A basic solution Optimal solution
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Maximum flow problem

• The max flow problem is a special case of the min (max) cost 
network flow problem.  Cost on return arc is +1.

A max flow problem

Max cost network flow formulation
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Maximum flow problem

• The max flow problem is a special case of the min (max) cost 
network flow problem.

A max flow problem

Max cost network flow formulationPotentials and reduced costs
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Maximum flow problem

• The max flow problem is a special case of the min (max) cost 
network flow problem.

A max flow problem

(S,T) cut.

Potentials in S are 0.
Potentials in T are 1.

So reduced costs S� T are 1.
Redued costs T�S are −1.

Flow is max if S� T arcs are
saturated and costs T�S arcs
are empty.

Potentials and reduced costs

S
T
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Maximum flow problem

• If solution is suboptimal, adding arc to the basis creates a cycle.

A max flow problem

Suboptimal flow Cycle created by arc (1,2)

S

T
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Maximum flow problem

• If solution is suboptimal, adding arc to the basis creates a cycle.

A max flow problem

Suboptimal flow Cycle created by arc (1,2)

S

T
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Maximum flow problem

• Cycle defines an augmenting path in residual graph .

• So if solution is suboptimal, there is an augmenting path.*

Cycle created by arc (1,2)Residual graph

*Additional 
argument 
needed in 

case of 
degeneracy.
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Bipartite matching

• Max cardinality bipartite matching can be formulated as max flow.

Max flow problemA max cardinality matching
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Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathsA suboptimal flow
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Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathAugmenting path
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Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathAugmenting path
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Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathAugmenting path
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All-different Constraint

Matching Model
Domain Consistency
Bounds Consistency
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All-different constraint

• The alldiff constraint requires x1, …, xn to take pairwise distinct values.

( )1alldiff , , nx x…
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Matching model

• Alldiff has a solution if and only if there is a perfect matching.
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( )1 2 3 4 5alldiff , , , ,x x x x x

{ }
{ }
{ }
{ }
{ }

1

2

1

1

1

1

2,3,5

1,2,3,5

1,5

1,3,4,5,6

x

x

x

x

x

∈
∈
∈
∈
∈

• Solution shown:
(x1,x2,x3,x4,x5) = (1,2,3,5,4)



Max flow model

• Alldiff has a solution if and only if max flow = 5.

• All arcs have capacity 1, except return arc with capacity 5.
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Residual graph for max flow



Domain filtering

• To filter domains, fix flow on return arc to 5.

• Can 3 be removed from domain of x2?  Solve max flow problem
from 3 to x2, treating (x2,3) as return arc.  
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Residual graph for max flow



Domain filtering

• To filter domains, fix flow on return arc to 5.

• Can 3 be removed from domain of x2? Max flow from 3 to x2 is 1, 
due to augmenting path.

Alternating cycleAugmenting path from 3 to x2
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Domain filtering

• To filter domains, fix flow on return arc to 5.

• Can 3 be removed from domain of x2? Max flow from 3 to x2 is 1, 
due to augmenting path.  So x2 = 3 is possible.

Alternating cycleAugmenting path from 3 to x2
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Domain filtering

• Fix flow on return arc in max flow model to 5.

• Can 6 be removed from domain of x5?  
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Domain filtering

• Fix flow on return arc in max flow model to 5.

• Can 6 be removed from domain of x5?  No, because max flow 
from 6 to x5 is 1, so that x5 = 6 is possible.

Even alternating path
starting at uncovered vertex

Augmenting path from x2 to 2
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Domain filtering

• Fix flow on return arc in max flow model to 5.

• Can 1 be removed from domain of x3?  Yes, because there is no 
augmenting path from 1 to x3.

No alternating cycle or even 
alternating path containing (x3,1)

CP Tutorial   Slide 170



CPAIOR tutorial
May 2009     Slide 171

y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating 
paths that start at an uncovered 
vertex.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even 
alternating path.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating 
paths that start at an uncovered 
vertex.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even 
alternating path.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating 
paths that start at an uncovered 
vertex.

Mark edges in alternating cycles.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even 
alternating path.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating 
paths that start at an uncovered 
vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 
matching.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even 
alternating path.
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y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in alternating paths 
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in 
matching.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even 
alternating path.



• Filtered domains:

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3

2,3

5

4,6

x

x

x

x

x

∈
∈
∈
∈
∈
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Domain filtering



• Algorithmically, identify strongly connected components of directed 
bipartite graph.  

• Edge directions are the same as in the residual graph.
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Domain filtering



• Algorithmically, identify strongly connected components of directed 
bipartite graph.

• Keep edges in matching or on directed paths starting at 
uncovered vertices, and edges inside a strongly connected 
component.  Remove all other edges
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Domain filtering



• Algorithmically, identify strongly connected components of directed 
bipartite graph.

• Keep edges in matching or on directed paths starting at 
uncovered vertices, and edges inside a strongly connected 
component.  Remove all other edges
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Domain filtering



Bounds Consistency

• Bounds consistency is easier to achieve for alldiff than domain 
consistency.

• Bipartite graph has a convexity property.
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Bounds Consistency

• Replace domains with intervals {Lj,,…,Uj}.
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( )1 2 3 4 5alldiff , , , ,x x x x x

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1,2,4

2,3,6

3,5

3,4

4,5

x

x

x

x

x

∈
∈
∈
∈
∈

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1,2,3,4

2,3,4,5,6

3,4,5

3,4

4,5

x

x

x

x

x

∈
∈
∈
∈
∈

Domains Intervals

Bipartite graph is “convex.”



Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.
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U1 = 4
Cover 1 using (xj,1) with smallest Uj. 



Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.
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Cover 1 using (xj,1) with smallest Uj. 

U2 = 6Cover 2 using (xj,2) with smallest Uj. 



Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.
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Cover 1 using (xj,1) with smallest Uj. 

U3 = 5

Cover 2 using (xj,2) with smallest Uj. 

Cover 3 using (xj,3) with smallest Uj. 

U4 = 4



Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.
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Cover 1 using (xj,1) with smallest Uj. 

Cover 2 using (xj,2) with smallest Uj. 

Cover 3 using (xj,3) with smallest Uj. U3 = 5

Cover 4 using (xj,4) with smallest Uj. 

U5 = 5



Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.
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Cover 1 using (xj,1) with smallest Uj. 

Cover 2 using (xj,2) with smallest Uj. 

Cover 3 using (xj,3) with smallest Uj. 

Cover 4 using (xj,4) with smallest Uj. 

U5 = 5

Cover 5 using (xj,5) with smallest Uj. 



Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.
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(Skip vertices on right that can’t be
covered.)  Now we are done.

Cover 1 using (xj,1) with smallest Uj. 

Cover 2 using (xj,2) with smallest Uj. 

Cover 3 using (xj,3) with smallest Uj. 

Cover 4 using (xj,4) with smallest Uj. 

Cover 5 using (xj,5) with smallest Uj. 



Bounds Consistency

• Now filter domains using max flow model as before.
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Reduced 
domains
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Domains



Cardinality Constraint

Network Flow Model
Domain Consistency
Nvalues Constraint
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Cardinality constraint

• The cardinality constraint limits the number of variables x1, …, xn
that take specified values.  

• Requires that  ℓi ≤ |{ j | xj = vi }| ≤ ui for  i = 1, …, m, where

v = (v1, …, vm), ℓ = (ℓ1, …, ℓm), and u = (u1, …, um).

• Also called generalized cardinality constraint or gcc .

• Cardinality can be filtered using optimality conditions for max flow, 
similar to alldiff .

( )1cardinality ( , , ), , ,nx x v u… ℓ
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Cardinality constraint

• Example.

• It has a solution if and only if there is a feasible flow:  

( )1 2 3 4cardinality ( , , , ),( , , ),(1,1,0),(2,3,2)x x x x a b c
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Cardinality constraint

• Example.

• It has a solution if and only if there is a max flow of 4:  

( )1 2 3 4cardinality ( , , , ),( , , ),(1,1,0),(2,3,2)x x x x a b c
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2

All other flows are 1

2

4



Cardinality constraint

• Example.

• Can x2 = c?  

( )1 2 3 4cardinality ( , , , ),( , , ),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial   Slide 193

Residual graph



Cardinality constraint

• Example.

• Can x2 = c?  Yes, because there is an augmenting path 
from x2 to c.  We cannot remove c from domain of x2.

( )1 2 3 4cardinality ( , , , ),( , , ),(1,1,0),(2,3,2)x x x x a b c
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Residual graph



Cardinality constraint

• Example.

• Can x2 = a?  No, because there is no augmenting path 
from x2 to a.  We can remove a from domain of x2.

( )1 2 3 4cardinality ( , , , ),( , , ),(1,1,0),(2,3,2)x x x x a b c
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Residual graph



Cardinality constraint

• Example.

• Can x2 = a?  No, because there is no augmenting path 
from x2 to a.  We can remove a from domain of x2.

• No other values can be removed.

( )1 2 3 4cardinality ( , , , ),( , , ),(1,1,0),(2,3,2)x x x x a b c
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Residual graph



Nvalues constraint

• The nvalues constraint limits the number of different values taken by 
variables x1, …, xn.  

• Requires that  ℓ ≤ |{x1, …, xn }| ≤ u

• Becomes alldiff when ℓ = u = n.

• Has a flow model similar to cardinality.

( )1nvalues ( , , ), ,nx x u… ℓ
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Sequence Constraint

Filtering Based on Cumulative Sums
Filtering Based on Network Flows
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Sequence constraint

• The sequence constraint limits the number of 1s in each sequence 
of q consecutive binary variables. 

• Requires that 

• There is a complete polytime filter (not obvious).

• Used in car sequencing and similar problems.
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1

, 1, , 1
j q

i
i j

y u j n q
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=

≤ ≤ = − +∑ℓ …

( )1sequence ( , , ), , ,ny y q u… ℓ



Sequence constraint

• Recall the car sequencing example.  
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1

, 1, , 1
j q

i
i j

x u j n q
+ −

=

≤ ≤ = − +∑ℓ …

( )
( )

1 7

1 7

sequence ( , , ),5,0,3

sequence ( , , ),3,0,1

y y

z z

…

…

yj = 1 for AC

zj = 1 for AC



Filtering based on cumulative sums

• We first show how to find a feasible solution for sequence.

• We will filter domains by “shaving,” i.e., removing domain 
elements one at a time and checking whether there is a feasible 
solution.

• Define the partial sum

• So  sequence(y,q,ℓ,u)  says  ℓ ≤ Sj − Sj−q ≤ u for  j = q,…,n.
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1
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i

S y
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• Example

• First set each yi to smallest value in its domain.
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums



• Example
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S4 − S0 ≥ 2



• Example
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S4 − S0 ≥ 2

So increase y4 and make 
adjustments to stay in domains.



• Example
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

So increase y4 and make 
adjustments to stay in domains.
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S5 − S1 ≤ 2

• Example



CP Tutorial   Slide 207

( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S5 − S1 ≤ 2

• Example

So increase y1 and 
make adjustments
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

So increase y1 and 
make adjustments

• Example
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

• Example

Violates S6 − S2 ≥ 2
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

So increase y6 and 
make adjustments

• Example

Violates S6 − S2 ≥ 2



• Example

• Check whether 1 can be removed from domain of x4.

• Remove the 1 and check for feasibility.
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( )1 6sequence ( , , ),4,2,2y y…

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

Filtering based on cumulative sums
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

Set each yi to smallest value in its domain.

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

Violates S5 − S1 ≤ 2

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

So increase y1 and 
make adjustments

Violates S5 − S1 ≤ 2
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

So increase y1 and 
make adjustments
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

Violates S4 − S0 ≤ 2
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

Cannot increase!

Violates S4 − S0 ≤ 2
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( )1 6sequence ( , , ),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 1, 0,10 1yy y y y y∈∈ ∈ ∈ ∈ ∈

Cannot increase!

Violates S4 − S0 ≤ 2

Problem is infeasible, so 
1 cannot be removed 

from domain of y4.



Filtering based on cumulative sums

• Theorem.  This method correctly checks for feasibility and runs in 
O(n2) time.

• So filtering requires O(n3) time (try removing each domain value).
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Generalized sequence constraint

• The same method works for the generalized sequence constraint .

• Each variable set Xi takes value 1 at least ℓ and at most ui times,
where  X = {x1,…,xn} = X1 ∪ ⋅⋅⋅ ∪ Xm.

• Standard sequence constraint is

where Xi = {xi,…,xi+q−1}.

• Filtering genSequence has same complexity as filtering 
sequence .
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( )1 1 1genSequence ( , , ),( , , ),( , , )m m mX X u u… ℓ … ℓ …

( )1 1genSequence ( , , ),( , , ),( , , )n qX X u u− +… ℓ… ℓ …



Filtering based on network flows

• Sequence can be formulated as an integer programming problem.

• Transpose of constraint matrix has consecutive 1s property .

• So feasibility can be checked in polytime.

• In fact, there is a network flow model.
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Filtering based on network flows

• Example.

• Integer programming formulation:
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( )1 7sequence ( , , ),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ



Filtering based on network flows

• Example.

• Integer programming formulation:

•

• Matrix form:

CP Tutorial   Slide 223

( )1 7sequence ( , , ),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ



Filtering based on network flows

• Example.

• Integer programming formulation:

• Matrix form:
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( )1 7sequence ( , , ),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Surplus variables



Filtering based on network flows

• Example.

• Integer programming formulation:

• Matrix form:
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( )1 7sequence ( , , ),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Slack variables



Filtering based on network flows

• Example.

• Integer programming formulation:

• Matrix form:
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( )1 7sequence ( , , ),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Transpose of matrix 
has consecutive 1s 
property.



Filtering based on network flows

• Row operations convert it to network flow matrix.
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Subtract 
each row 
from the 
next
(after 
adding row 
of 0s to the 
bottom)



Filtering based on network flows

• Corresponding network flow problem.
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Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n

y1

y2

y3



Filtering based on network flows

• Corresponding network flow problem.
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Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n
y4



Filtering based on network flows

• Corresponding network flow problem.
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Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n

y7

y5

y6



Filtering based on network flows

• Can now filter using optimality conditions for max flow
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Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n



Generalized sequence constraint

• The genSequence constraint may not have a network flow model.

• Can check in O(m + n + r) time whether rows can be permuted to 
yield a matrix whose transpose has the consecutive 1s property, in 
which case there is a network flow model.

• m x n = size of matrix, r = number of nonzeros in matrix.

• If not, can still check in O(mr) time if there is an equivalent 
network matrix.

• If not, can still check feasibility by linear programming.

• yi portion of matrix has consecutive 1s property, and 
remaining columns are ±unit vectors.

• So problem is totally unimodular, and LP has integral solution.
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Stretch Constraint

Filtering Based on Dynamic Programming
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Stretch constraint

• The stretch constraint controls the length of stretches (consecutive 
subsequences) of variables that take the same value.

• It also includes a pattern constraint , which restricts value 
changes from one variable to the next.

• Can be filtered using dynamic programming .
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Stretch constraint

• Example

• xi = shift worked on day i. 

• Stretch of shift a must contain 2 or 3 a’s, similarly for shift b and c.

• Can transition only between shifts a & b, or b & c.

• Domains:
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…



Stretch constraint

• Example

• There are 2 solutions.

• Solution 1:
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…



Stretch constraint

• Example

• There are 2 solutions.

• Solution 2:
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…



Stretch constraint

• In general,

• where x = (x1,…,xn), v = (v1,…,vm), ℓ = (ℓ1,…, ℓm), u = (u1,…,um).

• Requires that for i = 1,…,m,  any stretch of value vi has length in 
the interval  [ℓi,ui].

• A stretch is a maximal sequence of consecutive variables xi
that take the same value.

• Requires that (xi,xi+1) ∈ P, for all i.
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( )
{ }

stretch , , , ,

( , ) | ( , )j k

x v u P

P v v j k E= ∈

ℓ



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift)



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Transition
Possible transitions:
aa, aaa, bb, bbb, cc, ccc



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Transition
Possible transitions:
aa, aaa, bb, bbb, cc, ccc

Stage of the recursion



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Transition

Stage of the recursion

Must terminate 
on day 7



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate 
on day 7

Solution:  aabbaaa



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate 
on day 7

Solution:  ccbbaaa



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate 
on day 7

Projection onto x1, x2 (days 1, 2) = {a,c}



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate 
on day 7

Projection onto x3, x4 (days 3,4) = {b}



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate 
on day 7

Projection onto x5, x6, x7 (days 5,6,7) = {a}



Filter based on dynamic programming

• Example
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( )
{ }

1 7stretch ( , , ),( , , ),(2,2,2),(3,3,3),

( , ),( , ),( , ),( , )

x x a b c P

P a b b a b c c b=
…

Original domains

Filtered domains



Filter based on dynamic programming

• The filter is complete (achieves domain consistency).

• There is a clever way to speed up the dynamic programming 
algorithm.

• Too complicated to present here.
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Stretch-cycle

• The stretch-cycle constraint applies to a cycle rather than a linear 
sequence.

• Useful for cyclic schedules (e.g., same schedule every week).

• Dynamic programming filter can be modified for stretch-cycle .
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Regular Constraint

Finite Automaton Model
Filtering Based on Dynamic Programming
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Regular Constraint

• Based on regular expressions in Chomsky hierarchy.

• Deals with any sequencing constraint that can be captured by a 
deterministic finite automaton .

• …or by a regular expression.

• Used in sequencing and scheduling problems.

• More general than stretch .

• Also filtered by dynamic programming.

• Or by decomposition
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Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Initial state

Absorbing states 
in circles.
State labels are 
arbitrary.

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: a

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aa

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aab

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example

CP Tutorial   Slide 257

Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aabb

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aabba

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aabbaa

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aabbaaa

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Deterministic 
finite automaton

Absorbing states 
in circles.
State labels are 
arbitrary.

2 solutions of length 7

Solution 1: aabbaaa
Solution 2: ccbbaaa

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example
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Regular expression:

Kleene star 
(repeat 0 or more times)

(( * *)* | ( * *)*) * ( | * | *)aaa bbb ccc bbb aaa cccε

Empty string

( )1 7regular ( , , ),x x A…



Regular constraint

• Use same stretch example

CP Tutorial   Slide 263

Regular expression:

Kleene star 
(repeat 0 or more times)

(( * *)* | ( * *)*) * ( | * | *)aaa bbb ccc bbb aaa cccε

Empty string

( )1 7regular ( , , ),x x A…

Solutions:  aabbaaa, ccbbaaa



Filtering by dynamic programming

• Use same stretch example
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( )1 7regular ( , , ),x x A…

Stage (day)



Absorbing 
state

Filtering by dynamic programming

• Use same stretch example
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( )1 7regular ( , , ),x x A…

Solution 1

Not an 
absorbing 

state



Filtering by dynamic programming

• Use same stretch example
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( )1 7regular ( , , ),x x A…

Solution 2

Not an 
absorbing 

state

Absorbing 
state



Filtering by dynamic programming

• Use same stretch example
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( )1 7regular ( , , ),x x A…

Original 
domains

Filtered domains (projections onto each variable)



Filtering by dynamic programming

• Use same stretch example

CP Tutorial   Slide 268

( )1 7regular ( , , ),x x A…

Stage (day)

Compare with 
DP model 
for stretch



Dynamic programming model

• Alternative:  Formulate the
problem as dynamic 
programming from the start.
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Filtering by decomposition

• Recursive equations:

• where ti+1() are transition functions, si is state variable.

• Propagate these equations in 2 passes (forward and backward).

• This achieves domain consistency because constraint hypergraph 
is Berge acyclic.

• Based on a result from database theory.

• Filtering by decomposition is an active research area iln CP.
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( )1 1 , , 1, ,7i i i is t s x i+ += = …

Constraint 
hypergraph



Cyclic regular constraint

• The regular-cycle constraint is filtered by using an additional state 
variable to indicate the first control.
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Example problem is infeasible.

First control was c.  

No absorbing 
state in last 
stage 
(= stage 1)

Must go to 
stage 9 with 
control a.



Disjunctive Scheduling

Edge Finding
Not-first/Not-last Rules
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Disjunctive scheduling

• Disjunctive scheduling assigns start times to jobs so that they do 
not overlap.

• Also known as single machine scheduling problem

• Jobs have release times and deadlines

• There may be precedence constraints

• Various objective functions

• Makespan, number of late jobs, total tardiness, etc.

• Filtering is well developed.

• Edge finding (old OR technique by Carlier and Pinson)

• Not-first/not-last rules
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Disjunctive scheduling

Consider a disjunctive scheduling constraint:

Start time variables

( )1 2 3 5 1 2 3 5noOverlap ( , , , ),( , , , )s s s s p p p p

CP Tutorial   Slide 274



Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

Processing times

( )1 2 3 5 1 2 3 5noOverlap ( , , , ),( , , , )s s s s p p p p
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

( )1 2 3 5 1 2 3 5noOverlap ( , , , ),( , , , )s s s s p p p p

Variable domains defined by time 
windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

∈ −
∈ −
∈ −
∈ −
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Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

A feasible (min makespan) solution:

Time window

( )1 2 3 5 1 2 3 5noOverlap ( , , , ),( , , , )s s s s p p p p
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Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:
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Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding 
to prove that there is no 
feasible schedule.
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

Latest deadline

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

Earliest release time

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3 
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

Total processing time

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

So we can tighten deadline of job 2 to minimum of 

{3} {3} 4L p− =

Since time window of job 2 is now too narrow, there is no 
feasible schedule.

{5} {5} 5L p− = {3,5} {3,5} 2L p− =

L{2,3,5}E{3,5}
7<3+3+2
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Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 
in set J: k J≪
If there is not enough time for all the jobs after the earliest 
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <
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Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs 
in set J: k J≪
If there is not enough time for all the jobs after the earliest 
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

Now we can tighten the deadline for job k to:

{ }min J JJ J
L p′ ′′⊂

− {3,5} {3,5} 2L p− =
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Edge finding for disjunctive scheduling

There is a symmetric rule: k J≫

If there is not enough time for all the jobs before the latest 
deadline of the jobs in J:

{ } { }J J k J kL E p∪ ∪− <

Now we can tighten the release date for job k to:

{ }max J JJ J
E p′ ′′⊂

+
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Edge finding for disjunctive scheduling

Problem:  how can we avoid enumerating all subsets J of jobs 
to find edges?

{ } { }J k J J kL E p∪ ∪− <

…and all subsets J′ of J to tighten the bounds?

{ }min J JJ J
L p′ ′′⊂

−
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time windows 
lie within some interval between release times/deadlines

e.g., J = {3,5}
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time windows 
lie within some interval between release times/deadlines.

Removing a job from those within an interval only weakens the 
test

{ } { }J k J J kL E p∪ ∪− <

There are a polynomial number of intervals 
defined by release times and deadlines.

e.g., J = {3,5}
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Edge finding for disjunctive scheduling

Key result:  We only have to consider sets J whose time windows 
lie within some interval between release times/deadlines.

Note:  Edge finding does not achieve bounds consistency, 
which is an NP-hard problem.

e.g., J = {3,5}
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Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 
schedule (JPS).  Using a different example, the JPS is:
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Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive 
schedule (JPS).  Using a different example, the JPS is:

For each job 

Scan jobs  in decreasing order of 

Select first  for which 

Conclude that 

Update  to JPS( , )

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k

∈
− < +

≫

Jobs unfinished at time Ei in JPS

Jobs j ≠ i in Ji with Lj ≤ Lk

Latest completion time in JPS of jobs in Jik

Total remaining processing 
time in JPS of jobs in Jik
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p− < + +

( )4 {1,2}¬ ≪

Because if job 4 is first, there is too little time to complete the 
jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p+ =

( )4 {1,2}¬ ≪
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Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4

2 2 4E p+ =

( )4 {1,2}¬ ≪
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Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 
jobs in J:

J k JL E p− <

( )k J¬ ≪

if there is too little time after release time of job k to complete 
all jobs before the latest deadline in J:

Now we can update Ei to 

{ }min j jj J
E p

∈
+
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Not-first/not-last rules

In general, we can deduce that job k cannot precede all the 
jobs in J:

J k JL E p− <

( )k J¬ ≪

if there is too little time after release time of job k to complete 
all jobs before the latest deadline in J:

Now we can update Ei to 

{ }min j jj J
E p

∈
+

There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an 
efficient algorithm is quite complicated.
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Cumulative Scheduling

Edge Finding
Extended Edge Finding
Not-first/Not-last Rules
Energetic Reasoning
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Cumulative scheduling

• Cumulative scheduling assigns start times to jobs so that total rate 
of resource consumption is within a limit.

• A form of resource-constrained scheduling

• Several jobs can run simultaneously

• Multiple-machine scheduling problem is special case

• Resource consumption rate is 1 for each job, resource limit is 
number of machines

• Filtering is well developed.

• Edge finding 

• Extended edge finding

• Not-first/not-last rules

• Energetic reasoning
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Cumulative scheduling

Consider a cumulative scheduling constraint:

( )1 2 3 1 2 3 1 2 3cumulative ( , , ),( , , ),( , , ),s s s p p p c c c C

A feasible solution:
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Suppose that job 3 is not the last to finish.

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8
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Suppose that job 3 is not the last to finish.



Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between 
the earliest release time and the later deadline of jobs 1,2:

( )3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy 
required = 22

9

5

8Area available 
= 20
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime

= 10

10
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

( )( )Je C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime 

= 10

10Excess energy 
required by jobs 

1,2 = 4

4
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Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

{ } 3 {1,2} {1,2}12

{1,2}
3

( )( )e C c L E
E

c

− − −
+

Energy available 
for jobs 1,2 if 

space is left for job 
3 to start anytime 

= 10

10Excess energy 
required by jobs 

1,2 = 4

4 Move up job 3 
release time 
4/2 = 2 units 
beyond E{1,2}

E3
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Edge finding for cumulative scheduling

In general, if ( ){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to 

( )( ) 0

( )( )
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+ 

 

In general, if ( ){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to 

( )( ) 0

( )( )
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
− 

 
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Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the 
edge finding rules.
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Extended edge finding

Useful when a job with an early release time must finish after 
other jobs.

Ordinary edge finding may not detect this situation.
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Extended edge finding

Consider the problem:

A feasible solution is shown.
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Time window



Extended edge finding

Consider the problem:

Job 4 must finish after the others:  4 > {1,2,3}.
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Extended edge finding

Consider the problem:

Job 4 must finish after the others:  4 > {1,2,3}.

Edge finding does not deduce this:
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required = 14



Extended edge finding

Consider the problem:

Job 4 must finish after the others:  4 > {1,2,3}.

Edge finding does not deduce this:
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{ } { } { }( )4 123 123 1234e e C L E+ ≤ ⋅ −

4 4

3 3
Total energy 
required = 14

Area available 
= 14



Extended edge finding

Suppose that job 4 does not finish last.  We will prove a 
contradiction.
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Extended edge finding

Note that job 4 has an earlier release time than the other jobs 
but can’t finish before the earliest release time of the other 
jobs:
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{ }4 4 4123E E E p≤ < +

E4 E4+p4E{123} L{123}



Extended edge finding

This area…
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E4 E4+p4E{123} L{123}

Area available 
= 12



Extended edge finding

This area must contain jobs 1,2,3…
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E4 E4+p4E{123} L{123}

4

3 3

Area available 
= 12

Total energy 
required = 10 +



Extended edge finding

This area must contain jobs 1,2,3 plus portion of job 4 that 
must run after E{123}: 
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E4 E4+p4E{123} L{123}

4

3 3
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Area available 
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Total energy 
required = 10 + 3

3



Extended edge finding

This area must contain jobs 1,2,3 plus portion of job 4 that 
must run after E{123}: 
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E4 E4+p4E{123} L{123}

4

3 3
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Area available 
= 12

Total energy 
required = 10 + 3

3

{ } { }( ) { } { }( )4 4 4123 123 123 1232e c E p E L E+ + − > ⋅ −



Extended edge finding

We conclude that job 4 finishes after 1,2,3 finish:  4 > {123}.
Update bound E4 as before.
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Energy for jobs 
1,2,3 if space is 

left for job 4 
= 10 10

Excess energy 
required by jobs 

1,2,3 = 4

4

Move up job 4 
release time 
4/1 = 4 units 
beyond E{123}

{ } 4 {123} {123}123

{123}
4

( )( )e C c L E
E

c

− − −
+



Edge finding for cumulative scheduling

In general, if k J k kE E E p≤ < +

then i > J, and update Ek to 

( )( ) 0

( )( )
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+ 

 

Similarly for proving k < J.

CP Tutorial   Slide 322

and  ( ) ( ),J k k k J J Je c E p E C L E+ + − > ⋅ −



Not-first/not-last rules

These rules deduce

as in  disjunctive scheduling.  That is, job k starts after some 
job in J finishes.

A feasible solution is shown.

CP Tutorial   Slide 323

( )k J¬ ≪



Not-first/not-last rules

Consider the problem:

A feasible solution is shown.
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Not-first/not-last rules

Job 3 must start after some job in {1,2} finishes (namely, job 2).
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Not-first/not-last rules

Job 3 must start after some job in {1,2} finishes (namely, job 2).

So E3 can be updated to 3.
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Not-first/not-last rules

Let’s first try to update E3 using edge finding.
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Total energy 
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9

5

8

6

E123 L12



Not-first/not-last rules

Let’s first try to update E3 using edge finding.

Cannot prove 3 > {1,2}.
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E123

Total energy 
required = 23

9

5

8Area available 
= 24

L12

6



Not-first/not-last rules

Cannot apply extended edge finding to show 3 > {1,2}

We don’t have E3 ≤ E{12}
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E3E12



Not-first/not-last rules

So we use not-first/not-last rule.

Note that E{12} ≤ E3 < F{12}
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E3E12 F12

Minimum earliest finish time
= min {E1 + p1, E2 + p2}



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.
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E3E12 F12

t t + 4

Start and end of job 3



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.
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E3E12 F12

t

Resource 
consumption 2 of 
job 3 cannot be 
used during this 

period

2

t + 4



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

CP Tutorial   Slide 333

E3E12 F12

t t + 4

Total energy 
required between 
E12 and L12 is… 

L12

Resource 
consumption 2 of 
job 3 cannot be 
used during this 

period



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + … 

L12

9

6

{ }12e +

Resource 
consumption 2 of 
job 3 cannot be 
used during this 

period



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − t)

+ … 

L12

9

6

{ } { }{ }( )3 312 12min ,e c t p L t+ + −

8

Resource 
consumption 2 of 
job 3 cannot be 
used during this 

period



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t

Resource 
consumption 2 of 
job 3 cannot be 
used during this 

period t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − t)

+ 2⋅(t − 0)

L12

9

6

{ } { }{ }( ) { }( )3 3 312 12 12min ,e c t p L t c t E+ + − + −

8



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t

This expression 
simplifies…

t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − t)

+ 2⋅(t − 0)

L12

{ } { }{ }( ) { }( )3 3 312 12 12min ,e c t p L t c t E+ + − + −

9

6

84



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t

This expression 
simplifies…

t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

L12

{ } { }{ } { }( )3 312 12 12min ,e c t p L E+ + −

9

6

84



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t

Because t ≥ E3, 
we have…

t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

L12

{ } { }{ } { }( )3 312 12 12min ,e c t p L E+ + −

9

6

84



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t

Because t ≥ E3, 
we have…

t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

≥ 6 + 9 + 2⋅(min{0 + 4,6} − 0) 

L12

{ } { }{ } { }( )3 3 312 12 12min ,e c E p L E≥ + + −

9

6

84



Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12.  We will 
derive a contradiction.

E3E12 F12

t

Available energy 
is 4⋅6 = 24

t + 4

Total energy 
required between 

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

≥ 6 + 9 + 2⋅(min{1 + 4,6} − 0)
=  25

L12

{ } { }{ } { }( ) { } { }( )3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

9

6

84



Not-first/not-last rules

We conclude that job 3 cannot start before F12.  

E3E12 F12 L12

{ } { }{ } { }( ) { } { }( )3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −



Not-first/not-last rules

E3

E12 F12 L12

Update E3 to F12 = 3

{ } { }{ } { }( ) { } { }( )3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

We conclude that job 3 cannot start before F12.  



Not-first/not-last rules

{ } { }{ } { }( ) { } { }( )3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

In general,

J k JE E F≤ <If

and { }( ) ( )min ,J k k k J J J Je c E p L E C L E+ + − > ⋅ −

then ( )k J¬ ≪

and we update Ek to FJ.



Energetic reasoning

Choose an interval [t1,t2]

t1 t2
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Energetic reasoning

Left shift job 2 (move it as far left as possible).

t1 t2
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Energetic reasoning

Overlap area is 6.

t1 t2

CP Tutorial   Slide 347



Right shift job 2 (move it as far right as possible).

t1 t2

Energetic reasoning
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Overlap area is 9

t1 t2

Energetic reasoning

CP Tutorial   Slide 349



Job 2 must use at least min{6,9} energy inside the interval [t1,t2]

t1 t2

6

Energetic reasoning

CP Tutorial   Slide 350



Do the same for job 3.

t1 t2

6

4

Energetic reasoning
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And job 1.

t1 t2

6

4

1

Energetic reasoning
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Area required in the interval [t1,t2] is 6 + 4 + 4 = 14.  
Area available is 16.  So we are OK.

t1 t2

6

4

4

Energetic reasoning
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Energetic reasoning

Energy required in the interval [t1,t2] is 6 + 4 + 4 = 14.  
Area available is 16.  So we are OK.

t1 t2

6

4

4

If energy required > area available, problem is infeasible.
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Energetic reasoning 

t1 t2

6

4

4

Similar principle can be used to update bounds.

Energy required in the interval [t1,t2] is 6 + 4 + 4 = 14.  
Area available is 16.  So we are OK.
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Energetic reasoning

Theorem .  It suffices to check pairs (t1,t2) in the union of sets
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The SAT Problem

Propositional Logic
Conversion to CNF

Unit Resolution
DPLL

Implication Graph
Backdoors and Branching
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Propositional Satisfiability Problem

• A general approach to constraint solving when variables are 
discrete.

• First reduce the problem to SAT.

• Then solve it using a SAT solver.

• The solvers are highly engineered and extremely fast .
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SAT Solvers

• A SAT competition is held regularly.

• About 50 solvers compete.

• Most solvers evolved from DPLL 

• Davis-Putnam-Loveland-Logemann algorithm

• …and use CDCL (conflict-directed clause learning).

• Breakthrough solver was CHAFF.

• A popular open-source solver is MiniSAT.
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SAT and CP
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SAT 
community

CP
community

• Similarities:

• Focus on logical 
inference.

• Use of branching and 
propagation.

• Difference:

• SAT doesn’t use global constraints.

• SAT uses atomistic modeling, like mixed integer 
programming.

• CP learned problem-solving ideas from SAT.



Propositional Logic

• Propositional formulas connect boolean variables with and , 
or , not , implies , etc.

• There are no quantifiers.
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is a formula, where  is a boolean variable

is a formula (  or ), where  and  are formulas

is a formula (  and )

is a formula (not )

is a formula defined as  (material implication)

j jx x

A B A B

A B

A B

A B

A

A B A B

A B

A

∨
∧

→ ∨
≡ is a formula define ( ) (s )d a  A B B A→ ∧ →



Propositional Logic

• A formula in conjunctive normal form (CNF) is a 
conjunction of clauses.

• A literal is        or

• A clause is a disjunction of literals, e.g.

• Example of CNF:
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jx jx

1 2 3x x x∨ ∨

1 3 2 1 2 3( ) ( ) ( )x x x x x x∨ ∧ ∨ ∧ ∨



Propositional Logic

• The SAT problem is to satisfy a formula in CNF.

• That is, assign truth values (0 or 1) to the variables to 
make the formula true.
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Propositional Logic

• The SAT problem is to satisfy a formula in CNF.

• That is, assign truth values (0 or 1) to the variables to 
make the formula true.

• Some problems already have logical form

• Circuit verification.

• Product configuration.

• These can be converted to CNF and solved as SAT 
problems.

• Most problems must be rewritten in logical form.
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Propositional Logic

• Converting a problem to CNF is a key element of 
SAT-based problem solving.

• General syntactic methods.

• General semantic methods.

• Problem-specific methods (growing literature).
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Conversion to CNF

• Syntactic rules for converting a propositional formula to CNF.

• These are useful if we already know how to write the 
constraints as a propositional formula.

CP Tutorial   Slide 366

De Morgan's law

De Morgan

( )

( )

( (

's law

distribution)) (( ) ( ))

A B A B

A B A B

A B C A B B C

∨ ≡ ∧

∧ ≡ ∨
∨ ∧ ≡ ∨ ∧ ∨



Conversion to CNF

• Example
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1 2 1 3

1 2 1 3

1 1 1 3 2 1 2 3

1 3 2 1 2 3

( ) ( )

( ) ( )

( ) ( ) ( ) (

De Morgan

distribution

remove tautol

)

( ) ( ) ) o y( g

x x x x

x x x x

x x x x x x x x

x x x x x x

∨ ∨ ∧
≡ ∧ ∨ ∧
≡ ∨ ∧ ∨ ∧ ∨ ∧ ∨
≡ ∨ ∧ ∨ ∧ ∨



Conversion to CNF

• Another example: Hiring problem

• A company must hire some staff to complete a task and 
has workers 1, …, 6 to choose from.

• Workers 3 and 4 are temporary workers.
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1 5 6

6 1 5

5 2 6

5 6 2

Must hire at least 1 of workers 1,5,6

Cannot hire 6 unless it hires 1 or 5

Cannot hire 5 unless it hires 2 or 6

Must hire 2 if it hires 5 and 

( )

( )

( )6.

Must hire a temporary

x x x

x x x

x x x

x x x

∨ ∨
→ ∨
→ ∨
∧ →

1 2 3 4

3 4 1 2

 worker if 1 or 2

Can hire neither 1 nor 2 if a temp worker

( ) ( )

( ) ( )

x x x x

x x x x

∨ → ∨
∨ → ∧



Conversion to CNF

• Another example:  Hiring problem

• A company must hire some staff to complete a task and 
has workers 1, …, 6 to choose from.

• Workers 3 and 4 are temporary workers.
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1 5 6

6 1 5

5 2 6

5 6 2

Must hire at least 1 of workers 1,5,6

Cannot hire 6 unless it hires 1 or 5

Cannot hire 5 unless it hires 2 or 6

Must hire 2 if it hires 5 and 

( )

( )

( )6.

Must hire a temporary

x x x

x x x

x x x

x x x

∨ ∨
→ ∨
→ ∨
∧ →

1 2 3 4

3 4 1 2

 worker if 1 or 2

Can hire neither 1 nor 2 if a temp worker

( ) ( )

( ) ( )

x x x x

x x x x

∨ → ∨
∨ → ∧



Conversion to CNF

• This is easily converted to CNF.
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1 5 6 1 5 6

6 1 5 6 1 5

5 2 6 5 2 6

5 6 2 5 2 6 2

1 2 3 4 1 3 4 2 3 4

3 4 1 2 3 1 3 2 4 1 4 2

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

x x x x x x

x x x x x x

x x x x x x

x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

∨ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
∧ → ≡ ∨ ∧ ∨
∨ → ∨ ≡ ∨ ∨ ∧ ∨ ∨
∨ → ∧ ≡ ∨ ∧ ∨ ∧ ∨ ∧ ∨



Conversion to CNF

• However, this method can require exponential time and space.

• For example,

converts to a conjunction of 2n clauses of the form

where each Fj is xj or yj.
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1 2( ) ( )n nx y x y∨ ∨ ∨ ∨⋯

1 nF F∨ ∨⋯



Conversion to CNF

• To avoid exponential blowup, lift into higher dimensional space.

• Rather than distribute F ∨ G, replace it with

where z1, z2 are new variables. 
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1 2 1 2( ) ( ) ( )z z z F z G∨ ∧ ∨ ∧ ∨



Conversion to CNF

• To avoid exponential blowup, lift into higher dimensional space.

• Rather than distribute F ∨ G, replace it with

where z1, z2 are new variables. 

• For example,

converts to the CNF formula

This requires linear time and space.
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1 2 1 2( ) ( ) ( )z z z F z G∨ ∧ ∨ ∧ ∨

1 2( ) ( )n nx y x y∨ ∨ ∨ ∨⋯

1
1

( ) ( ) ( )
n

n j j j j
j

z z z x z y
=

∨ ∨ ∧ ∨ ∧ ∨Λ⋯



Conversion to CNF

• Semantic conversion can be used whenever a truth table is 
available.

• However, it is exponential in time and space.
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Conversion to CNF

• Semantic conversion can be used whenever a truth table is 
available.

• However, it is exponential in time and space.

• Example:  The buildings assigned to the block on the left must fit:
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1

2
3 4



Conversion to CNF

• Let xi = 1 (true) when building i is 
assigned to the block.
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1

2
3 4

1 2 3 4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1

1

1

1

1

1

1

0

1

0

0

0

1

1 1 0 1

1 1 1 0

0

0

1 1 1 01

x x x x

Truth table:



Conversion to CNF

• Each false entry generates a clause
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1 2 3 4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1

1

1

1

1

1

1

0

1

0

0

0

1

1 1 0 1

1 1 1 0

0

0

1 1 1 01

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

1 2 3 4x x x x∧ ∧ ∧

This says 
(x1,x2,x3,x4) 
≠ (0,1,1,1), 

or



Conversion to CNF

• Each false entry generates a clause
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1 2 3 4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1

1

1

1

1

1

1

0

1

0

0

0

1

1 1 0 1

1 1 1 0

0

0

1 1 1 01

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

1 2 3 4x x x x∧ ∧ ∧

This says 
(x1,x2,x3,x4) 
≠ (0,1,1,1), 

or

We will simplify this later.



• Problem specific conversion to CNF.

• Sometimes, constraints in binary variables are easy to 
covert to CNF.

• Example:  Airline crew rostering

• Assign rosters (sequences of flights) to crews.

• Each crew gets exactly one roster.

• Each flight is staffed by at least one crew.
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Conversion to CNF



• Small problem instance:  2 crews and 4 rosters.

• Each s-t path below is a feasible sequence of flights 
(roster) for a crew.

• Namely, 135, 146, 235, 246.
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Flight number

Conversion to CNF



• Small problem instance:  2 crews and 4 rosters.

• Rosters: 135, 146, 235, 246.

• Let xij = 1 when crew i is assigned to roster j.

• Two types of constraints:

• Each crew is assigned exactly one roster.

• Each flight is covered by at least one crew.
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Conversion to CNF



• Small problem instance:  2 crews and 4 rosters.

• Rosters: 135, 146, 235, 246.

• Let xij = 1 when crew i is assigned to roster j.

• Each crew is assigned exactly one roster.

• Exactly one of xi1, xi2, xi3, xi4 is true for each crew i.
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11 11 11 14

11 12

11 13

11 14

12 13

12 14

13 14

x x x x

x x

x x

x x

x x

x x

x x

∨ ∨ ∨
∨
∨
∨
∨
∨
∨

21 21 21 24

21 22

21 23

21 24

22 23

22 24

23 24

x x x x

x x

x x

x x

x x

x x

x x

∨ ∨ ∨
∨
∨
∨
∨
∨
∨

Conversion to CNF



• Small problem instance:  2 crews and 4 rosters.

• Rosters: 135, 146, 235, 246.

• Let xij = 1 when crew i is assigned to roster j.

• Each flight is covered by at least one crew:
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11 12 21 22

13 14 23 24

11 13 21 23

12 14 22 24

11 13 21 23

12 14 22 24

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

Flight 1 is in 
rosters 1 and 2

Flight 2 is in 
rosters 3 and 4

Conversion to CNF



• Many problems are hard to encode in SAT.

• Such as problems that include quantities.
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Conversion to CNF



• Many problems are hard to encode in SAT.

• Such as problems that include quantities.

• Example:

• The 0-1 knapsack inequality 

translates to 117,520 clauses.
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0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

300 300 285 285 265 265 230 230 190 200

400 200 400 200 400 200 400 200 400 2701

x x x x x x x x x x

x x x x x x x x x

+ + + + + + + + + +
+ + + + + + + + ≥

Conversion to CNF



Resolution Method

• Resolution is a simple but complete inference method for 
clauses.  

• Provably exponential (very hard proof).

• Far too slow in practice to solve problems, but it has 
practical applications for simplifying expressions.

• Invented by W. V. Quine in 1950s (“consensus” for DNF).

• Achieves domain and k-consistency for CNF.
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Resolution Method

• Resolution is a simple but complete inference method for 
clauses.  

• Provably exponential (very hard proof).

• Far too slow in practice to solve problems, but it has 
practical applications for simplifying expressions.

• Invented by W. V. Quine in 1950s (“consensus” for DNF).

• Achieves domain and k-consistency for CNF.

• Important special cases:

• Unit resolution

• Linear-time propagation method

• Parallel resolution
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Resolution Method

• Resolution generates resolvents recursively.

• Clause set is unsatisfiable if empty clause results.

• If absorbed clauses removed, this generates all prime 
implications.

• = strongest possible implications.
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1 2 3

1 2

2 3 4

4

x x x

x x x

x x x

∨
∨

∨
∨

∨

∨

Resolvent, obtained by 
resolving on x1

Must be no other sign 
changes between clauses.



Resolution Method

• Example of refutation
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1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨



Resolution Method

• Example of refutation
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Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨



Resolution Method

• Example of refutation
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Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1 2

1 2

1

x x

x x

x

∨
∨

Absorb



Resolution Method

• Example of refutation
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Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Absorb

Resolve



Resolution Method

• Example of refutation
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Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Absorb

Resolve

1

1

x

x

Absorb



Resolution Method

• Example of refutation
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Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1

1

x

x

∅
Absorb

Absorb
Resolve

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Resolve

1

1

x

x



Resolution Method

• Example of refutation
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Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

∅
Absorb

Resolve Absorb

1

1

x

x

∅Absorb

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Resolve

1

1

x

x



1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

Resolution Method

• Example of prime implications

• Simplify CNF expression 
derived earlier
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simplifies to

1 3

1 4

2 3 4

x x

x x

x x x

∨
∨
∨ ∨

Prime implications



1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

Resolution Method

• Example of prime implications

• Simplify CNF expression 
derived earlier
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Projection onto each xi is {0,1}, 
because resolution fixes no variables.  
So the problem is domain consistent 
without reducing the domains {0,1}.

simplifies to

1 3

1 4

2 3 4

x x

x x

x x x

∨
∨
∨ ∨

Prime implications



Resolution Method

• Parallel resolution resolves only on the last variable in each 
clause.
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1 2 3

1 2

1 2

3

x x x

x x

x

x

x

∨ ∨
∨
∨

∨
Parallel 

resolvent

1 2 3

1 2 3

x x x

x x x

∨ ∨
∨ ∨

No parallel 
resolvent



Resolution Method

• Parallel absorption will be used with parallel resolution.

• Clause C parallel-absorbs D if: C is the empty clause, 
C = D, or the last literal of C occurs before last in D. 
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1 2 3

1 2

1 2

3

x x x

x x

x

x

x

∨ ∨
∨
∨

∨
The parallel resolvent 
parallel-absorbs both 
parents because x2
occurs before last in both.



Unit Resolution

• In unit resolution, at least one parent clause must be a unit 
clause (contains only 1 literal).

• Runs in linear time.

• Very efficient using watched literals .
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Unit Resolution

• Example:
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1

2

1 3

1 2 3 4

1 2 3 4 5

2 3 5

x

x

x x

x x x x

x x x x x

x x x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨



Unit Resolution

• Example:
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1

1

1

1

2

3

2 3 4

2 3 4 5

2 3 5

x

x

x x x

x x x x

x

x

x

x x x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨



Unit Resolution

• Example:
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1

1

1

1

2

3

2 3 4

2 3 4 5

2 3 5

x

x

x x x

x x x x

x

x

x

x x x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

2

3

2 3 4

2 3 4 5

2 3 5

x

x

x x x

x x x x

x x x

∨
∨ ∨
∨ ∨ ∨
∨ ∨



Unit Resolution

• Example:
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2

2

2

2

3

3 4

3 4 5

3 5

x

x x

x

x

x

x

x

x x

x x

∨
∨ ∨
∨ ∨ ∨
∨ ∨



Unit Resolution

• Example:
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2

2

2

2

3

3 4

3 4 5

3 5

x

x x

x

x

x

x

x

x x

x x

∨
∨ ∨
∨ ∨ ∨
∨ ∨

3

3 4

3 4 5

3 5

x

x x

x x x

x x

∨
∨ ∨

∨



Unit Resolution

• Example:
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3

3

3

3

4

4 5

5

x

x

x

x

x

x

x

x

∨
∨ ∨

∨



Unit Resolution

• Example:
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3

3

3

3

4

4 5

5

x

x

x

x

x

x

x

x

∨
∨ ∨

∨

4

4 5

5

x

x x

x

∨



Unit Resolution

• Example:
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4

4 5

5

x

x x

x

∨



Unit Resolution

• Example:
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4

4 5

5

x

x x

x

∨∅



Unit Resolution

• Now use watched literals.
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1

2

1 3

1 2 3 4

1 2 3 4 5

2 3 5

( )

( )

( )

( )

( )

( )

x a

x b

x x c

x x x x d

x x x x x e

x x x f

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨



Unit Resolution

• Now use watched literals.
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1

2

3 4

1 2 5

1 3

1 2

3 4

2 53

( )

( )

( )

( )

( )

( )

x a

x b

c

x x d

x x

x x

x x x e

x

x

x f

x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Arbitrarily select 2 watched literals 
in each clause



Unit Resolution

• Now use watched literals.
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1

2

3 4

1 2 5

1 3

1 2

3 4

2 53

( )

( )

( )

( )

( )

( )

x a

x b

c

x x d

x x

x x

x x x e

x

x

x f

x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Arbitrarily select 2 watched literals 
in each clause.

If unit resolution reduces a clause 
to a single literal, it must at some 
point fix one of the watched 
literals. 

So it suffices to examine a clause 
only when one of its watched 
literals is fixed.



Unit Resolution

• Now use watched literals.
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3 4

1 2

1

2

1 3

1 2

3 4

2 5

5

3

( )

( )

( )

( )

( )

( )

a

b

c

x x d

x x x e

x

x

x x

x x

x x

x x fx

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨
1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−

Keep list of watched literals:



Unit Resolution

• Now use watched literals.
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3 4

1 2

2

1 3

1 2

3 4

2 5

5

3

1 ( )

( )

( )

( )

( )

( )

a

b

c

x x d

x x x e

x

x x

x x

x x

x x

x

x f

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

To resolve on x1, examine only the 
clauses in which      is a watched literal 
(enormous savings).

For absorption, check clauses in which 
x1 is a watched literal (none here)

1x

1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−



Unit Resolution

• Now use watched literals.
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3

1

2

3

2 4

2 53

2 5

1

3

4

( )

( )

( )

( )

( )

( )

x

x

x x

x x

x x

a

b

c

x d

x x x e

x f

x

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Arbitrarily select a new watched 
literal in clause d.

1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−



Unit Resolution

• Now use watched literals.

CP Tutorial   Slide 416

3

1 2 5

2

3

2 4

3

3 4

2 5

( )

( )

( )

( )

( )

( )

x

x

x x

x x

a

b

c

x d

x

x

e

x x

x x

f

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

1x

Keep list of fixed variables:

1x

1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

,

x

x d f

x c

x d

x

−
−
−
−
−

1

2

3

4

5

x

x b

x e

x e

x f

−
−
−
−
−

Update list of watched literals:

1x

Keep list of fixed variables:

1x

3

1 2 5

2

3

2 4

3

3 4

2 5

( )

( )

( )

( )

( )

( )

x

x

x x

x x

a

b

c

x d

x

x

e

x x

x x

f

∨ ∨
∨ ∨ ∨ ∨

∨ ∨



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

,

x

x d f

x c

x d

x

−
−
−
−
−

1

2

3

4

5

x

x b

x e

x e

x f

−
−
−
−
−

1x

3

1 2 5

3

2 4

32 5

2

3 4

( )

( )

( )

( )

( )

( )

x

x x

x x

x x

a

b

c

x d

x x x e

x f

x

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Keep list of fixed variables:

1x

Resolve on x2



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

x

x

x c

x d

x

−
−
−
−
−

1

2

3

4

5

, ,

x

x

x d e f

x e

x f

−
−
−
−
−

3

3 4

3 4

3 5

1 2 5

( )

( )

( )

( )

( )

( )

a

b

c

d

x x

x

x x

x x

x x

x e

f

∨
∨ ∨ ∨ ∨

∨

Keep list of fixed variables:

1 2,x x

Resolve on x2

Update list of watched literals:



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

x

x

x c

x d

x

−
−
−
−
−

1

2

3

4

5

, ,

x

x

x d e f

x e

x f

−
−
−
−
−

3 4

3 4

3 5

1 2

3

5

( )

( )

( )

( )

( )

( )

a

b

c

d

x x

x x

x x

x

x

e

x

x

f

∨
∨ ∨ ∨ ∨

∨

Keep list of fixed variables:

1 2,x x

Resolve on x3

Update list of watched literals:



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

x

x

x

x d

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x e

x f

−
−
−
−
−

4

4 5

5

1 2

( )

( )

( )

( )

( )

( )

a

b

c

d

x x

x

x x

x

e

f

∨ ∨ ∨
∨

Keep list of fixed variables:

1 2 3, ,x x x

Resolve on x3

Update list of watched literals:



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

x

x

x

x d

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x e

x f

−
−
−
−
−

4 5

5

1 2

4

( )

( )

( )

( )

( )

( )

a

b

c

d

x x x x

x

e

x

f

∨ ∨ ∨
∨

Keep list of fixed variables:

1 2 3, ,x x x

Resolve on x4

We know that (e) becomes a unit 
clause because of list of fixed 
variables



Unit Resolution

• Now use watched literals.

CP Tutorial   Slide 423

1

2

3

4

5

x

x

x

x

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x

x f

−
−
−
−
−

5

5

( )

( )

( )

( )

( )

( )

x

x

a

b

c

d

e

f

Keep list of fixed variables:

1 2 3 4, , ,x x x x

Resolve on x4

Update list of watched literals:



Unit Resolution

• Now use watched literals.
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1

2

3

4

5

x

x

x

x

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x

x f

−
−
−
−
−

5

5

( )

( )

( )

( )

( )

( )

x

x

a

b

c

d

e

f

Keep list of fixed variables:

1 2 3 4, , ,x x x x

Resolve on x5 and derive empty 
clause.



DPLL

• The DPLL (Davis-Putnam-Loveland-Logemann) algorithm 
combines branching with unit resolution.

• Unit resolution serves as a propagation algorithm at each 
node of the search tree.
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DPLL

• The DPLL (Davis-Putnam-Loveland-Logemann) algorithm 
combines branching with unit resolution.

• Unit resolution serves as a propagation algorithm at each 
node of the search tree.

• CDCL (conflict-directed clause learning) uses nogoods to 
direct the search and reduce backtracking.

• An old idea in AI.

• The best solvers generally use DPLL + CDCL (and many 
tricks).
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DPLL

• Example: Hiring problem
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1 5 6 1 5 6

6 1 5 6 1 5

5 2 6 5 2 6

5 6 2 5 2 6 2

1 2 3 4 1 3 4 2 3 4

3 4 1 2 3 1 3 2 4 1 4 2

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

x x x x x x

x x x x x x

x x x x x x

x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

∨ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
∧ → ≡ ∨ ∧ ∨
∨ → ∨ ≡ ∨ ∨ ∧ ∨ ∨
∨ → ∧ ≡ ∨ ∧ ∨ ∧ ∨ ∧ ∨
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x

Branch by trying xi = 0 first.
Apply unit resolution 
after adding unit 
clause 

Pass simplified 
clause set to child 
node.

1x

Simple DPLL
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x

Branch by trying xi = 0 first.
Apply unit resolution 
after adding unit 
clause 

Pass simplified 
clause set to child 
node.

At this point, unit resolution 
derives the empty clause.

1x

Simple DPLL
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x
Backtrack and take this branch 
(depth-first search)=5 1x

Simple DPLL
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x

Continue in this fashion until search is 
exhaustive.

Solution is never found.

Simple DPLL
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• Use conflict clauses to direct the search.

• A conflict clause is a nogood that rules out a partial 
assignment that caused infeasibility.

DPLL with Conflict Clauses
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Again branch to here.  Unit resolution 
proves infeasibility.

Setting (x1,x5) = (0,0) is enough 
for unit resolution to prove infeasibility.

How do we know?  To be discussed… .

=5 0x

=4 0x

=3 0x

=2 0x

=1 0x

DPLL with Conflict Clauses
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∨1 5x x

Generate conflict clause to 
rule out partial assignment that 
created infeasibility.

Future branching must satisfy 
the conflict clause.

=5 0x

=4 0x

=3 0x

=2 0x

=1 0x

DPLL with Conflict Clauses
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

∨2 5x x Branch to here and generate 
another conflict clause

∨1 5x x

DPLL with Conflict Clauses
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

∨2 5x x Branch to here and generate 
another conflict clause

∨1 5x x

Actually, we can forget about 
branching and simply solve 
the nogood set {x1 ∨ x5}.

We will make sure the nogood 
set can always be solved by 
forward checking.

Here, we try xi = 0 first.  This 
yields the next leaf node.

DPLL with Conflict Clauses
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=1 0x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

∨1 2x x

Apply parallel resolution 
and parallel absorption 
to obtain simplified nogood 
set

Now the nogood set contains

∨2 5x x∨1 5x x

∨2 5x x∨1 5x x

∨1 2x x

DPLL with Conflict Clauses
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=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x

Now solve nogood set by 
forward checking.

Because we processed 
nogoods with parallel 
resolution, we can solve it by 
forward checking (if feasible).

Perform unit resolution after 
each variable is fixed, which 
yields empty clause after 
fixing 2 variables.

1x

∨1 5x x ∨1 2x x

Nogood set

=5 1x

DPLL with Conflict Clauses
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=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x

When backtracking, there is 
no need to retrace how 
watched literals were 
assigned.

This is a lazy data structure.

1x

∨1 5x x ∨1 2x x

Nogood set

=5 1x

DPLL with Conflict Clauses
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=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x 15 =x

∨1 2x x

1x

∨1 5x x ∨1 2x x

General new nogood to obtain 
nogood set

∨1 2x x ∨1 2x x

DPLL with Conflict Clauses
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=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x 15 =x

General new nogood to obtain 
nogood set

∨1 5x x ∨1 2x x

∨1 2x x ∨1 2x x

Apply parallel resolution to 
obtain simplified nogood set

1x

1x

DPLL with Conflict Clauses



Slide 442

=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x 15 =x

General new nogood to obtain 
nogood set

∨1 5x x ∨1 2x x

∨1 2x x ∨1 2x x

Apply parallel resolution to 
obtain simplified nogood set.

Parallel resolution is always 
fast in this context.

1x

1x

Backjump

DPLL with Conflict Clauses
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=1 0x =1 1x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

1x
Again solve nogood set.

Unit resolution derives 
empty clause after fixing 
only x1

Generate nogood. 

∨1 5x x ∨2 5x x

∨1 2x x

1x

DPLL with Conflict Clauses
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=1 0x =1 1x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

1x
Now the nogood set is

∨1 5x x ∨2 5x x

∨1 2x x

1x

1x 1x

Parallel resolution derives 
the empty clause.

Forward checking cannot 
solve the nogood set, so 
the search is complete.

There is no solution. 

DPLL with Conflict Clauses
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• Conflict clauses are identified by analyzing the implication 
graph . 

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add a vertex for every branching literal.

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (a), which is
Both antecedents are vertices. 

1 5 6( )x x x∧ →

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (b), which is 1 5 6( )x x x∧ →

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

No edges for clause (c)

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

No edges for clause (d)

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (e1), which is 3 4 1( )x x x∧ →

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (e2), which is 3 4 2( )x x x∧ →

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Identify conflict literals , i.e., both
are present. 

 and i ix x

Implication Graph
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• Hiring example:  Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add arcs from conflict literals to ∅.

Implication Graph
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• A proof of infeasibility is represented by a conflict graph from 
the implication graph.

• There may be several proofs.
1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Implication Graph
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• Build a conflict graph G from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Create edges in G for any two conflict literals 

and ∅.

Implication Graph
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• Build a conflict graph G from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Select a non-branching vertex in G for which 

there are no incoming edges in G.

Implication Graph
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• Build a conflict graph from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Select a label on some incoming edge and 

create in G all edges bearing this label.

Implication Graph
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• Build a conflict graph from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

( )

( )

( )

( )

( 1)

( 2)

( 1)

( 2)

( 3)

( 4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Repeat.

Implication Graph



• Now we have a conflict graph that represents a proof of 
infeasibility.

Implication Graph



• Now we have a conflict graph that represents a proof of 
infeasibility.

Identify a cut such that:
all branching literals are on one side (the reason side) 
and at least one conflict literal on the other side (the conflict side).

Implication Graph



• Now we have a conflict graph that represents a proof of 
infeasibility.

Identify frontier of the cut:
all vertices having at least one outgoing edge that crosses the cut

Implication Graph
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• Now we have a conflict graph that represents a proof of 
infeasibility.

Negate these literals to obtain a conflict clause.

1 5x x∨

Implication Graph

CP Tutorial   Slide 464



• Now we have a conflict graph that represents a proof of 
infeasibility.

Another conflict clause (absorbed by the first).

1 5 6x x x∨ ∨

Implication Graph
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• Now we have a conflict graph that represents a proof of 
infeasibility.

Another conflict clause (absorbed by the first).

1 5 6x x x∨ ∨

Implication Graph
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• Solvers are extremely efficient.

• Can deal with millions of variables.

• These are complete solvers (not heuristic methods).

• They find a solution if one exists

• And prove infeasibility otherwise.

Assessment of SAT Solvers
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• Solvers are extremely efficient.

• Can deal with millions of variables.

• These are complete solvers (not heuristic methods).

• They find a solution if one exists

• And prove infeasibility otherwise.

• Most industrial problems are easy for their size.

• They are nearly renamable Horn .

• This teaches some important lessons.

Assessment of SAT Solvers
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• A clause set is Horn if each clause contains at most one 
positive literal.

• It is renamable Horn if it becomes Horn after 
complementing zero or more variables.

Renamable Horn Problems
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1 2 3

1 2 3

x x x

x x x

∨ ∨
∨ ∨

1 3

3

2

21

x x

x

x

xx

∨ ∨
∨ ∨

Renamable Horn

1 2 3

1 2 3

x x x

x x x

∨ ∨
∨ ∨

Not renamable Horn



• A renamable Horn sat problem can be solved by unit 
resolution.

• Very fast.

• Industrial SAT problems tend to be nearly renamable Horn.

• They become renamable Horn after fixing a few variables.

• Such a variable set is known as a backdoor .

• This suggests a branching strategy.

• Branch first on backdoor variables.

• Then problems at leaf nodes are easy.

Backdoors and Branching
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• The branching order can make a huge difference.

• Try to identify a small backdoor.

• This is a max clique problem, NP-hard.

• Can use heuristics.

• Try random restarts.

• This may find a smaller backdoor.

Lesson 1
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• NP-complete problems can be easy.

• SAT is NP-complete.

• But the class contains many easy problems

• For example, almost all random instances of 3-SAT are 
easy.

• Except when ratio of number of clauses to number of 
variables is about 4.3

• This is known as a phase transition .

Lesson 2
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• NP-complete problems can be easy.

• SAT is NP-complete.

• But the class contains many easy problems

• For example, almost all random instances of 3-SAT are 
easy.

• Except when ratio of number of clauses to number of 
variables is about 4.3

• This is known as a phase transition .

• Think about it:  The class NP is NP-complete (trivially).

• Even though it contains all the easy problems in the 
world!

Lesson 2
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Advanced Modeling
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Advanced modeling

See slides by Helmut Simonis.
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Integrating OR and CP

Complementary strengths
Simple Example
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Comparison

CP vs. Mathematical Programming

MP CP

Numerical calculation Logic processing

Relaxation Inference (filtering, 
constraint propagation)

Atomistic modeling 
(linear inequalities)

High-level modeling 
(global constraints)

Branching Branching

Independence of model 
and algorithm

Constraint-based 
processing
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CP vs. MP

• In mathematical programming , equations 
(constraints) describe the problem but don’t tell how to 
solve it.

• In constraint programming , each constraint invokes a 
procedure that screens out unacceptable solutions.

• Much as each line of a computer program invokes 
an operation.
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Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.
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Disdvantages of CP

• Weaker for continuous variables.

• Due to lack of numerical techniques

• May fail when constraints contain many variables.

• These constraints don’t propagate well. 

• Not robust

• Lack of relaxation technology
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Obvious solution…

• Integrate CP and MP.

CP Tutorial   Slide 481



Software for Integrated Methods

• ECLiPSe 

– Exchanges information between ECLiPSEe solver, Xpress-MP

• OPL Studio

– Combines CPLEX and ILOG CP Optimizer with script language

• Mosel

– Combines Xpress-MP, Xpress-Kalis with low-level modeling

• BARON

– Global optimization with relaxation + domain reduction

• SIMPL

– Full integration with high-level modeling (prototype)

• SCIP

– Combines MILP and CP-based propagation
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Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in 
4 sizes…

Truck 
size

Number 
available

Capacity

(tons)

Cost 
per 

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40
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Truck 
type

Number 
available

Capacity

(tons)

Cost 
per 

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack 
covering 
constraint

Knapsack 
packing 
constraint
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+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x
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+ + +
+ + + ≥

+ + + ≤
∈ ∈

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =  
1

42 5 3 4 3 3 3
1

7
x

Reduced 
domain
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains 
with bounds

This is a linear programming problem, which is easy to 
solve.

Its optimal value provides a lower bound on optimal 
value of original problem.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum 
value) with the addition of cutting planes .
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the 
original problem satisfy a 
cutting plane (i.e., it is valid ).

But a cutting plane may 
exclude (“cut off ”) solutions of 
the continuous relaxation.

Cutting 
plane

Feasible solutions

Continuous 
relaxation
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality, 
even with x1 = x2 = 3.
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ = 
 

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut
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Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a ≥ 0.

In general, a packing P for ax ≥ a0 satisfies

∉ ∈

≥ −∑ ∑0i i i i
i P i P

a x a a U

and generates a knapsack cut

{ }
∈

∉
∉

 −
 ≥
 
  

∑
∑

0

max

i i
i P

i
i P i

i P

a a U
x

a
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+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

Maximal Packings Knapsack cuts

{1,2} x3 + x4 ≥ 2

{1,3} x2 + x4 ≥ 2

{1,4} x2 + x3 ≥ 3

Knapsack cuts corresponding to nonmaximal 
packings can be nonredundant.
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+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value 
of original problem.

Knapsack cuts
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Branch-
infer-and-
relax tree
Propagate bounds 
and solve 
relaxation of 
original problem.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓
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Branch on a 
variable with 
nonintegral value 
in the relaxation.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Since relaxation 
is infeasible, 
backtrack.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree
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Propagate bounds 
and solve 
relaxation.

Branch on 
nonintegral 
variable.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

Branch-infer-
and-relax tree
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Branch again.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Solution of 
relaxation 
is integral and 
therefore feasible 
in the original 
problem.

This becomes the 
incumbent 
solution .

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Solution is 
nonintegral, but 
we can backtrack 
because value of 
relaxation is 
no better than 
incumbent solution.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Another feasible 
solution found.

No better than 
incumbent solution, 
which is optimal 
because search 
has finished.

x1 ∈ {  123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {  12  }
x2 ∈ {    23}
x3 ∈ {  123}
x4 ∈ {  123}
infeasible
relaxation

x1 ∈ {      3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {  123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {      3}
x2 ∈ {      3}
x3 ∈ {012  }
x4 ∈ {012  }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {  12  }
x3 ∈ {  12  }
x4 ∈ {  123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {      3}
x2 ∈ {012  }
x3 ∈ {      3}
x4 ∈ {012  }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree
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Two optimal solutions…

= (3,2,2,1)x

= (3,3,0,2)x
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Linear Relaxation

Why Relax?
Algebraic Analysis of LP

Linear Programming Duality
LP-Based Domain Filtering

Example: Single-Vehicle Routing
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Why Relax?
Solving a relaxation of a problem can:

• Tighten variable bounds.

• Possibly solve original problem.

• Guide the search in a promising direction.

• Filter domains using reduced costs or Lagrange multipliers.

• Prune the search tree using a bound on the optimal value.

• Provide a more global view, because a single OR relaxation 
can pool relaxations of several constraints.
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Some OR models that can provide relaxations:

• Linear programming (LP).

• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.

– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.

• Specialized relaxations.

– For particular problem classes.

– For global constraints.
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Motivation

• Linear programming is remarkably versatile for representing 
real-world problems.

• LP is by far the most widely used tool for relaxation .

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory . 

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved .
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

An example…

4x1 + 7x2 = 12

Optimal solution
x = (3,0)

Algebraic Analysis of LP 
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1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

as

In general an LP has the form min

0

cx

Ax b

x

=
≥

Algebraic Analysis of LP
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m × n matrix
Basic
variables

where

[ ]=A B N

Any set of 
m linearly 
independent 
columns of A.

These form a 
basis for the 
space spanned 
by the columns.

Nonbasic
variables
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[ ]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB ≥ 0.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible    
solution

x1

x2
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Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[ ]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

Express cost in terms of nonbasic variables:

− −+ −1 1( )B N B Nc B b c c B N x

Vector of reduced costs

Since xN ≥ 0, 
basic solution (xB,0) 
is optimal if 
reduced costs are 
nonnegative.
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1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

Example…

x1, x4 basic

Consider this 
basic feasible 
solution

x1

x2
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Example…

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥
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[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN
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Example…

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b
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[ ] [ ]

[ ] [ ]

1

1/ 2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N−−
−   = −    −   

≥=

Example…
Basic solution is

Reduced costs are

Solution is 
optimal

[ ] [ ]   +   
   

−        + =        −        

     ≥     
    

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

− − −= − =

       = = =       −      

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x
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Linear Programming Duality

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the 
objective function that is implied by the constraints.
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An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma:  If Ax ≥ b, x ≥ 0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c  and  λb ≥ v

That is, some surrogate 
(nonnegative linear 
combination) of  
Ax ≥ b dominates  cx ≥ v
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An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma:  If Ax ≥ b, x ≥ 0 is feasible,

0   dominates 
iff   

for some  0 

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c  and  λb ≥ v

λ
λ
λ

≤
≥

max

0

b

A c
= This is the 

classical 
LP dual
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This equality is called strong duality.

=
≥

≥

min

0

cx

Ax b

x
If Ax ≥ b, x ≥ 0 is feasible

λ
λ
λ

≤
≥

max

0

b

A c
This is the 
classical 
LP dual

Note that the dual of the dual is the primal
(i.e., the original LP).
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λ
λ

+ =
+ ≥
+ ≥

≥

1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ( )

( )

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

λ λ
λ λ
λ λ

λ λ

+ =
+ ≤
+ ≤

≥

A dual solution is (λ1,λ2) = (2,0)

Primal Dual

2

2

1

1 2

1( 2)

(

6

0)

2 3

2 4

x x

x x

λ
λ

⋅
⋅

+
+

=
=

≥
≥

1 24 6 12x x+ ≥

1 24 7 12x x+ ≥
dominates

Dual multipliers

Surrogate

Tightest bound on cost
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Weak Duality

If x* is feasible in the 
primal problem

min

0

cx

Ax b

x

≥
≥

λ
λ
λ

≤
≥

max

0

b

A c

and λ* is feasible in the 
dual problem

then  cx* ≥ λ*b.  

This is because  
cx* ≥ λ*Ax* ≥ λ*b

λ* is dual 
feasible 

and x* ≥ 0

x* is primal 
feasible 

and λ* ≥ 0
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP 
(i.e., change the requirement levels):

The dual of the perturbed LP has the 
same constraints at the original LP:

max (

0

)bb

A c

λ
λ
λ

≤
∆

≥

+

So an optimal solution λ* of the original dual is feasible in the 
perturbed dual.
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Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP 
(i.e., change the requirement levels):

By weak duality,  the optimal value of the perturbed LP is at least 
λ*(b + ∆b) = λ*b + λ*∆b.

So λi*  is a lower bound on the marginal cost of increasing the 
i-th requirement by one unit (∆bi = 1). 

Optimal value of original LP, by strong duality.

If λi* > 0, the i-th constraint must be tight (complementary slackness).
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Dual of an LP in equality form

Primal Dual

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

Primal Dual

Check: 1

1
B B

B N

B c B B c

N c B N c

λ
λ

−

−

= =
= ≤

Because reduced cost is nonnegative 
at optimal solution (xB,0). 

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤
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Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

[ ] [ ]1/ 21 0
4 0 2 0

1 1Bc Bλ −  = = = − 

In the example, 

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ
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Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

λ

j j jr c Aλ= −

Column j of A
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� One way to filter the domain of xj is to minimize and maximize xj
subject to Ax ≥ b, x ≥ 0.  

- This is time consuming.

� A faster method is to use dual multipliers to derive valid 
inequalities.

- A special case of this method uses reduced costs to bound or 
fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x

≥
≥

Let be an LP relaxation of a CP problem.
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min

0

cx

Ax b

x

≥
≥

Suppose:

has optimal solution x*, optimal value v*, and 
optimal dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight 
(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 
U, so that U is an upper bound on the optimal value.
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min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint 
Aix ≥ bi would change by some amount ∆bi.  

Since the constraint is tight, this would increase the optimal value 
as much as changing the constraint to Aix ≥ bi + ∆bi.  

So it would increase the optimal value at least  λi*∆bi.
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We have found: a change in x that changes Aix by ∆bi increases 
the optimal value of LP at least  λi*∆bi.

Since      optimal value of the LP ≤ optimal value of the CP ≤ U,  
we have  λi*∆bi ≤ U − v*,  or *

*i
i

U v
b

λ
−∆ ≤

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:
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Since  ∆bi = Aix − Aix* = Aix − bi,  this implies the inequality
*

*
i

i
i

U v
A x b

λ
−≤ +

…which can be propagated.

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and 
optimal dual solution λ*:

We have found: a change in x that changes Aix by ∆bi increases 
the optimal value of LP at least  λi*∆bi.

Since      optimal value of the LP ≤ optimal value of the CP ≤ U,  
we have  λi*∆bi ≤ U − v*,  or *

*i
i

U v
b

λ
−∆ ≤

CP Tutorial   Slide 536



1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution 
of the original CP with value U = 13.

*
1

1 *
1

U v
A x b

λ
−≤ +

1 2

13 12
2 3 6 6.5

2
x x

−+ ≤ + =

Since the first constraint is tight, we can propagate 
the inequality

or
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Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint  xj ≥ 0  is tight.  

*

*
i

i
i

U v
A x b

λ
−≤ + becomes

*

j
j

U v
x

r
−≤The inequality

The dual multiplier for  xj ≥ 0 is the reduced cost 
rj of xj, because increasing xj (currently 0) by 1 
increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its 
upper bound.
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1 2

1 2

1 2

2

1

1

1

( 2

min

)

4 7

2 3 6

2 4

, 0

( 0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution 
of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2
2

U v
x

r
−≤

2

13 12
0.5

2
x

−≤ =

If  x2 is required to be integer, we can fix it to zero.  
This is reduced-cost variable fixing.
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Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject 
to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem with time 
windows .

Stop i

Stop j

Travel time cij
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Assignment Relaxation

{ }

min

1, all 

0,1 ,  all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.
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Assignment Relaxation

min

1, al

0 1, all ,

l 

ij ij
ij

ij ji
j j

ij

c

x

i j

x i

x

x

= =

≤ ≤

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and 
followed by exactly one stop.

Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.
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Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming

Domain Filtering
Example:  Continuous Global Optimization
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Motivation

• Lagrangean relaxation can provide better bounds than LP 
relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP 
duality.

- This is a technique in continuous global optimization .

• Lagrangean relaxation gets rid of troublesome constraints by 
dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple .
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Lagrangean Duality

Consider an 
inequality-constrained 
problem

min ( )

( ) 0

f x

g x

x S

≥
∈

Hard constraints

Easy constraints

The object is to get rid of (dualize ) the hard constraints 
by moving them into the objective function.
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Lagrangean Duality

Consider an 
inequality-constrained 
problem

max

( ) ( )
x S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈ implies

Lagrangean Dual problem: Find the tightest lower bound 
on the objective function that is implied by the constraints.

It is related to an 
inference problem
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

( ) ( )
x S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or  { }min ( ) ( )
x S

v f x g xλ
∈

≤ −
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( ) 0  dominates ( ) 0
( ) 0 ( ) iff   

for some  0 

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

λg(x) ≤ f(x) − v  for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or  

max

( ) ( )
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ( )

( ) 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

So the dual becomes

{ }
max

 
min ( ) ( )  for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

{ }min ( ) ( )
x S

v f x g xλ
∈

≤ −

Surrogate
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min ( )

( ) 0

f x

g x

x S

≥
∈

Primal Dual

Now we have…

0
max ( )

λ
θ λ

≥

or where

{ }( ) min ( ) ( )
x S

f x g xθ λ λ
∈

= −

{ }
max

 
min ( ) ( )  for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

Lagrangean 
relaxation

Vector of
Lagrange 
multipliers

The Lagrangean dual can be viewed as the problem 
of finding the Lagrangean relaxation that gives the 
tightest bound.

These constraints 
are dualized
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Optimal solution (2,1)

Strongest 
surrogate

{ }

{ }
1 2 1 2 1 1 2 2 1 2{0, ,3}

1 2 1 1 2 2 2{0, ,3}

( , ) min 3 4 ( 3 ) (2 5)

min (3 2 ) (4 3 ) 5
j

j

x

x

x x x x x x

x x

θ λ λ λ λ

λ λ λ λ λ
∈

∈

= + − − + − + −

= + − + − − +
…

…

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve
for any given λ1, λ2:

1 2
1

0 if 3 2 0

3 otherwise
x

λ λ+ − ≥= 


1 2
2

0 if 4 3 0

3 otherwise
x

λ λ− − ≥= 

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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

θ(λ1,λ2) is piecewise linear and concave.

Optimal solution (2,1)
Value = 10

λ1

λ2

θ(λ)=0

θ(λ)=9 2/7

θ(λ)=5

θ(λ)=0

θ(λ)=7.5

Solution of Lagrangean dual:

(λ1,λ2) = (5/7, 13/7),  θ(λ) = 9 2/7

Note duality gap between 10 and 9 2/7 
(no strong duality).
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Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Note: in this example, the Lagrangean dual 
provides the same bound (9 2/7) as the 
continuous relaxation of the IP.

This is because the Lagrangean relaxation 
can be solved as an LP:

Lagrangean duality is useful when the 
Lagrangean relaxation is tighter than an LP 
but nonetheless easy to solve.

{ }

{ }
{0,1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

( , ) min (3 2 ) (4 3 ) 5

min (3 2 ) (4 3 ) 5
j

j

x

x

x x

x x

θ λ λ λ λ λ λ λ

λ λ λ λ λ
∈

≤ ≤

= + − + − − +

= + − + − − +
…
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Properties of the Lagrangean dual

Weak duality:  For any feasible x* and any λ* ≥ 0,  f(x*) ≥ θ(λ*).

In particular, min ( )

( ) 0

f x

g x

x S

≥
≥

∈

0
max ( )

λ
θ λ

≥

Concavity: θ(λ) is concave.  It can therefore be maximized by 
local search methods.

Complementary slackness :  If x* and λ* are optimal, and there 
is no duality gap, then λ*g(x*) = 0.
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Solving the Lagrangean dual

Let λk be the kth iterate, and let 1k k k
kλ λ α ξ+ = +

Subgradient of θ(λ) at λ = λk

If xk solves the Lagrangean relaxation for λ = λk, then ξk = g(xk).

This is because θ(λ) = f(xk) + λg(xk) at λ = λk. 

The stepsize αk must be adjusted so that the sequence 
converges but not before reaching a maximum.
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Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree 
very rapidly.  

• Lagrangean relaxation may allow very fast calculation of a lower 
bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which 
is an LP) and use the same Lagrange multipliers to get an LP 
bound at other nodes.
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At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds
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At root node, solve min

( )

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ* 
solves the Lagrangean dual in which 

Dualize

{ }
0

( ) min ( )
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

At another node, the LP is

min

( )

0

cx

Ax b

Dx d

Hx h

x

λ≥
≥
≥

≥

Branching 
constraints, 
etc.

Here θ(λ*) is still a lower bound on the optimal 
value of the LP and can be quickly calculated 
by solving a specially structured LP.

Special structure,
e.g. variable bounds
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min ( )

( ) 0

f x

g x

x S

≥
∈

Suppose:

has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight 
(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value 
U, so that U is an upper bound on the optimal value.

Domain Filtering
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min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint 
gi(x) ≥ 0 would change by some amount ∆i.  

Since the constraint is tight, this would increase the optimal value 
as much as changing the constraint to gi(x) − ∆i ≥ 0. 

So it would increase the optimal value at least  λi*∆i.

(It is easily shown that Lagrange multipliers are marginal costs.  Dual 
multipliers for LP are a special case of Lagrange multipliers.)
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We have found: a change in x that changes gi(x) by ∆i increases 
the optimal value at least  λi*∆i.

Since      optimal value of this problem ≤ optimal value of the CP ≤ U,  
we have  λi*∆i ≤ U − v*,  or *

*i
i

U v
λ
−∆ ≤

min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:
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Since  ∆i = gi(x) − gi(x*) = gi(x),  this implies the inequality
*

*( )i
i

U v
g x

λ
−≤

…which can be propagated.

We have found: a change in x that changes gi(x) by ∆i increases 
the optimal value at least  λi*∆i.

Since      optimal value of this problem ≤ optimal value of the CP ≤ U,  
we have  λi*∆i ≤ U − v*,  or *

*i
i

U v
λ
−∆ ≤

min ( )

( ) 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and 
optimal Lagrangean dual solution λ*:
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Example:  Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON) 
combine OR-style relaxation with CP-style interval arithmetic and 
domain filtering.

• These methods can be combined with domain filtering based on 
Lagrange multipliers.
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Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1],  [0,2]

x x

x x

x x

x x

+
=

+ ≤
∈ ∈
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To solve it:

• Search : split interval domains of x1, x2.

– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering. 

– Use Lagrange multipliers to infer valid inequality for 
propagation.

– Reduced-cost variable fixing is a special case.

• Relaxation: Use function factorization to obtain linear 
continuous relaxation.
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Interval propagation

Propagate intervals 
[0,1], [0,2] 

through constraints 
to obtain 

[1/8,7/8], [1/4,7/4] 

x1

x2
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Relaxation (function factorization)

Factor complex functions into elementary functions that have 
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.
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where domain of xj is [ , ]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have 
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

+ − ≤ ≤ + −
+ − ≤ ≤ + −
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The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =
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Solve linear relaxation.

x1

x2

Relaxation (function factorization)
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x1

x2

Since solution is infeasible, 
split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x ∈

2 [0.25,1]x ∈
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x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈
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Solution of 
relaxation is 

feasible, 
value = 1.25

This becomes 
incumbent 

solution

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈
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Solution of 
relaxation is 

feasible, 
value = 1.25

This becomes 
incumbent 

solution

x1

x2

x1

x2
Solution of 

relaxation is 
not quite 
feasible, 

value = 1.854

Also use 
Lagrange 

multipliers for 
domain 

filtering…

2 [1,1.75]x ∈ 2 [0.25,1]x ∈
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1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Associated Lagrange 
multiplier in solution of 
relaxation is λ2 = 1.1

Relaxation (function factorization)
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This yields a valid inequality for propagation:

Associated Lagrange 
multiplier in solution of 
relaxation is λ2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x

−+ ≥ − =

Relaxation (function factorization)

Value of 
relaxation Lagrange multiplier

Value of incumbent 
solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

,  1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =
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CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling
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Motivation

• Branch and price allows solution of integer programming 
problems with a huge number of variables.

• The problem is solved by a branch-and-bound method.  The 
difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly when 
constraints are complex.

• CP-based branch and price has been successfully applied 
to airline crew scheduling, transit scheduling, and other 
transportation-related problems.
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Basic Idea

Suppose the LP relaxation of an integer 
programming problem has a huge number of 
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem , 
which has a small subset of the variables:

( )

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a 
negative reduced cost:

0k k kr c Aλ= − <
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Adding xk to the problem would improve the solution if xk has a 
negative reduced cost:

0k k kr c Aλ= − <

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of 
yc y

y A

λ−

If the solution y* satisfies cy* − λy* < 0, then we can add column y to 
the restricted master problem.

So we solve the pricing problem:

Cost of column y
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Basic Idea

min

 is a column of 
yc y

y A

λ−

need not be solved to optimality, so long as we find a column with 
negative reduced cost.  

However, when we can no longer find an improving column, we 
solved the pricing problem to optimality to make sure we have the 
optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy, 
CP may be a good way to solve the pricing problem.

CP Tutorial   Slide 581



Airline Crew Scheduling

Flight data

Start 
time

Finish 
time

A roster is the sequence of flights assigned to 
a single crew member.

The gap between two consecutive flights in a 
roster must be from 2 to 3 hours.  

Total flight time for a roster must be between 6 
and 10 hours.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

Assign crew members to flights to minimize cost while 
covering the flights and observing complex work rules.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

Rosters that cover flight 1.
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Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1           2          3           4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1 
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to 
exactly 1 roster. 

Each flight is assigned at least 1 
crew member.

In a real problem, there can be millions of rosters.
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Optimal 
dual 

solution

u1
u2
v1
v2
v3
v4
v5
v6
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6
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Airline Crew Scheduling

We start by solving the problem with a subset 
of the columns:

The reduced cost of an 
excluded roster k for crew 
member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the 
pricing problem as a 
shortest path problem.

Dual 
variables

u1
u2
v1
v2
v3
v4
v5
v6
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Pricing problem

Crew 
member 1

Crew 
member 2
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Pricing problem

Each s-t path corresponds to a roster, 
provided the flight time is within bounds.

Crew 
member 1

Crew 
member 2
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Pricing problem
Cost of flight 3 if it immediately follows flight 1, 

offset by dual multiplier for flight 1

Crew 
member 1

Crew 
member 2
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Pricing problem

Cost of transferring from home to flight 1, offset 
by dual multiplier for crew member 1

Dual multiplier 
omitted to break 

symmetry

Crew 
member 1

Crew 
member 2
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Pricing problem

Length of a path is reduced cost of the 
corresponding roster.

Crew 
member 1

Crew 
member 2
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Crew 
member 1

Crew 
member 2

Pricing problem

Arc lengths using dual solution of LP relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1
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Crew 
member 1

Crew 
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

Reduced cost = −1
Add x12 to problem. 

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no 
remaining variable has negative reduced cost.
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Pricing problem

The shortest path problem cannot be solved by traditional shortest path 
algorithms, due to the bounds on total duration of flights.  

It can be solved by CP:

( )
{ }

min max

Path( , , ),  all flights 

flights ,   0,  all 
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights 
assigned to crew 

member i

Path 
length Graph

Path global constraint

Setsum global constraint

Duration of flight j
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CP-based Benders Decomposition

Benders Decomposition in the Abstract
Classical Benders Decomposition

Example: Machine Scheduling
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Motivation

• Benders decomposition allows us to apply CP and OR to 
different parts of the problem.

• It searches over values of certain variables that, when fixed, 
result in a much simpler subproblem .

• The search learns from past experience by accumulating 
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR 
conception.

• Generalized Benders methods have resulted in the greatest 
speedups achieved by combining CP and OR.
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Benders Decomposition in the Abstract

Benders decomposition 
can be applied to 
problems of the form

min ( , )

( , )

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some 
value, the resulting 
subproblem is much 
easier:

min ( , )

( , )

y

f x y

S x y

y D∈

…perhaps 
because it 
decouples into 
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules 
the jobs on the machines.  

When x is fixed, the problem decouples into a separate scheduling 
subproblem for each machine.
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Benders Decomposition

We will search over assignments to x.  This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min ( , )

( , )

k

k

y

f x y

S x y

y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk.  To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x), 
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk.   Cost in the original problem
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Benders Decomposition

We will search over assignments to x.  This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min ( , )

( , )

k

k

y

f x y

S x y

y D∈

and get optimal 
value vk

We generate a Benders cut (a type of nogood) 1( )kv B x+≥

that satisfies Bk+1(x) = vk.   Cost in the original problem

We add the Benders cut to the master problem, which becomes

min

( ),  1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
Benders cuts 
generated so far
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Benders Decomposition

We now solve the 
master problem

min

( ),  1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
to get the next 
trial value xk+1.

The master problem is a relaxation of the original problem, and its 
optimal value is a lower bound on the optimal value of the original 
problem.

The subproblem is a restriction, and its optimal value is an upper 
bound .

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set 
onto x.  We hope not too many cuts are needed to find the optimum.
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Classical Benders Decomposition

The classical method 
applies to problems 
of the form

min ( )

( )

, 0x

f x cy

g x Ay b

x D y

+
+ ≥

∈ ≥

and the subproblem 
is an LP

( )

min ( )

( )

0

k

k

f x cy

Ay b g x

y

λ
+

≥ −
≥

( )max ( ) ( )

0

k kf x b g x

A c

λ

λ
λ

+ −

≤
≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower 
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual .  So by 
weak duality,  Bk+1(x) remains a lower bound on v.
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Classical Benders

min

( ),  1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…

So the master problem becomes

min

( ) ( ( )),  1, , 1i

x

v

v f x b g x i k

x D

λ≥ + − = +
∈

…

In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or 

• a mixed integer/nonlinear programming problem (MINLP).
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Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the 
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master 
problem , to be solved by MILP.

• Schedule the jobs in the 
subproblem , to be solved by CP.

Time lapse between 
start of first job and 
end of last job.
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Machine A

Machine B
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Machine Scheduling

Job Data Once jobs are assigned, we can 
minimize overall makespan by 
minimizing makespan on each 
machine individually.

So the subproblem decouples.

Minimum makespan 
schedule for jobs 1, 2, 3, 5 

on machine A
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is
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Machine Scheduling

( )

min

, all 

,  all 

disjunctive ( ),( ) ,  all 

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment      the subproblem on each machine i is

( )

min

, all  with 

,  all  with 

disjunctive ( ),( )

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x
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Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.  

We can prove that 10 is the optimal makespan by proving that the 
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.  
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 

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Benders cuts

We want the master problem to be an MILP, which is good for 
assignment problems.

So we write the Benders cut
2 3 4

1

10 if 
( )

0 otherwisek

x x x A
v B x+

= = =≥ = 


Using 0-1 variables: ( )2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is 

assigned to 
machine A
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Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

,  2 , etc.,  ,

v 10( 2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B
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Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts. 

We are now using the cut 
1

ik

ik ij ik
j J

v M x J
∈

 
≥ − + 

 
∑

Min makespan 
on machine i
in iteration k

Set of jobs 
assigned to 
machine i in 
iteration k

A stronger cut provides a useful bound even if only some of the jobs in 
Jik are assigned to machine i: (1 )

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

These results can be generalized to cumulative scheduling.
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Cumulative scheduling in subproblem

Subproblem for each facility i, given an assignment x from master

( )

≥ +

≤ ≤ −

= = =

min

, all 

,  all 

cumulative ( ),( ),( )

j

j

j x j

j j j x j

j j ij j ij j

M

M t p j

r t d p j

t x i p x i c x i

Sample Benders cut (all release times the same):

{ } { }
∈ ∈ ∈

 
≥ − + − 

 
∑ (1 ) max min

ik ik ik

ik ij ij j j
j J j J j J

M M p y d d

Min makespan 
on facility i

in iteration k

Set of jobs 
assigned to 
facility i in 
iteration k

=1 if job j assigned
to facility i (xj = i )

Deadline 
for job j



Some Very Recent Work

Benders for scheduling 
Cutting planes from CP model

BDDs as constraint store
BDDs for relaxation bounds
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Recent work – Benders for Scheduling

Joint work with Elvin Coban.

Apply logic-based Benders to single-facility scheduling with long time 
horizons and many jobs.

Decompose the problem by assigning jobs to segments of time 
horizon.

Segmented problem – Jobs cannot cross segment boundaries (e.g., 
weekends).

Unsegmented problem – Jobs can cross segment boundaries.
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Segmented problem

• Benders approach is very similar to that for the pl anning and 
scheduling problem.

• Assign jobs to time segments rather than processors .

• Benders cuts are the same.

segment
Jobs do not overlap 
segment boundaries
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Segmented problem

• Experiments use most recent versions of CP and IP s olvers.

• IBM OPL Studio 6.1

• CPLEX 12
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619

Segmented problem computational results

Feasibility – Wide time windows (individual instance s)
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Segmented problem computational results

Feasibility – Tight time windows (individual instanc es)
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621

Segmented problem computational results

Min makespan – Wide time windows (individual instanc es)
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622

Segmented problem computational results

Min makespan – Tight time windows (individual instan ces)

CP Tutorial   Slide 622



623

Segmented problem computational results

Min tardiness – Wide time windows (individual instan ces)
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Segmented problem computational results

Min tardiness – Tight time windows (individual insta nces)
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Segmented problem

Computational results – tight time windows
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Segmented problem

Computational results – wide time windows
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Unsegmented problem

• Master problem is more complicated.

• Jobs can overlap two or more segments.

• Master problem variables must keep track of this.

• Benders cuts more sophisticated.

segment
Jobs can overlap 

segment boundaries
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Unsegmented problem

• Master problem:

yijk variables keep 
track of whether 

job j starts, 
finishes, or runs 

entirely in 
segment i.

xijk variables keep 
track of how long 
a partial job j runs 

in segment i.
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Unsegmented problem computational 
results

Feasibility -- individual instances
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Unsegmented problem computational results

Min makespan – individual instances
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Unsegmented problem

Computational results
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Unsegmented problem

Computational results

CP solves it quickly 
(< 1 sec) or blows 
up, in which case 

Benders solves it in 
6 seconds
(average).
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• Segmented problems: 

• Benders is much faster for min cost and min makespa n
problems.

• Benders is somewhat faster for min tardiness proble m.

Summary of results
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• Segmented problems: 

• Benders is much faster for min cost and min makespa n
problems.

• Benders is somewhat faster for min tardiness proble m.

• Unsegmented problems:

• Benders and CP can work together.

• Let CP run for 1 second.

• If it fails to solve the problem, it will probably blow up.  
Switch to Benders for reasonably fast solution.

Summary of results

CP Tutorial   Slide 634



Recent work – Cutting Planes from CP Model

Joint work with David Bergman.

Polyhedral analysis of overlapping all-different constraints (equivalent 
to graph coloring).

Used in many scheduling problems, sudoku puzzles, etc. etc.

Derive cutting planes from CP alldiff formulation and map them 
into 0-1 model.

Provides tighter bounds than all CPLEX cuts in a small fraction of the 
time (e.g., 1%).
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Recent work – BDDs as Constraint Store

Joint work with Henrik Andersen, David Bergman, 
Andre Cire, Tarik Hadzic, Willem van Hoeve, 
Barry O’Sullivan, Peter Tiedemann  

Replace variable domains in CP with relaxed 
binary decision diagrams (BDDs).

BDDs have long been used for circuit design, 
configuration, etc.  

We use them to represent relaxation of feasible set.  

Replace domain filtering with BDD-based propagation.

Reduces search tree for multiple alldiffs from 1 million nodes to 
1 node, time speedup factor of 100.  Speedups on other problems.

Now being incorporated into Google CP solver .
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Recent work – BDDs for Relaxation Bounding

Joint work with David Bergman, Andre Cire, 
Willem van Hoeve

Replace LP relaxation with a relaxed binary 
decision diagram (BDD).

Shortest path in BDD provides a lower bound
on optimal value.

For most instances of independent set problem, 
we get tighter bounds than full cutting plane technology
in CPLEX.

Bound is normally obtained in very small fraction of the time.
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Obrigado!

Vocês têm perguntas?
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