
Constraint Programming Tutorial

John Hooker
Carnegie Mellon University

Institute of Computing
State University of Campinas, Brazil

September-October 2012

A First Glimpse at Constraint
Programming

Applications, Early Successes
Advantages and Disadvantages

Software
Tutorial Outline and Calendar

References

CP Tutorial Slide 2

What is constraint programming?

• An alternative to optimization methods in operations research.

• Developed in the computer science and artificial intelligence
communities.

• Over the last 20+ years.

• Particularly successful in scheduling and logistics.

CP Tutorial Slide 3

• Container port scheduling
(Hong Kong and Singapore)• Circuit design (Siemens)

• Real-time control
(Siemens, Xerox)

Early commercial successes

CP Tutorial Slide 4

Applications

• Job shop scheduling

• Assembly line smoothing
and balancing

• Cellular frequency
assignment

• Nurse scheduling

• Shift planning

• Maintenance planning

• Airline crew rostering and scheduling

• Airport gate allocation and stand planning

CP Tutorial Slide 5

• Production scheduling
chemicals
aviation
oil refining
steel
lumber
photographic plates
tires

• Transport scheduling (food,
nuclear fuel)

• Warehouse management

• Course timetabling

Applications

CP Tutorial Slide 6

Advantages of CP

• Good at scheduling, logistics

• …where other optimization methods may fail.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Simpler models (due to global constraints).

• Constraints convey problem structure to the solver.

CP Tutorial Slide 7

Disdvantages of CP

• Less effective for continuous optimization.

• Relies on interval propagation

• Less robust

• May blow up past a certain problem size,

• Lacks relaxation technology

• Software is less highly engineered

• Younger field

CP Tutorial Slide 8

Comparison with Mathematical Programming

MP CP

Numerical calculation Logic processing

Relaxation Inference (filtering,
constraint propagation)

Atomistic modeling
(linear inequalities)

High-level modeling
(global constraints)

Branching Branching

Independence of model
and algorithm

Constraint-based
processing

CP Tutorial Slide 9

Complementary Strengths

• CP can be profitably combined with other optimization
methods.

• Integer programming, global optimization

• Combine complementary strengths

CP Tutorial Slide 10

Software for CP
• ECLiPSe (NICTA), open source

– Early CP (and hybrid) solver, still maintained

• CHIP (Cosytec), commercial

– State-of-the-art solver

• OPL CP Optimizer (IBM), commercial (free academic download)

– State-of-the-art solver, originally developed by ILOG

• Gecode (Schulte & Tack), free download

– State-of-the-art toolkit for building CP solvers

• Frontline MIP/CP solver (Frontline Systems), commercial

– Add-in for Excel spreadsheets

• G12 (NICTA), under development

– Major CP and hybrid system

• Google OR-tools (Google), open source

– Includes CP solver

CP Tutorial Slide 11

CP Tutorial Slide 12

Tentative Outline

• A First Glimpse at CP

• Basic Ideas of CP

• CP Modeling

• Consistency and Backtracking

• Review of Network Flow Theory

• The Alldiff, Cardinality and Nvalues Constraints

• The Sequence Constraint

• The Regular Constraint

• Disjunctive and Cumulative Scheduling

• Propositional Satisfiability (SAT)

• Symmetry

• Advanced Modeling

• CP/OR Integration

CP Tutorial Slide 13

Calendar

• Quarta-feira: 6 - 8 pm

• Sexta-feira: 10am - 12

References

Constraint-Based Local
Search, P. Van Hentenryck

and L. Michel

Constraint
Processing,
R. Dechter

Principles of Constraint
Programming, K. Apt

Programming with
Constraints, K. Marriott,
P. J. Stuckey

Handbook of Constraint
Programming, F. Rossi,
P. van Beek, T. Walsh, eds.

CP Tutorial Slide 14

References

This tutorial is based partly on:

• J. N. Hooker, Integrated Methods for Optimization, 2nd ed.,
Springer (2012). Contains references and many exercises.

CP Tutorial Slide 15

References

Online resources:

• Introductory material on CP in Portuguese (thesis by T. Serra)

• 2011 CP Summer School (slides only)

• 2009 CPAIOR Tutorial in CP (slides and videos)

• 2008 CP Summer School (slides only)

• 2007 CP Summer School (slides and videos)

• Association for Constraint Programming

• These slides (updated the day after each class).

• Google “John Hooker” to find website.

CP Tutorial Slide 16

Basic Ideas of CP

Procedural and declarative models
Filtering and propagation

Global constraints

CP Tutorial Slide 17

Basic Ideas of CP

• It is both procedural and declarative .

• procedural = write a computer program

• declarative = state constraints on the solution

CP Tutorial Slide 18

Basic Ideas of CP

• It is both procedural and declarative .

• procedural = write a computer program

• declarative = state constraints on the solution

• It uses global constraints to exploit problem structure:

• global constraint = constraint that contains many
simpler constraints

CP Tutorial Slide 19

Basic Ideas of CP

• It is both procedural and declarative .

• procedural = write a computer program

• declarative = state constraints on the solution

• It uses global constraints to exploit problem structure:

• global constraint = constraint that contains many
simpler constraints

• It uses filtering and constraint propagation to reduce the
search space.

• filtering = reduce variable domains

• propagation = pass domains to next constraint

CP Tutorial Slide 20

Procedural and Declarative Models

• Example: solve this:

Note that x1 = x2 = x3 = 2 is not allowed.

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, , pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

CP Tutorial Slide 21

Procedural and Declarative Models

• Example: solve this:

• Purely procedural model:

For x1 = 1,2:
For x2 = 1,2:

If x1 ≠ x2 then
For x3 = 1,2,3:

If x1 ≠ x3 and x2 ≠ x3 then
If 3x1 + x2 + x3 = 10 then print x1, x2, x3

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, , pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

CP Tutorial Slide 22

Procedural and Declarative Models

• Example: solve this:

• Purely declarative model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, , pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

{ } { }

1 2 3

1 2

1 3

2 3

1 2 3

3 10

, 1,2 , 1,2,3

x x x

x x

x x

x x

x x x

+ + =
≠
≠
≠

∈ ∈

CP Tutorial Slide 23

Procedural and Declarative Models

• Example: solve this:

• Purely declarative model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, , pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

{ } { }

1 2 3

1 2

1 3

2 3

1 2 3

3 10

, 1,2 , 1,2,3

x x x

x x

x x

x x

x x x

+ + =
≠
≠
≠

∈ ∈

Looks simple, but how are
we going to solve this?

Perhaps by integer
programming…

CP Tutorial Slide 24

Procedural and Declarative Models

• Example: solve this:

• Purely declarative model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, , pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

{ }

1 2 3

1 2 12 2 1 12

1 2 12 2 1 12

1 2 12 2 1 12

1 2 3

1 2 3 12 13 23

3 10

1 2 , 2 1

1 2 , 2 1

1 2 , 2 1

1 , 2, 1 3

, , integer, , , 0,1

x x x

x x y x x y

x x y x x y

x x y x x y

x x x

x x x y y y

+ + =
− ≥ − − ≥ −
− ≥ − − ≥ −
− ≥ − − ≥ −

≤ ≤ ≤ ≤
∈

An integer programming
model.

Don’t worry about why it
works.

Can be solved by CPLEX,
Gurobi, ExpressMP, SCIP,
etc.

CP Tutorial Slide 25

Procedural and Declarative Models

• Example: solve this:

• CP model:

{ } { }

1 2 3

1 2 3

1 2 3

3 10

, , pairwise distinct

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

This global constraint
(all-different) enforces
x1 ≠ x2, x1 ≠ x3, x2 ≠ x3.

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

CP Tutorial Slide 26

Procedural and Declarative

• CP model:

• The model looks declarative .

• It consists of constraints.

• They can be written in any order.

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• But each constraint invokes a procedure .

• The procedure reduces the search space by filtering
and propagation .

CP Tutorial Slide 27

Filtering

• CP model:

• Variable domains: { }
{ }
{ }

1

2

3

1,2,

1,2,

1,2,3

x

x

x

∈
∈
∈

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove
infeasible values).

• x1, x2 must use the values 1,2.

CP Tutorial Slide 28

Filtering

• CP model:

• Variable domains: { }
{ }
{ }

1

2

3

1,2,

1

, ,3

,2,

x

x

x

∈

∈
∈

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove
infeasible values).

• x1, x2 must use the values 1,2. So we filter these
values from x3’s domain.

CP Tutorial Slide 29

Filtering

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove
infeasible values).

• x1, x2 must use the values 1,2. So we filter these
values from x3’s domain.

• This can be generalized using network flow theory.

{ }
{ }
{ }

1

2

3

1,2,

1,2,

, ,3

x

x

x

∈
∈
∈

CP Tutorial Slide 30

Filtering

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Use the alldiff constraint to filter the domains (remove
infeasible values).

• x1, x2 must use the values 1,2. So we filter these values
from x3’s domain.

• Removing all infeasible values achieves domain
consistency .

{ }
{ }
{ }

1

2

3

1,2,

1,2,

, ,3

x

x

x

∈
∈
∈

CP Tutorial Slide 31

Propagation

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• We now propagate the reduced domains to the first
constraint.

• Filter using first constraint:

• Must have 3x1 ≥ 10 − max{1,2} − max{3} = 5, or x1 ≥ 2.

{ }
{ }
{ }

1

2

3

1,2,

1,2,

, ,3

x

x

x

∈
∈
∈

Domain of x2 Domain of x3
CP Tutorial Slide 32

Propagation

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• We now propagate the reduced domains to the first
constraint.

• Filter using first constraint:

• Must have 3x1 ≥ 10 − max{1,2} − max{3} = 5, or x1 ≥ 2.

• Filter domain of x1.

{ }
{ }
{ }

2

1

3

1,2,

, ,3

,2,

x

x

x

∈

∈
∈

CP Tutorial Slide 33

Propagation

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Propagate this to alldiff constraint.

• Filter domain of x2.

{ }
{ }
{ }

1

2

3

,2,

1,2,

, ,3

x

x

x

∈
∈
∈

CP Tutorial Slide 34

Propagation

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Propagate this to alldiff constraint.

• Filter domain of x2.

{ }
{ }
{ }

2

1

3

1, ,

,2,

, ,3

x

x

x

∈

∈
∈

CP Tutorial Slide 35

Solution Found

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Because each domain is a singleton , we have a solution.

• No more propagation needed.

{ }
{ }
{ }

1

2

3

,2,

1, ,

, ,3

x

x

x

∈
∈
∈

CP Tutorial Slide 36

Branching

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Branching is often necessary.

{ }
{ }
{ }

1

2

3

,2,

1, ,

, ,3

x

x

x

∈
∈
∈

CP Tutorial Slide 37

Branching

• CP model:

• Variable domains:

()
{ } { }

1 2 3

1 2 3

1 2 3

3 10

alldiff , ,

, 1,2 , 1,2,3

x x x

x x x

x x x

+ + =

∈ ∈

• Branching is often necessary.

• Suppose we don’t filter x2’s domain.

• Then we can branch:

• Set x2 = 1 and repeat process.

• Set x2 = 2 and repeat process.

{ }
{ }
{ }

2

1

3

1,2,

,2,

, ,3

x

x

x

∈

∈
∈

CP Tutorial Slide 38

Global constraints

• Global constraints like alldiff exploit
problem structure .

• Filtering for a global constraint takes
advantage of the “global” structure of
the elementary constraints it represents.

• This is more effective than propagating
the individual constraints

CP Tutorial Slide 39

Global constraints

• Global constraints like alldiff exploit
problem structure .

• Filtering for a global constraint takes
advantage of the “global” structure of
the elementary constraints it represents.

• This is more effective than propagating
the individual constraints

• Example: alldiff(x1,x2,x3) with domains

• Filtering individual constraints
has no effect:

{ }
{ }
{ }

1

2

3

1,2,

1,2,

1,2,3

x

x

x

∈
∈
∈

1 2

1 3

2 3

x x

x x

x x

≠
≠
≠

CP Tutorial Slide 40

Example: Graph Coloring

• Graph coloring problem:

• Color vertices so that no two adjacent vertices have
the same color.

• Constraints are binary :

• xi ≠ xj for each pair i, j of adjacent vertices.

• where xi = color of vertex i.

CP Tutorial Slide 41

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

Domain of variable associated with vertex

CP Tutorial Slide 42

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 43

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 44

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 45

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 46

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 47

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 48

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 49

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 50

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 51

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 52

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 53

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 54

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 55

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 56

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 57

Graph coloring problem that can be solved by filtering and
propagation alone. Color nodes with red, green, blue.

CP Tutorial Slide 58

Some CP Models

Sudoku
Traveling salesman

Cumulative scheduling
Employee scheduling

Car sequencing

CP Tutorial Slide 59

Sudoku

Fill blanks with numbers1-9.

Thanks to Helmut Simonis for this example.

CP Tutorial Slide 60

Sudoku

Fill blanks with numbers1-9.

Numbers all different in each
row,

CP Tutorial Slide 61

Sudoku

Fill blanks with numbers1-9.

Numbers all different in each
row,

In each column,

CP Tutorial Slide 62

Sudoku

Fill blanks with numbers1-9.

Numbers all different in each
row,

In each column,

And in each 3x3 square.

CP Tutorial Slide 63

Sudoku

Fill blanks with numbers1-9.

Numbers all different in each
row,

In each column,

And in each 3x3 square.

Use alldiff constraints!

CP Tutorial Slide 64

Sudoku

Let xij = number in cell i,j

CP Tutorial Slide 65

Sudoku

Let xij = number in cell i,j

alldiff(x11, …, x19)

CP Tutorial Slide 66

Sudoku

Let xij = number in cell i,j

alldiff(x11, …, x19)

alldiff(x11, …, x91)

CP Tutorial Slide 67

Sudoku

Let xij = number in cell i,j

alldiff(x11, …, x19)

alldiff(x11, …, x91)

alldiff(x11,x12,x13,x21,x22,x23,x31,x32,x33)

etc.

CP Tutorial Slide 68

Sudoku

Solution

CP Tutorial Slide 69

Sudoku

Solution

How to solve it?

Filtering, propagation, and
branching (see demonstration).

Solve it first with very simple
filtering (forward checking)
that only checks for constraint
violations.

Then solve it with complete
filter for the alldiffs.

CP Tutorial Slide 70

Traveling Salesman

Traveling salesman problem:

Let cij = distance from city i to city j.

Find the shortest route
that visits each of n cities
exactly once.

A B

E C

D

5

8

75

7 4

3 5

6

6

CP Tutorial Slide 71

Traveling Salesman

Traveling salesman problem:

Let cij = distance from city i to city j.

Find the shortest route
that visits each of n cities
exactly once.

A B

E C

D

5

8

75

7 4

3 5

6

6

CP Tutorial Slide 72

Optimal tour:

Popular 0-1 model

Let xij = 1 if city i immediately precedes city j, 0 otherwise

{ }

{ }

min

s.t. 1, all

1, all

1, all disjoint , 1, ,

0,1

ij ij
ij

ij
i

ij
j

ij
i V j W

ij

c x

x j

x i

x V W n

x
∈ ∈

=

=

≥ ⊂

∈

∑

∑

∑

∑∑ …

Subtour elimination constraints

CP Tutorial Slide 73

CP model

Let yk = the kth city visited.

Variable indices

{ }

1

1

min

s.t. alldiff(, ,)

1, ,

k ky y
k

n

k

c

y y

y n

+

∈

∑

…

…

In objective function, identify city n + 1 with city 1.

CP Tutorial Slide 74

{ }
1

min

s.t. circuit(, ,)

1, ,

kky
k

n

k

c

y y

y n∈

∑

…

…

An alternate CP model

Let yk = the city visited after city k.

Hamiltonian circuit
constraint

CP Tutorial Slide 75

The constraint xy ≤ 5 can be implemented

Element constraint

The constraint cy ≤ 5 can be implemented:

Assign z the yth
value in the list

(this is a slightly different constraint)

Add the
constraint
z = xy

()1

5

element ,(, ,),n

z

y c c z

≤
…

()1

5

element ,(, ,),n

z

y x x z

≤
…

CP Tutorial Slide 76

• Used for resource-constrained scheduling.

• Total resources consumed by jobs at any one time must
not exceed L.

Job start times
(variables)

Job processing times
Job resource
requirements

Cumulative scheduling

()1 1 1cumulative (, ,),(, ,),(, ,),n n nt t p p c c L… … …

• Time windows (if any) indicated by domains of ti.

CP Tutorial Slide 77

()1 5

1

5

min

s.t. cumulative (, ,),(3,3,3,5,5),(3,3,3,2,2),7

3

2

z

t t

z t

z t

≥ +

≥ +

…

⋮

Minimize makespan (no deadlines, all release times = 0):

Min makespan = 8

L

1

2

3

4

5
time

resources

Job start times

Processing times
Resources used

L

Cumulative scheduling

3

CP Tutorial Slide 78

• The problem

• Examples is from OPL manual.

• Load 34 items on the ship in minimum time (min makespan)

• Each item requires a certain time and certain number of
workers.

• Total of 8 workers available.

Example: Ship loading

CP Tutorial Slide 79

Item Dura-
tion

Labor

1 3 4

2 4 4

3 4 3

4 6 4

5 5 5

6 2 5

7 3 4

8 4 3

9 3 4

10 2 8

11 3 4

12 2 5

13 1 4

14 5 3

15 2 3

16 3 3

17 2 6

Item Dura-
tion

Labor

18 2 7

19 1 4

20 1 4

21 1 4

22 2 4

23 4 7

24 5 8

25 2 8

26 1 3

27 1 3

28 2 6

29 1 8

30 3 3

31 2 3

32 1 3

33 2 3

34 2 3

Problem data

CP Tutorial Slide 80

1 → 2,4
2 →3
3 →5,7
4 →5
5 →6
6 →8
7 →8
8 →9
9 →10
9 →14
10 →11
10 →12

11 →13
12 →13
13 →15,16
14 →15
15 →18
16 →17
17 →18
18 →19
18 →20,21
19 →23
20 → 23
21 → 22

22 →23
23 →24
24 →25
25 →26,30,31,32
26 → 27
27 → 28
28 → 29
30 → 28
31 → 28
32 → 33
33 → 34

Precedence constraints

CP Tutorial Slide 81

Use the cumulative scheduling constraint.

()
1 2

1 34

2 1 4 1

min

s.t. 3, 4, etc.

cumulative (, ,),(3,4, ,2),(4,4, ,3),8

3, 3, etc.

z

z t z t

t t

t t t t

≥ + ≥ +

≥ + ≥ +
… … …

Precedence constraints

CP Tutorial Slide 82

Employee scheduling

• Schedule four nurses in 8-hour shifts.

• A nurse works at most one shift a day, at least 5 days a week.

• Same schedule every week.

• No shift staffed by more than two different nurses in a week.

• A nurse cannot work different shifts on two consecutive days.

• A nurse who works shift 2 or 3 must do so at least two days in
a row.

CP Tutorial Slide 83

Two ways to view the problem

Sun Mon Tue Wed Thu Fri Sat

Shift 1 A B A A A A A

Shift 2 C C C B B B B

Shift 3 D D D D C C D

Assign nurses to shifts

Sun Mon Tue Wed Thu Fri Sat

Nurse A 1 0 1 1 1 1 1

Nurse B 0 1 0 2 2 2 2

Nurse C 2 2 2 0 3 3 0

Nurse D 3 3 3 3 0 0 3

Assign shifts to nurses

0 = day off
CP Tutorial Slide 84

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

1 2 3alldiff(, ,), all d d dw w w d The variables w1d, w2d,
w3d take different values

That is, schedule 3
different nurses on each
day

CP Tutorial Slide 85

()
1 2 3alldiff(, ,), all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)
d d dw w w

w A B C

d

D

A occurs at least 5 and at most 6
times in the array w, and similarly
for B, C, D.

That is, each nurse works at least
5 and at most 6 days a week

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

CP Tutorial Slide 86

()
()

()

1 2 3

,Sun ,Sat

alldiff , , , all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 , all

d d d

s s

w w w

w

d

A B C D

w w s

The variables ws,Sun, …, ws,Sat take
at least 1 and at most 2 different
values.

That is, at least 1 and at most 2
nurses work any given shift.

Use both formulations in the same model!

First, assign nurses to shifts.

Let wsd = nurse assigned to shift s on day d

CP Tutorial Slide 87

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

()1 2 3,alldiff , all ,d d dy y y d

Assign a different nurse to each
shift on each day.

This constraint is redundant of
previous constraints, but
redundant constraints speed
solution.

CP Tutorial Slide 88

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

Every stretch of 2’s has length between 2 and 6.
Every stretch of 3’s has length between 2 and 6.

So a nurse who works shift 2 or 3 must do so at least
two days in a row.

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

CP Tutorial Slide 89

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

Here P = {(s,0),(0,s) | s = 1,2,3}

Whenever a stretch of a’s immediately precedes a stretch of b’s,
(a,b) must be one of the pairs in P.

So a nurse cannot switch shifts without taking at least one day off.

Remaining constraints are not easily expressed in this
notation.

So, assign shifts to nurses.

Let yid = shift assigned to nurse i on day d

CP Tutorial Slide 90

Now we must connect the wsd variables to the yid variables.

Use channeling constraints :

, all ,

, all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

Channeling constraints increase propagation and make the
problem easier to solve.

CP Tutorial Slide 91

The complete model is:

, all ,

, all ,
i

d

d

s

d

w

y

dy

i iw d

s s d

=

=

()
()

()

1 2 3

,Sun ,Sat

alldiff , , , all

cardinality | (, , ,),(5,5,5,5),(6,6,6,6)

nvalues ,..., |1,2 , all

d d d

s s

w w w

w

d

A B C D

w w s

()
()

1 2 3

,Sun ,Sat

alldiff , all

stretch , , | (2,3),(2,2),(6,6), , all

, ,d d d

i i

y

P i

y

y y

dy

…

CP Tutorial Slide 92

Car sequencing

• An assembly line produces cars with 2 options.

• Air conditioning and sun roof.

• Four types of cars, each with an output requirement.

Car
type

Num-
ber

AC
option

SR
option

a 1 0 0

b 3 1 0

c 1 0 1

d 2 1 1

• At most 3 cars
in every sequence of 5
can have AC

• At most 1 car
in every sequence of 3
can have SR.

• How to sequence the
cars?

CP Tutorial Slide 93

Car sequencing

A feasible
solution

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

CP Tutorial Slide 94

Car sequencing

We will use the sequence constraint:

Requires that at least ℓ and at most u ones occur in every
sequence of q consecutive binary variables yi.

()1sequence (, ,), , ,ny y q u… ℓ

CP Tutorial Slide 95

Car sequencing

CP model:

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

()
()
()

()
()

{ } { }

1 7

1 7

1 7

cardinality (, ,),(a,b,c,d),(1,3,1,2),(1,3,1,2)

element ,(0,1,0,1),)

element ,(0,0,1,1),)

sequence (, ,),5,0,3

sequence (, ,),3,0,1

a,b,c,d , , 0,1

i i

i i

i i i

x x

x y

x z

y y

z z

x y z∈ ∈

…

…

…

Car type in position i = 1 if AC in position i

= 1 if SR in position i

CP Tutorial Slide 96

Car sequencing

A larger instance:

Sequence constraints

Option 1: ≤ 1 out of 2
Option 2: ≤ 2 out of 3
Option 3: ≤ 1 out of 3
Option 4: ≤ 2 out of 5
Option 5: ≤ 1 out of 5

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

= 1 if SR in position i

CP Tutorial Slide 97

Car sequencing

A solution:

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

18 car types

positions

5 options

CP Tutorial Slide 98

Car sequencing

A solution:

Type Num. AC SR

a 1 0 0

b 3 1 0

C 1 0 1

D 2 1 1

18 car types

positions

5 options

Solve by filtering, propagation and branching (see demonstration)

CP Tutorial Slide 99

Consistency

Domain Consistency
Bounds Consistency

k-consistency and Backtracking

CP Tutorial Slide 100

Domain Consistency

• A constraint set is domain consistent if every value in every
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

CP Tutorial Slide 101

Domain Consistency

• A constraint set is domain consistent if every value in every
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

• For each xi and each value v in the domain of xi, some
x = (x1,…,xn) with xi = v satisfies the constraint set.

CP Tutorial Slide 102

Domain Consistency

• A constraint set is domain consistent if every value in every
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

• For each xi and each value v in the domain of xi, some
x = (x1,…,xn) with xi = v satisfies the constraint set.

• Equivalent terms:

• Hyperarc consistency, generalized arc consistency.

CP Tutorial Slide 103

Domain Consistency

• A constraint set is domain consistent if every value in every
variable domain is consistent with the constraints.

• That is, each domain value occurs in some feasible solution.

• For each xi and each value v in the domain of xi, some
x = (x1,…,xn) with xi = v satisfies the constraint set.

• Equivalent terms:

• Hyperarc consistency, generalized arc consistency.

• To achieve domain consistency:

• Filter inconsistent values from the domains.

CP Tutorial Slide 104

Domain consistency

Consider the constraint set

The solutions are (x1,x100) = (1,0), (1,1).

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

CP Tutorial Slide 105

Domain consistency

Consider the constraint set

The solutions are (x1,x100) = (1,0), (1,1).

It is not domain consistent, because x1 = 0 is infeasible.
No solution has x1 = 0.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

CP Tutorial Slide 106

Domain consistency

Consider the constraint set

The solutions are (x1,x100) = (1,0), (1,1).

It is not domain consistent, because x1 = 0 is infeasible.
No solution has x1 = 0.

Filtering 1 from the domain of x1 achieves domain
consistency.

{ } { }

1 100

1 100

1 100

1

0

, 0,1 1

x

x

x x

x

x∈

+ ≥
− ≥

∈

CP Tutorial Slide 107

subtree with 299 nodes
but no feasible solution

By removing 0 from the
domain of x1, the left
subtree is eliminated

{ }

1 100

1 100

1

1

other constraints

0,1j

x x

x x

x

+ ≥
− ≥

∈

1 0x = 1 1x =

Domain consistency

Domain consistency
can reduce branching.

CP Tutorial Slide 108

(1,0)

Domain consistency and projection

A constraint set is
domain consistent if
the domain of each
variable xi is the
projection of the
feasible set onto xi.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

x1

x100

(1,1)

CP Tutorial Slide 109

(1,0)

Domain consistency and projection

A constraint set is
domain consistent if
the domain of each
variable xi is the
projection of the
feasible set onto xi.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

x1

x100

(1,1)

Projection onto x1 = {1}

CP Tutorial Slide 110

(1,0)

Domain consistency and projection

A constraint set is
domain consistent if
the domain of each
variable xi is the
projection of the
feasible set onto xi.

{ }

1 100

1 100

1 100

1

0

, 0,1

x x

x x

x x

+ ≥
− ≥

∈

x1

x100

(1,1)

Projection onto x1 = {1}

Projection onto x100 = {0,1}

CP Tutorial Slide 111

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

3

4

min 28

circuit , , ,

2,3,4

1,3,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈
∈

∑

CP Tutorial Slide 112

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

3

4

min 28

circuit , , ,

2,3,4

1,3,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

CP Tutorial Slide 113

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

3

4

min 28

circuit , , ,

2,3,4

1,3,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency: compute projection onto each variable.

CP Tutorial Slide 114

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3

4

1

4

2

3

min 28

circuit ,

2

, ,

1,3,4

1,2,4

1,2,3

,4

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈
∈

∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency: compute projection onto each variable.

CP Tutorial Slide 115

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

3

4

2

min 28

circuit , , ,

1,3

2,4

1,2,4

1,2,3

jjx
j

c

x x x x

x

x

x

x

=

≤

∈
∈

∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency: compute projection onto each variable.

CP Tutorial Slide 116

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

2

4

3

min 28

circuit , ,

2

,

2,4

1,3

1,2,

,

3

4

jjx
j

c

x x

x

x x

x

x

x

=

≤

∈
∈

∈
∈

∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency: compute projection onto each variable.

CP Tutorial Slide 117

Domain consistency

• Example: Traveling salesman.

1 2

4 3

5

6

9

7

8
9

()
{ }
{ }
{ }
{ }

4

1

1 2 3 4

1

4

2

3

min 28

circuit

1,3

, , ,

2,4

1,3

2,4

jjx
j

c

x x x

x

x

x

x

x

=

∈
∈
∈
∈

≤∑

Two feasible solutions:

(x1,x2,x3,x4) = (2,3,4,1)

(x1,x2,x3,x4) = (4,1,2,3)

For domain consistency: compute projection onto each variable.

CP Tutorial Slide 118

Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution,
assuming the other domains are replaced by interval
relaxations.

• Interval relaxation of {2,4,7} is [2,7].

CP Tutorial Slide 119

Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution,
assuming the other domains are replaced by interval
relaxations.

• Example:

{ }
{ }

1 2

1

2

2 9

1,2,3,4

1,5

x x

x

x

+ =
∈
∈

(4,1)

x1

x2 (2,5)

Projection for domain consistency:

CP Tutorial Slide 120

Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution,
assuming the other domains are replaced by interval
relaxations.

• Example:

{ }
{ }

2

2

1

1 ,2, ,4

9

5

2

1,

x

x

x

x +

∈

=
∈

(4,1)

x1

x2 (2,5)

Projection for domain consistency:

Filtered domain of x1 has a “hole.”

CP Tutorial Slide 121

Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution,
assuming the other domains are replaced by interval
relaxations.

• Example:

{ }
{ }

1 2

1

2

2 9

1,2,3,4

1,5

x x

x

x

+ =
∈
∈

(4,1)

x1

x2 (2,5)

Projection for bounds consistency:

CP Tutorial Slide 122

Bounds consistency

• A constraint set is bounds consistent if the min and max
of each variable domain appear in some feasible solution,
assuming the other domains are replaced by interval
relaxations.

• Example:

{ }
{ }

2

2

1

1 ,2,3,4

,

2 9

15

x x

x

x

+
∈
∈

=

(4,1)

x1

x2 (2,5)

Projection for bounds consistency:

Filtered domain for x1 has no hole.

CP Tutorial Slide 123

Bounds propagation

• Bounds obtained by achieving bound consistency can be
propagated.

• This is important in global optimization.

• Example:

[]
[]

1 2

1 2

1

2

4 1

2 2

0,1

0,2

x x

x x

x

x

=
+ ≤

∈
∈

x1

x2

0 1
0

2

CP Tutorial Slide 124

Bounds propagation

• Bounds obtained by achieving bound consistency can be
propagated.

• This is important in global optimization.

• Example:

[]
[]

1 2

1 2

1

2

4 1

2 2

0.125,1

0.25, 2

x x

x x

x

x

=
+ ≤

∈
∈

x1

x2

Filter using constraint 1:

0 1
0

2

1
2

1 1
0.125

4 4 2
x

x
= ≥ =

⋅

2
1

1 1
0.25

4 4 1
x

x
= ≥ =

⋅

CP Tutorial Slide 125

Bounds propagation

• Bounds obtained by achieving bound consistency can be
propagated.

• This is important in global optimization.

• Example:

x1

x2

Propagate to
constraint 2::

0 1
0

2

2
1

0.25
1 0.875

2 2
x

x ≤ − ≤ =

2 12 2 2 2 0.125 1.75x x≤ − ≤ − ⋅ =

[]
[]

1 2

1 2

1

2

4 1

2 2

0.125,0.875

0.25, 1.75

x x

x x

x

x

=
+ ≤

∈
∈

CP Tutorial Slide 126

Bounds propagation

• Bounds obtained by achieving bound consistency can be
propagated.

• This is important in global optimization.

• Example:

x1

x2

Continuing, bounds asymptotically converge:

0 1
0

2[]
[]

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x

=
+ ≤

∈
∈

CP Tutorial Slide 127

Bounds propagation

• Bounds obtained by achieving bound consistency can be
propagated.

• This is important in global optimization.

• Example:

x1

x2

Continuing, bounds asymptotically converge:

Solvers truncate the process.

0 1
0

2[]
[]

1 2

1 2

1

2

4 1

2 2

0.146,0.854

0.293, 1.707

x x

x x

x

x

=
+ ≤

∈
∈

CP Tutorial Slide 128

k-consistency

• k-consistency is closely related to backtracking.

• If a feasible problem is strongly k-consistent, and the
width of its dependency graph is less than k with
respect to some ordering of the variables, then forward
checking with respect to that order solves the problem
without backtracking.

CP Tutorial Slide 129

k-consistency

• Definition:

• A constraint set is k-consistent if any assignment to k – 1
variables that violates no constraints can be extended to an
assignment to k variables without violating any constraints.

kj
x

CP Tutorial Slide 130

k-consistency

• Definition:

• A constraint set is k-consistent if any assignment to k – 1
variables that violates no constraints can be extended to an
assignment to k variables without violating any constraints.

• More precisely, given any partial assignment

that violates no constraints, and any other variable
there is a value vk such that

violates no constraints.

• A constraint can be violated only if all of its variables are
assigned values.

1 1 1 1(, ,) (,)
kj j kx x v v

− −=… …

kj
x

1 1 1 1(, , ,) (, ,)
k kj j j k kx x x v v v

− −=… …

CP Tutorial Slide 131

k-consistency

• Example

• 1-consistent: trivial

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

CP Tutorial Slide 132

k-consistency

• Example

• 1-consistent: trivial

• 2-consistent: need only check x1

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

CP Tutorial Slide 133

k-consistency

• Example

• 1-consistent: trivial

• 2-consistent: need only check x1

• not 3-consistent:
(x1,x2) = (0,0) cannot be extended to (x1,x2,x4) = (0,0,?).
(x1,x3) = (0,0) cannot be extended to (x1,x3,x4) = (0,0,?).

• There are the only pairs that can’t be extended.

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

CP Tutorial Slide 134

Dependency graph

• Dependency graph : variables are connected by edges when
they occur in a common constraint.

• Also called primal graph .

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

x1

x2

x3 x4
Dependency graph
for ordering 1,2,3,4

CP Tutorial Slide 135

Dependency graph

• Dependency graph : variables are connected by edges when
they occur in a common constraint.

• Also called primal graph .

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

x1

x2

x3 x4
Dependency graph for
ordering 1,2,3,4

Width of the graph is
the maximum in-degree
(here, 2).

CP Tutorial Slide 136

Backtracking

Theorem (Freuder). If a feasible problem is strongly
k-consistent, and the width of its dependency graph is less
than k with respect to some ordering of the variables, then
forward checking with respect to that order solves the
problem without backtracking.

• A constraint set is strongly k-consistent if it is i-consistent for
i = 1,…,k.

CP Tutorial Slide 137

Backtracking

• The example doesn’t satisfy the conditions of the theorem.

• Width = 2, not strongly 3-consistent.

• Backtracking is possible, and it
occurs when we set

(x1,x2,x3,x4) = (0,0,0,?)

• A feasible solution is (x1,x2,x3,x4) = (1,0,0,0).

{ }

1 2 4

1 2 3

1 4

1

0

0

0,1j

x x x

x x x

x x

x

+ + ≥
− + ≥

− ≥
∈

x1

x2

x3 x4
Width = 2

CP Tutorial Slide 138

Backtracking

• Suppose we add two constraints:.

• This is strongly 3-consistent.

• Extra constraints rule out the only
partial solutions that couldn’t be
extended:
(x1,x2) = (0,0), (x1,x3) = (0,0)

• Now it satisfies conditions of the theorem.

• Backtracking does not occur.

• For example, (x1,x2,x3,x4) = (0,1,1,0).

{ }

1 2 4

1 2

1

3

4

1

1

2

3

1

1

1

0

0

0,1j

x x x

x x x

x x

x x

x

x

x

+ + ≥
− + ≥

+
+ ≥

− ≥

∈

≥

CP Tutorial Slide 139

• Proof of theorem, by induction on k.

• x1 can be assigned a value without violating a constraint,
because problem is feasible.

• Suppose x1, …, xi−1 have been
assigned values without violating
a constraint. Show xi can be
assigned a value.

• xi occurs in the same constraint
as at most k − 1 earlier variables.

• So these variable assignments
can be extended to xi.

• Thus assignments to x1, …, xi−1
can be extended to xi.

xi−1 = vi−1

Backtracking

x1 = v1

x2 = v2

xi = ?

…

CP Tutorial Slide 140

Review of Network Flow Theory

Min cost network flow
Basis tree theorem

Max flow
Bipartite matching

CP Tutorial Slide 141

Min cost network flow problem

• Example of a min cost network flow problem:

It is a linear
programming problem:

CP Tutorial Slide 142

Min cost network flow problem

• Example of a min cost network flow problem:

In matrix form:

CP Tutorial Slide 143

Min cost network flow problem

• If the matrix is m x n, it has rank m − 1.

• So a basic solution of the LP has m − 1 basic variables.

• Basis tree theorem: Every
basis corresponds to a spanning
tree.

CP Tutorial Slide 144

Min cost network flow problem

• If the matrix is m x n, it has rank m − 1.

• So a basic solution of the LP has m − 1 basic variables.

• Basis tree theorem: Every
basis corresponds to a spanning
tree.

CP Tutorial Slide 145

Min cost network flow problem

• Optimality test.

• A basic solution (flow) is optimal if all reduced costs are
nonnegative.

• The reduced cost of a nonbasic flow xij is cij – ui – uj,
where ui is the dual multiplier (potential) for the flow balance
constraint at node i.

• Due to complementary slackness, we can find the potentials
ui by solving the equations ui − uj = cij for all basic arcs (i,j).

CP Tutorial Slide 146

Min cost network flow problem

• Finding potentials and reduced costs.

• We find the potentials ui by solving the equations ui − uj = cij
for all basic arcs (i,j). Then the reduced cost of nonbasic xij
is rij = cij − ui + uj

A basic solution
Potentials and reduced costs

CP Tutorial Slide 147

Min cost network flow problem

• Improving the solution.

• Since x13 has reduced cost r13 < 0, we increase flow on (1,3).

• Adding (1,3) to basis tree creates a cycle.

A basic solution
Potentials and reduced costs

CP Tutorial Slide 148

Min cost network flow problem

• Improving the solution.

• Remove from cycle the arc on which flow first hits zero.

A basic solution Optimal solution
CP Tutorial Slide 149

Maximum flow problem

• The max flow problem is a special case of the min (max) cost
network flow problem. Cost on return arc is +1.

A max flow problem

Max cost network flow formulation
CP Tutorial Slide 150

Maximum flow problem

• The max flow problem is a special case of the min (max) cost
network flow problem.

A max flow problem

Max cost network flow formulationPotentials and reduced costs
CP Tutorial Slide 151

Maximum flow problem

• The max flow problem is a special case of the min (max) cost
network flow problem.

A max flow problem

(S,T) cut.

Potentials in S are 0.
Potentials in T are 1.

So reduced costs S� T are 1.
Redued costs T�S are −1.

Flow is max if S� T arcs are
saturated and costs T�S arcs
are empty.

Potentials and reduced costs

S
T

CP Tutorial Slide 152

Maximum flow problem

• If solution is suboptimal, adding arc to the basis creates a cycle.

A max flow problem

Suboptimal flow Cycle created by arc (1,2)

S

T

CP Tutorial Slide 153

Maximum flow problem

• If solution is suboptimal, adding arc to the basis creates a cycle.

A max flow problem

Suboptimal flow Cycle created by arc (1,2)

S

T

CP Tutorial Slide 154

Maximum flow problem

• Cycle defines an augmenting path in residual graph .

• So if solution is suboptimal, there is an augmenting path.*

Cycle created by arc (1,2)Residual graph

*Additional
argument
needed in

case of
degeneracy.

CP Tutorial Slide 155

Bipartite matching

• Max cardinality bipartite matching can be formulated as max flow.

Max flow problemA max cardinality matching

CP Tutorial Slide 156

Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathsA suboptimal flow

CP Tutorial Slide 157

Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathAugmenting path

CP Tutorial Slide 158

Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathAugmenting path

CP Tutorial Slide 159

Bipartite matching

• Augmenting paths in max flow correspond to alternating paths .

Alternating pathAugmenting path

CP Tutorial Slide 160

All-different Constraint

Matching Model
Domain Consistency
Bounds Consistency

CP Tutorial Slide 161

All-different constraint

• The alldiff constraint requires x1, …, xn to take pairwise distinct values.

()1alldiff , , nx x…

CP Tutorial Slide 162

Matching model

• Alldiff has a solution if and only if there is a perfect matching.

CP Tutorial Slide 163

()1 2 3 4 5alldiff , , , ,x x x x x

{ }
{ }
{ }
{ }
{ }

1

2

1

1

1

1

2,3,5

1,2,3,5

1,5

1,3,4,5,6

x

x

x

x

x

∈
∈
∈
∈
∈

• Solution shown:
(x1,x2,x3,x4,x5) = (1,2,3,5,4)

Max flow model

• Alldiff has a solution if and only if max flow = 5.

• All arcs have capacity 1, except return arc with capacity 5.

CP Tutorial Slide 164

Residual graph for max flow

Domain filtering

• To filter domains, fix flow on return arc to 5.

• Can 3 be removed from domain of x2? Solve max flow problem
from 3 to x2, treating (x2,3) as return arc.

CP Tutorial Slide 165

Residual graph for max flow

Domain filtering

• To filter domains, fix flow on return arc to 5.

• Can 3 be removed from domain of x2? Max flow from 3 to x2 is 1,
due to augmenting path.

Alternating cycleAugmenting path from 3 to x2

CP Tutorial Slide 166

Domain filtering

• To filter domains, fix flow on return arc to 5.

• Can 3 be removed from domain of x2? Max flow from 3 to x2 is 1,
due to augmenting path. So x2 = 3 is possible.

Alternating cycleAugmenting path from 3 to x2

CP Tutorial Slide 167

Domain filtering

• Fix flow on return arc in max flow model to 5.

• Can 6 be removed from domain of x5?

CP Tutorial Slide 168

Domain filtering

• Fix flow on return arc in max flow model to 5.

• Can 6 be removed from domain of x5? No, because max flow
from 6 to x5 is 1, so that x5 = 6 is possible.

Even alternating path
starting at uncovered vertex

Augmenting path from x2 to 2
CP Tutorial Slide 169

Domain filtering

• Fix flow on return arc in max flow model to 5.

• Can 1 be removed from domain of x3? Yes, because there is no
augmenting path from 1 to x3.

No alternating cycle or even
alternating path containing (x3,1)

CP Tutorial Slide 170

CPAIOR tutorial
May 2009 Slide 171

y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating
paths that start at an uncovered
vertex.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even
alternating path.

CPAIOR tutorial
May 2009 Slide 172

y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating
paths that start at an uncovered
vertex.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even
alternating path.

CPAIOR tutorial
May 2009 Slide 173

y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating
paths that start at an uncovered
vertex.

Mark edges in alternating cycles.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even
alternating path.

CPAIOR tutorial
May 2009 Slide 174

y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in even alternating
paths that start at an uncovered
vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in
matching.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even
alternating path.

CPAIOR tutorial
May 2009 Slide 175

y1

y2

y3

y4

y5

1

2

3

4

5

6

Mark edges in alternating paths
that start at an uncovered vertex.

Mark edges in alternating cycles.

Remove unmarked edges not in
matching.

Domain filtering

• We can filter xi = j when (xi,j) belongs to no alternating cycle or even
alternating path.

• Filtered domains:

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1

2,3

2,3

5

4,6

x

x

x

x

x

∈
∈
∈
∈
∈

CP Tutorial Slide 176

Domain filtering

• Algorithmically, identify strongly connected components of directed
bipartite graph.

• Edge directions are the same as in the residual graph.

CP Tutorial Slide 177

Domain filtering

• Algorithmically, identify strongly connected components of directed
bipartite graph.

• Keep edges in matching or on directed paths starting at
uncovered vertices, and edges inside a strongly connected
component. Remove all other edges

CP Tutorial Slide 178

Domain filtering

• Algorithmically, identify strongly connected components of directed
bipartite graph.

• Keep edges in matching or on directed paths starting at
uncovered vertices, and edges inside a strongly connected
component. Remove all other edges

CP Tutorial Slide 179

Domain filtering

Bounds Consistency

• Bounds consistency is easier to achieve for alldiff than domain
consistency.

• Bipartite graph has a convexity property.

CP Tutorial Slide 180

Bounds Consistency

• Replace domains with intervals {Lj,,…,Uj}.

CP Tutorial Slide 181

()1 2 3 4 5alldiff , , , ,x x x x x

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1,2,4

2,3,6

3,5

3,4

4,5

x

x

x

x

x

∈
∈
∈
∈
∈

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1,2,3,4

2,3,4,5,6

3,4,5

3,4

4,5

x

x

x

x

x

∈
∈
∈
∈
∈

Domains Intervals

Bipartite graph is “convex.”

Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.

CP Tutorial Slide 182

U1 = 4
Cover 1 using (xj,1) with smallest Uj.

Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.

CP Tutorial Slide 183

Cover 1 using (xj,1) with smallest Uj.

U2 = 6Cover 2 using (xj,2) with smallest Uj.

Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.

CP Tutorial Slide 184

Cover 1 using (xj,1) with smallest Uj.

U3 = 5

Cover 2 using (xj,2) with smallest Uj.

Cover 3 using (xj,3) with smallest Uj.

U4 = 4

Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.

CP Tutorial Slide 185

Cover 1 using (xj,1) with smallest Uj.

Cover 2 using (xj,2) with smallest Uj.

Cover 3 using (xj,3) with smallest Uj. U3 = 5

Cover 4 using (xj,4) with smallest Uj.

U5 = 5

Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.

CP Tutorial Slide 186

Cover 1 using (xj,1) with smallest Uj.

Cover 2 using (xj,2) with smallest Uj.

Cover 3 using (xj,3) with smallest Uj.

Cover 4 using (xj,4) with smallest Uj.

U5 = 5

Cover 5 using (xj,5) with smallest Uj.

Bounds Consistency

• Find initial solution for purposes of achieving bounds consistency.

• This can be done in O(# variables) time.

CP Tutorial Slide 187

(Skip vertices on right that can’t be
covered.) Now we are done.

Cover 1 using (xj,1) with smallest Uj.

Cover 2 using (xj,2) with smallest Uj.

Cover 3 using (xj,3) with smallest Uj.

Cover 4 using (xj,4) with smallest Uj.

Cover 5 using (xj,5) with smallest Uj.

Bounds Consistency

• Now filter domains using max flow model as before.

CP Tutorial Slide 188

{ }
{ }
{ }
{ }
{ }

2

1

3

4

5

2,3

1

,6

3,5

3,4

2

4,

,

5

x

x

x

x

x

∈
∈
∈
∈

∈

Reduced
domains

{ }
{ }
{ }
{ }
{ }

1

2

3

4

5

1,2,4

2,3,6

3,5

3,4

4,5

x

x

x

x

x

∈
∈
∈
∈
∈

Domains

Cardinality Constraint

Network Flow Model
Domain Consistency
Nvalues Constraint

CP Tutorial Slide 189

Cardinality constraint

• The cardinality constraint limits the number of variables x1, …, xn
that take specified values.

• Requires that ℓi ≤ |{ j | xj = vi }| ≤ ui for i = 1, …, m, where

v = (v1, …, vm), ℓ = (ℓ1, …, ℓm), and u = (u1, …, um).

• Also called generalized cardinality constraint or gcc .

• Cardinality can be filtered using optimality conditions for max flow,
similar to alldiff .

()1cardinality (, ,), , ,nx x v u… ℓ

CP Tutorial Slide 190

Cardinality constraint

• Example.

• It has a solution if and only if there is a feasible flow:

()1 2 3 4cardinality (, , ,),(, ,),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial Slide 191

Cardinality constraint

• Example.

• It has a solution if and only if there is a max flow of 4:

()1 2 3 4cardinality (, , ,),(, ,),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial Slide 192

2

All other flows are 1

2

4

Cardinality constraint

• Example.

• Can x2 = c?

()1 2 3 4cardinality (, , ,),(, ,),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial Slide 193

Residual graph

Cardinality constraint

• Example.

• Can x2 = c? Yes, because there is an augmenting path
from x2 to c. We cannot remove c from domain of x2.

()1 2 3 4cardinality (, , ,),(, ,),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial Slide 194

Residual graph

Cardinality constraint

• Example.

• Can x2 = a? No, because there is no augmenting path
from x2 to a. We can remove a from domain of x2.

()1 2 3 4cardinality (, , ,),(, ,),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial Slide 195

Residual graph

Cardinality constraint

• Example.

• Can x2 = a? No, because there is no augmenting path
from x2 to a. We can remove a from domain of x2.

• No other values can be removed.

()1 2 3 4cardinality (, , ,),(, ,),(1,1,0),(2,3,2)x x x x a b c

CP Tutorial Slide 196

Residual graph

Nvalues constraint

• The nvalues constraint limits the number of different values taken by
variables x1, …, xn.

• Requires that ℓ ≤ |{x1, …, xn }| ≤ u

• Becomes alldiff when ℓ = u = n.

• Has a flow model similar to cardinality.

()1nvalues (, ,), ,nx x u… ℓ

CP Tutorial Slide 197

Sequence Constraint

Filtering Based on Cumulative Sums
Filtering Based on Network Flows

CP Tutorial Slide 198

Sequence constraint

• The sequence constraint limits the number of 1s in each sequence
of q consecutive binary variables.

• Requires that

• There is a complete polytime filter (not obvious).

• Used in car sequencing and similar problems.

CP Tutorial Slide 199

1

, 1, , 1
j q

i
i j

y u j n q
+ −

=

≤ ≤ = − +∑ℓ …

()1sequence (, ,), , ,ny y q u… ℓ

Sequence constraint

• Recall the car sequencing example.

CP Tutorial Slide 200

1

, 1, , 1
j q

i
i j

x u j n q
+ −

=

≤ ≤ = − +∑ℓ …

()
()

1 7

1 7

sequence (, ,),5,0,3

sequence (, ,),3,0,1

y y

z z

…

…

yj = 1 for AC

zj = 1 for AC

Filtering based on cumulative sums

• We first show how to find a feasible solution for sequence.

• We will filter domains by “shaving,” i.e., removing domain
elements one at a time and checking whether there is a feasible
solution.

• Define the partial sum

• So sequence(y,q,ℓ,u) says ℓ ≤ Sj − Sj−q ≤ u for j = q,…,n.

CP Tutorial Slide 201

1

j

j i
i

S y
=

=∑

• Example

• First set each yi to smallest value in its domain.

CP Tutorial Slide 202

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

• Example

CP Tutorial Slide 203

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S4 − S0 ≥ 2

• Example

CP Tutorial Slide 204

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S4 − S0 ≥ 2

So increase y4 and make
adjustments to stay in domains.

• Example

CP Tutorial Slide 205

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

So increase y4 and make
adjustments to stay in domains.

CP Tutorial Slide 206

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S5 − S1 ≤ 2

• Example

CP Tutorial Slide 207

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

Violates S5 − S1 ≤ 2

• Example

So increase y1 and
make adjustments

CP Tutorial Slide 208

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

So increase y1 and
make adjustments

• Example

CP Tutorial Slide 209

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

• Example

Violates S6 − S2 ≥ 2

CP Tutorial Slide 210

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 4 5 60,1 1 0,1 0,1 1 0,1y y y y y y∈ ∈ ∈ ∈ ∈ ∈

Filtering based on cumulative sums

So increase y6 and
make adjustments

• Example

Violates S6 − S2 ≥ 2

• Example

• Check whether 1 can be removed from domain of x4.

• Remove the 1 and check for feasibility.

CP Tutorial Slide 211

()1 6sequence (, ,),4,2,2y y…

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

Filtering based on cumulative sums

CP Tutorial Slide 212

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

Set each yi to smallest value in its domain.

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

CP Tutorial Slide 213

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

Violates S5 − S1 ≤ 2

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

CP Tutorial Slide 214

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

So increase y1 and
make adjustments

Violates S5 − S1 ≤ 2

CP Tutorial Slide 215

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

So increase y1 and
make adjustments

CP Tutorial Slide 216

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

Violates S4 − S0 ≤ 2

CP Tutorial Slide 217

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 0 1 0,1y y y yy y∈ ∈∈ ∈ ∈ ∈

Cannot increase!

Violates S4 − S0 ≤ 2

CP Tutorial Slide 218

()1 6sequence (, ,),4,2,2y y…

Filtering based on cumulative sums

• Example

{ } { } { } { } { } { }1 2 3 5 640,1 1 0,1 1, 0,10 1yy y y y y∈∈ ∈ ∈ ∈ ∈

Cannot increase!

Violates S4 − S0 ≤ 2

Problem is infeasible, so
1 cannot be removed

from domain of y4.

Filtering based on cumulative sums

• Theorem. This method correctly checks for feasibility and runs in
O(n2) time.

• So filtering requires O(n3) time (try removing each domain value).

CP Tutorial Slide 219

Generalized sequence constraint

• The same method works for the generalized sequence constraint .

• Each variable set Xi takes value 1 at least ℓ and at most ui times,
where X = {x1,…,xn} = X1 ∪ ⋅⋅⋅ ∪ Xm.

• Standard sequence constraint is

where Xi = {xi,…,xi+q−1}.

• Filtering genSequence has same complexity as filtering
sequence .

CP Tutorial Slide 220

()1 1 1genSequence (, ,),(, ,),(, ,)m m mX X u u… ℓ … ℓ …

()1 1genSequence (, ,),(, ,),(, ,)n qX X u u− +… ℓ… ℓ …

Filtering based on network flows

• Sequence can be formulated as an integer programming problem.

• Transpose of constraint matrix has consecutive 1s property .

• So feasibility can be checked in polytime.

• In fact, there is a network flow model.

CP Tutorial Slide 221

Filtering based on network flows

• Example.

• Integer programming formulation:

CP Tutorial Slide 222

()1 7sequence (, ,),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Filtering based on network flows

• Example.

• Integer programming formulation:

•

• Matrix form:

CP Tutorial Slide 223

()1 7sequence (, ,),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Filtering based on network flows

• Example.

• Integer programming formulation:

• Matrix form:

CP Tutorial Slide 224

()1 7sequence (, ,),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Surplus variables

Filtering based on network flows

• Example.

• Integer programming formulation:

• Matrix form:

CP Tutorial Slide 225

()1 7sequence (, ,),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Slack variables

Filtering based on network flows

• Example.

• Integer programming formulation:

• Matrix form:

CP Tutorial Slide 226

()1 7sequence (, ,),3, ,y y u… ℓ

2 1j j jy y y u− −≤ + + ≤ℓ

Transpose of matrix
has consecutive 1s
property.

Filtering based on network flows

• Row operations convert it to network flow matrix.

CP Tutorial Slide 227

Subtract
each row
from the
next
(after
adding row
of 0s to the
bottom)

Filtering based on network flows

• Corresponding network flow problem.

CP Tutorial Slide 228

Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n

y1

y2

y3

Filtering based on network flows

• Corresponding network flow problem.

CP Tutorial Slide 229

Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n
y4

Filtering based on network flows

• Corresponding network flow problem.

CP Tutorial Slide 230

Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n

y7

y5

y6

Filtering based on network flows

• Can now filter using optimality conditions for max flow

CP Tutorial Slide 231

Flow on labeled edges is fixed to label.

yj−q = flow on arc (bq,bj) for j = q+1,…,2q

yj = flow on arc (bj,bj+q) for j = q+1,…,n−q

yj = flow on arc (bj,bn+1) for j = n−q+1,…,n

Generalized sequence constraint

• The genSequence constraint may not have a network flow model.

• Can check in O(m + n + r) time whether rows can be permuted to
yield a matrix whose transpose has the consecutive 1s property, in
which case there is a network flow model.

• m x n = size of matrix, r = number of nonzeros in matrix.

• If not, can still check in O(mr) time if there is an equivalent
network matrix.

• If not, can still check feasibility by linear programming.

• yi portion of matrix has consecutive 1s property, and
remaining columns are ±unit vectors.

• So problem is totally unimodular, and LP has integral solution.

CP Tutorial Slide 232

Stretch Constraint

Filtering Based on Dynamic Programming

CP Tutorial Slide 233

Stretch constraint

• The stretch constraint controls the length of stretches (consecutive
subsequences) of variables that take the same value.

• It also includes a pattern constraint , which restricts value
changes from one variable to the next.

• Can be filtered using dynamic programming .

CP Tutorial Slide 234

Stretch constraint

• Example

• xi = shift worked on day i.

• Stretch of shift a must contain 2 or 3 a’s, similarly for shift b and c.

• Can transition only between shifts a & b, or b & c.

• Domains:

CP Tutorial Slide 235

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

Stretch constraint

• Example

• There are 2 solutions.

• Solution 1:

CP Tutorial Slide 236

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

Stretch constraint

• Example

• There are 2 solutions.

• Solution 2:

CP Tutorial Slide 237

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

Stretch constraint

• In general,

• where x = (x1,…,xn), v = (v1,…,vm), ℓ = (ℓ1,…, ℓm), u = (u1,…,um).

• Requires that for i = 1,…,m, any stretch of value vi has length in
the interval [ℓi,ui].

• A stretch is a maximal sequence of consecutive variables xi
that take the same value.

• Requires that (xi,xi+1) ∈ P, for all i.

CP Tutorial Slide 238

()
{ }

stretch , , , ,

(,) | (,)j k

x v u P

P v v j k E= ∈

ℓ

Filter based on dynamic programming

• Example

CP Tutorial Slide 239

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Filter based on dynamic programming

• Example

CP Tutorial Slide 240

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Transition
Possible transitions:
aa, aaa, bb, bbb, cc, ccc

Filter based on dynamic programming

• Example

CP Tutorial Slide 241

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Transition
Possible transitions:
aa, aaa, bb, bbb, cc, ccc

Stage of the recursion

Filter based on dynamic programming

• Example

CP Tutorial Slide 242

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift)

Transition

Stage of the recursion

Must terminate
on day 7

Filter based on dynamic programming

• Example

CP Tutorial Slide 243

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate
on day 7

Solution: aabbaaa

Filter based on dynamic programming

• Example

CP Tutorial Slide 244

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate
on day 7

Solution: ccbbaaa

Filter based on dynamic programming

• Example

CP Tutorial Slide 245

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate
on day 7

Projection onto x1, x2 (days 1, 2) = {a,c}

Filter based on dynamic programming

• Example

CP Tutorial Slide 246

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate
on day 7

Projection onto x3, x4 (days 3,4) = {b}

Filter based on dynamic programming

• Example

CP Tutorial Slide 247

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

State = (day,shift) Must terminate
on day 7

Projection onto x5, x6, x7 (days 5,6,7) = {a}

Filter based on dynamic programming

• Example

CP Tutorial Slide 248

()
{ }

1 7stretch (, ,),(, ,),(2,2,2),(3,3,3),

(,),(,),(,),(,)

x x a b c P

P a b b a b c c b=
…

Original domains

Filtered domains

Filter based on dynamic programming

• The filter is complete (achieves domain consistency).

• There is a clever way to speed up the dynamic programming
algorithm.

• Too complicated to present here.

CP Tutorial Slide 249

Stretch-cycle

• The stretch-cycle constraint applies to a cycle rather than a linear
sequence.

• Useful for cyclic schedules (e.g., same schedule every week).

• Dynamic programming filter can be modified for stretch-cycle .

CP Tutorial Slide 250

Regular Constraint

Finite Automaton Model
Filtering Based on Dynamic Programming

CP Tutorial Slide 251

Regular Constraint

• Based on regular expressions in Chomsky hierarchy.

• Deals with any sequencing constraint that can be captured by a
deterministic finite automaton .

• …or by a regular expression.

• Used in sequencing and scheduling problems.

• More general than stretch .

• Also filtered by dynamic programming.

• Or by decomposition

CP Tutorial Slide 252

Regular constraint

• Use same stretch example

CP Tutorial Slide 253

Deterministic
finite automaton

Initial state

Absorbing states
in circles.
State labels are
arbitrary.

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 254

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: a

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 255

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aa

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 256

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aab

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 257

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aabb

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 258

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aabba

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 259

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aabbaa

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 260

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aabbaaa

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 261

Deterministic
finite automaton

Absorbing states
in circles.
State labels are
arbitrary.

2 solutions of length 7

Solution 1: aabbaaa
Solution 2: ccbbaaa

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 262

Regular expression:

Kleene star
(repeat 0 or more times)

((* *)* | (* *)*) * (| * | *)aaa bbb ccc bbb aaa cccε

Empty string

()1 7regular (, ,),x x A…

Regular constraint

• Use same stretch example

CP Tutorial Slide 263

Regular expression:

Kleene star
(repeat 0 or more times)

((* *)* | (* *)*) * (| * | *)aaa bbb ccc bbb aaa cccε

Empty string

()1 7regular (, ,),x x A…

Solutions: aabbaaa, ccbbaaa

Filtering by dynamic programming

• Use same stretch example

CP Tutorial Slide 264

()1 7regular (, ,),x x A…

Stage (day)

Absorbing
state

Filtering by dynamic programming

• Use same stretch example

CP Tutorial Slide 265

()1 7regular (, ,),x x A…

Solution 1

Not an
absorbing

state

Filtering by dynamic programming

• Use same stretch example

CP Tutorial Slide 266

()1 7regular (, ,),x x A…

Solution 2

Not an
absorbing

state

Absorbing
state

Filtering by dynamic programming

• Use same stretch example

CP Tutorial Slide 267

()1 7regular (, ,),x x A…

Original
domains

Filtered domains (projections onto each variable)

Filtering by dynamic programming

• Use same stretch example

CP Tutorial Slide 268

()1 7regular (, ,),x x A…

Stage (day)

Compare with
DP model
for stretch

Dynamic programming model

• Alternative: Formulate the
problem as dynamic
programming from the start.

CP Tutorial Slide 269

Filtering by decomposition

• Recursive equations:

• where ti+1() are transition functions, si is state variable.

• Propagate these equations in 2 passes (forward and backward).

• This achieves domain consistency because constraint hypergraph
is Berge acyclic.

• Based on a result from database theory.

• Filtering by decomposition is an active research area iln CP.

CP Tutorial Slide 270

()1 1 , , 1, ,7i i i is t s x i+ += = …

Constraint
hypergraph

Cyclic regular constraint

• The regular-cycle constraint is filtered by using an additional state
variable to indicate the first control.

CP Tutorial Slide 271

Example problem is infeasible.

First control was c.

No absorbing
state in last
stage
(= stage 1)

Must go to
stage 9 with
control a.

Disjunctive Scheduling

Edge Finding
Not-first/Not-last Rules

CP Tutorial Slide 272

Disjunctive scheduling

• Disjunctive scheduling assigns start times to jobs so that they do
not overlap.

• Also known as single machine scheduling problem

• Jobs have release times and deadlines

• There may be precedence constraints

• Various objective functions

• Makespan, number of late jobs, total tardiness, etc.

• Filtering is well developed.

• Edge finding (old OR technique by Carlier and Pinson)

• Not-first/not-last rules

CP Tutorial Slide 273

Disjunctive scheduling

Consider a disjunctive scheduling constraint:

Start time variables

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

CP Tutorial Slide 274

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

Processing times

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

CP Tutorial Slide 275

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

Variable domains defined by time
windows and processing times

1

2

3

5

[0,10 1]

[0,10 3]

[2,7 3]

[4,7 2]

s

s

s

s

∈ −
∈ −
∈ −
∈ −

CP Tutorial Slide 276

Edge finding for disjunctive scheduling

Consider a disjunctive scheduling constraint:

A feasible (min makespan) solution:

Time window

()1 2 3 5 1 2 3 5noOverlap (, , ,),(, , ,)s s s s p p p p

CP Tutorial Slide 277

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

CP Tutorial Slide 278

Edge finding for disjunctive scheduling

But let’s reduce 2 of the deadlines to 9:

We will use edge finding
to prove that there is no
feasible schedule.

CP Tutorial Slide 279

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

L{2,3,5}E{3,5}
7<3+3+2

CP Tutorial Slide 280

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

Latest deadline

L{2,3,5}E{3,5}
7<3+3+2

CP Tutorial Slide 281

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

Earliest release time

L{2,3,5}E{3,5}
7<3+3+2

CP Tutorial Slide 282

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

Because if job 2 is not first, there is not enough time for all 3
jobs within the time windows:

{2,3,5} {3,5} {2,3,5}L E p− <

Total processing time

L{2,3,5}E{3,5}
7<3+3+2

CP Tutorial Slide 283

Edge finding for disjunctive scheduling

We can deduce that job 2 must precede jobs 3 and 5: { }2 3,5≪

So we can tighten deadline of job 2 to minimum of

{3} {3} 4L p− =

Since time window of job 2 is now too narrow, there is no
feasible schedule.

{5} {5} 5L p− = {3,5} {3,5} 2L p− =

L{2,3,5}E{3,5}
7<3+3+2

CP Tutorial Slide 284

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs
in set J: k J≪
If there is not enough time for all the jobs after the earliest
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

CP Tutorial Slide 285

Edge finding for disjunctive scheduling

In general, we can deduce that job k must precede all the jobs
in set J: k J≪
If there is not enough time for all the jobs after the earliest
release time of the jobs in J

{ } { }J k J J kL E p∪ ∪− < {2,3,5} {3,5} {2,3,5}L E p− <

Now we can tighten the deadline for job k to:

{ }min J JJ J
L p′ ′′⊂

− {3,5} {3,5} 2L p− =

CP Tutorial Slide 286

Edge finding for disjunctive scheduling

There is a symmetric rule: k J≫

If there is not enough time for all the jobs before the latest
deadline of the jobs in J:

{ } { }J J k J kL E p∪ ∪− <

Now we can tighten the release date for job k to:

{ }max J JJ J
E p′ ′′⊂

+

CP Tutorial Slide 287

Edge finding for disjunctive scheduling

Problem: how can we avoid enumerating all subsets J of jobs
to find edges?

{ } { }J k J J kL E p∪ ∪− <

…and all subsets J′ of J to tighten the bounds?

{ }min J JJ J
L p′ ′′⊂

−

CP Tutorial Slide 288

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time windows
lie within some interval between release times/deadlines

e.g., J = {3,5}

CP Tutorial Slide 289

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time windows
lie within some interval between release times/deadlines.

Removing a job from those within an interval only weakens the
test

{ } { }J k J J kL E p∪ ∪− <

There are a polynomial number of intervals
defined by release times and deadlines.

e.g., J = {3,5}

CP Tutorial Slide 290

Edge finding for disjunctive scheduling

Key result: We only have to consider sets J whose time windows
lie within some interval between release times/deadlines.

Note: Edge finding does not achieve bounds consistency,
which is an NP-hard problem.

e.g., J = {3,5}

CP Tutorial Slide 291

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive
schedule (JPS). Using a different example, the JPS is:

CP Tutorial Slide 292

Edge finding for disjunctive scheduling

One O(n2) algorithm is based on the Jackson pre-emptive
schedule (JPS). Using a different example, the JPS is:

For each job

Scan jobs in decreasing order of

Select first for which

Conclude that

Update to JPS(,)

ik

i k

k i i J

ik

i

i

k J L

k L E p p

i J

E i k

∈
− < +

≫

Jobs unfinished at time Ei in JPS

Jobs j ≠ i in Ji with Lj ≤ Lk

Latest completion time in JPS of jobs in Jik

Total remaining processing
time in JPS of jobs in Jik

CP Tutorial Slide 293

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

{1,2} 4 1 2 4L E p p p− < + +

()4 {1,2}¬ ≪

Because if job 4 is first, there is too little time to complete the
jobs before the later deadline of jobs 1 and 2:

L{1,2}E4
6<1+3+3

CP Tutorial Slide 294

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4
6<1+3+3

2 2 4E p+ =

()4 {1,2}¬ ≪

CP Tutorial Slide 295

Not-first/not-last rules

We can deduce that job 4 cannot precede jobs 1 and 2:

1 1 3E p+ =
Now we can tighten the release time of job 4 to minimum of:

L{1,2}E4

2 2 4E p+ =

()4 {1,2}¬ ≪

CP Tutorial Slide 296

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the
jobs in J:

J k JL E p− <

()k J¬ ≪

if there is too little time after release time of job k to complete
all jobs before the latest deadline in J:

Now we can update Ei to

{ }min j jj J
E p

∈
+

CP Tutorial Slide 297

Not-first/not-last rules

In general, we can deduce that job k cannot precede all the
jobs in J:

J k JL E p− <

()k J¬ ≪

if there is too little time after release time of job k to complete
all jobs before the latest deadline in J:

Now we can update Ei to

{ }min j jj J
E p

∈
+

There is a symmetric not-last rule.

The rules can be applied in polynomial time, although an
efficient algorithm is quite complicated.

CP Tutorial Slide 298

Cumulative Scheduling

Edge Finding
Extended Edge Finding
Not-first/Not-last Rules
Energetic Reasoning

CP Tutorial Slide 299

Cumulative scheduling

• Cumulative scheduling assigns start times to jobs so that total rate
of resource consumption is within a limit.

• A form of resource-constrained scheduling

• Several jobs can run simultaneously

• Multiple-machine scheduling problem is special case

• Resource consumption rate is 1 for each job, resource limit is
number of machines

• Filtering is well developed.

• Edge finding

• Extended edge finding

• Not-first/not-last rules

• Energetic reasoning
CP Tutorial Slide 300

Cumulative scheduling

Consider a cumulative scheduling constraint:

()1 2 3 1 2 3 1 2 3cumulative (, ,),(, ,),(, ,),s s s p p p c c c C

A feasible solution:

CP Tutorial Slide 301

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Suppose that job 3 is not the last to finish.

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

CP Tutorial Slide 302

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8

CP Tutorial Slide 303

Suppose that job 3 is not the last to finish.

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
Because the total energy required exceeds the area between
the earliest release time and the later deadline of jobs 1,2:

()3 {1,2} {1,2} {1,2,3}e e C L E+ > ⋅ −

Total energy
required = 22

9

5

8Area available
= 20

CP Tutorial Slide 304 E123 L12

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10

CP Tutorial Slide 305

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

3 {1,2} {1,2}
{1,2}

3

()()Je C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10Excess energy
required by jobs

1,2 = 4

4

CP Tutorial Slide 306

Edge finding for cumulative scheduling

We can deduce that job 3 must finish after the others finish: { }3 1,2>
We can update the release time of job 3 to

{ } 3 {1,2} {1,2}12

{1,2}
3

()()e C c L E
E

c

− − −
+

Energy available
for jobs 1,2 if

space is left for job
3 to start anytime

= 10

10Excess energy
required by jobs

1,2 = 4

4 Move up job 3
release time
4/2 = 2 units
beyond E{1,2}

E3

CP Tutorial Slide 307

Edge finding for cumulative scheduling

In general, if (){ } { }J k J J ke C L E∪ ∪> ⋅ −

then k > J, and update Ek to

()() 0

()()
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+

In general, if (){ } { }J k J k Je C L E∪ ∪> ⋅ −

then k < J, and update Lk to

()() 0

()()
min

J k J J

J k J J
JJ J

ke C c L E

e C c L E
L

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
−

CP Tutorial Slide 308

Edge finding for cumulative scheduling

There is an O(n2) algorithm that finds all applications of the
edge finding rules.

CP Tutorial Slide 309

Extended edge finding

Useful when a job with an early release time must finish after
other jobs.

Ordinary edge finding may not detect this situation.

CP Tutorial Slide 310

Extended edge finding

Consider the problem:

A feasible solution is shown.

CP Tutorial Slide 311

Time window

Extended edge finding

Consider the problem:

Job 4 must finish after the others: 4 > {1,2,3}.

CP Tutorial Slide 312

Extended edge finding

Consider the problem:

Job 4 must finish after the others: 4 > {1,2,3}.

Edge finding does not deduce this:

CP Tutorial Slide 313

{ } { } { }()4 123 123 1234e e C L E+ ≤ ⋅ −

4 4

3 3
Total energy
required = 14

Extended edge finding

Consider the problem:

Job 4 must finish after the others: 4 > {1,2,3}.

Edge finding does not deduce this:

CP Tutorial Slide 314

{ } { } { }()4 123 123 1234e e C L E+ ≤ ⋅ −

4 4

3 3
Total energy
required = 14

Area available
= 14

Extended edge finding

Suppose that job 4 does not finish last. We will prove a
contradiction.

CP Tutorial Slide 315

Extended edge finding

Note that job 4 has an earlier release time than the other jobs
but can’t finish before the earliest release time of the other
jobs:

CP Tutorial Slide 316

{ }4 4 4123E E E p≤ < +

E4 E4+p4E{123} L{123}

Extended edge finding

This area…

CP Tutorial Slide 317

E4 E4+p4E{123} L{123}

Area available
= 12

Extended edge finding

This area must contain jobs 1,2,3…

CP Tutorial Slide 318

E4 E4+p4E{123} L{123}

4

3 3

Area available
= 12

Total energy
required = 10 +

Extended edge finding

This area must contain jobs 1,2,3 plus portion of job 4 that
must run after E{123}:

CP Tutorial Slide 319

E4 E4+p4E{123} L{123}

4

3 3

CP Tutorial Slide 319

Area available
= 12

Total energy
required = 10 + 3

3

Extended edge finding

This area must contain jobs 1,2,3 plus portion of job 4 that
must run after E{123}:

CP Tutorial Slide 320

E4 E4+p4E{123} L{123}

4

3 3

CP Tutorial Slide 320

Area available
= 12

Total energy
required = 10 + 3

3

{ } { }() { } { }()4 4 4123 123 123 1232e c E p E L E+ + − > ⋅ −

Extended edge finding

We conclude that job 4 finishes after 1,2,3 finish: 4 > {123}.
Update bound E4 as before.

CP Tutorial Slide 321CP Tutorial Slide 321

Energy for jobs
1,2,3 if space is

left for job 4
= 10 10

Excess energy
required by jobs

1,2,3 = 4

4

Move up job 4
release time
4/1 = 4 units
beyond E{123}

{ } 4 {123} {123}123

{123}
4

()()e C c L E
E

c

− − −
+

Edge finding for cumulative scheduling

In general, if k J k kE E E p≤ < +

then i > J, and update Ek to

()() 0

()()
max

J k J J

J k J J
JJ J

k
e C c L E

e C c L E
E

c
′ ′ ′

′ ′ ′
′′⊂

− − − >

 − − −
+

Similarly for proving k < J.

CP Tutorial Slide 322

and () (),J k k k J J Je c E p E C L E+ + − > ⋅ −

Not-first/not-last rules

These rules deduce

as in disjunctive scheduling. That is, job k starts after some
job in J finishes.

A feasible solution is shown.

CP Tutorial Slide 323

()k J¬ ≪

Not-first/not-last rules

Consider the problem:

A feasible solution is shown.

CP Tutorial Slide 324

Not-first/not-last rules

Job 3 must start after some job in {1,2} finishes (namely, job 2).

CP Tutorial Slide 325

Not-first/not-last rules

Job 3 must start after some job in {1,2} finishes (namely, job 2).

So E3 can be updated to 3.

CP Tutorial Slide 326

E3

Not-first/not-last rules

Let’s first try to update E3 using edge finding.

CP Tutorial Slide 327

Total energy
required = 23

9

5

8

6

E123 L12

Not-first/not-last rules

Let’s first try to update E3 using edge finding.

Cannot prove 3 > {1,2}.

CP Tutorial Slide 328

E123

Total energy
required = 23

9

5

8Area available
= 24

L12

6

Not-first/not-last rules

Cannot apply extended edge finding to show 3 > {1,2}

We don’t have E3 ≤ E{12}

CP Tutorial Slide 329

E3E12

Not-first/not-last rules

So we use not-first/not-last rule.

Note that E{12} ≤ E3 < F{12}

CP Tutorial Slide 330

E3E12 F12

Minimum earliest finish time
= min {E1 + p1, E2 + p2}

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

CP Tutorial Slide 331

E3E12 F12

t t + 4

Start and end of job 3

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

CP Tutorial Slide 332

E3E12 F12

t

Resource
consumption 2 of
job 3 cannot be
used during this

period

2

t + 4

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

CP Tutorial Slide 333

E3E12 F12

t t + 4

Total energy
required between
E12 and L12 is…

L12

Resource
consumption 2 of
job 3 cannot be
used during this

period

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t t + 4

Total energy
required between

E12 and L12 is
6 + 9 + …

L12

9

6

{ }12e +

Resource
consumption 2 of
job 3 cannot be
used during this

period

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − t)

+ …

L12

9

6

{ } { }{ }()3 312 12min ,e c t p L t+ + −

8

Resource
consumption 2 of
job 3 cannot be
used during this

period

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t

Resource
consumption 2 of
job 3 cannot be
used during this

period t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − t)

+ 2⋅(t − 0)

L12

9

6

{ } { }{ }() { }()3 3 312 12 12min ,e c t p L t c t E+ + − + −

8

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t

This expression
simplifies…

t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − t)

+ 2⋅(t − 0)

L12

{ } { }{ }() { }()3 3 312 12 12min ,e c t p L t c t E+ + − + −

9

6

84

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t

This expression
simplifies…

t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

L12

{ } { }{ } { }()3 312 12 12min ,e c t p L E+ + −

9

6

84

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t

Because t ≥ E3,
we have…

t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

L12

{ } { }{ } { }()3 312 12 12min ,e c t p L E+ + −

9

6

84

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t

Because t ≥ E3,
we have…

t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

≥ 6 + 9 + 2⋅(min{0 + 4,6} − 0)

L12

{ } { }{ } { }()3 3 312 12 12min ,e c E p L E≥ + + −

9

6

84

Not-first/not-last rules

Now suppose that job 3 starts at some time t before F12. We will
derive a contradiction.

E3E12 F12

t

Available energy
is 4⋅6 = 24

t + 4

Total energy
required between

E12 and L12 is
6 + 9 + 2⋅(min{t + 4,6} − 0)

≥ 6 + 9 + 2⋅(min{1 + 4,6} − 0)
= 25

L12

{ } { }{ } { }() { } { }()3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

9

6

84

Not-first/not-last rules

We conclude that job 3 cannot start before F12.

E3E12 F12 L12

{ } { }{ } { }() { } { }()3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

Not-first/not-last rules

E3

E12 F12 L12

Update E3 to F12 = 3

{ } { }{ } { }() { } { }()3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

We conclude that job 3 cannot start before F12.

Not-first/not-last rules

{ } { }{ } { }() { } { }()3 3 312 12 12 12 12min ,e c E p L E C L E≥ + + − > ⋅ −

In general,

J k JE E F≤ <If

and { }() ()min ,J k k k J J J Je c E p L E C L E+ + − > ⋅ −

then ()k J¬ ≪

and we update Ek to FJ.

Energetic reasoning

Choose an interval [t1,t2]

t1 t2

CP Tutorial Slide 345

Energetic reasoning

Left shift job 2 (move it as far left as possible).

t1 t2

CP Tutorial Slide 346

Energetic reasoning

Overlap area is 6.

t1 t2

CP Tutorial Slide 347

Right shift job 2 (move it as far right as possible).

t1 t2

Energetic reasoning

CP Tutorial Slide 348

Overlap area is 9

t1 t2

Energetic reasoning

CP Tutorial Slide 349

Job 2 must use at least min{6,9} energy inside the interval [t1,t2]

t1 t2

6

Energetic reasoning

CP Tutorial Slide 350

Do the same for job 3.

t1 t2

6

4

Energetic reasoning

CP Tutorial Slide 351

And job 1.

t1 t2

6

4

1

Energetic reasoning

CP Tutorial Slide 352

Area required in the interval [t1,t2] is 6 + 4 + 4 = 14.
Area available is 16. So we are OK.

t1 t2

6

4

4

Energetic reasoning

CP Tutorial Slide 353

Energetic reasoning

Energy required in the interval [t1,t2] is 6 + 4 + 4 = 14.
Area available is 16. So we are OK.

t1 t2

6

4

4

If energy required > area available, problem is infeasible.

CP Tutorial Slide 354

Energetic reasoning

t1 t2

6

4

4

Similar principle can be used to update bounds.

Energy required in the interval [t1,t2] is 6 + 4 + 4 = 14.
Area available is 16. So we are OK.

CP Tutorial Slide 355

Energetic reasoning

Theorem . It suffices to check pairs (t1,t2) in the union of sets

CP Tutorial Slide 356

The SAT Problem

Propositional Logic
Conversion to CNF

Unit Resolution
DPLL

Implication Graph
Backdoors and Branching

CP Tutorial Slide 357

Propositional Satisfiability Problem

• A general approach to constraint solving when variables are
discrete.

• First reduce the problem to SAT.

• Then solve it using a SAT solver.

• The solvers are highly engineered and extremely fast .

CP Tutorial Slide 358

SAT Solvers

• A SAT competition is held regularly.

• About 50 solvers compete.

• Most solvers evolved from DPLL

• Davis-Putnam-Loveland-Logemann algorithm

• …and use CDCL (conflict-directed clause learning).

• Breakthrough solver was CHAFF.

• A popular open-source solver is MiniSAT.

CP Tutorial Slide 359

SAT and CP

CP Tutorial Slide 360

SAT
community

CP
community

• Similarities:

• Focus on logical
inference.

• Use of branching and
propagation.

• Difference:

• SAT doesn’t use global constraints.

• SAT uses atomistic modeling, like mixed integer
programming.

• CP learned problem-solving ideas from SAT.

Propositional Logic

• Propositional formulas connect boolean variables with and ,
or , not , implies , etc.

• There are no quantifiers.

CP Tutorial Slide 361

is a formula, where is a boolean variable

is a formula (or), where and are formulas

is a formula (and)

is a formula (not)

is a formula defined as (material implication)

j jx x

A B A B

A B

A B

A B

A

A B A B

A B

A

∨
∧

→ ∨
≡ is a formula define () (s)d a A B B A→ ∧ →

Propositional Logic

• A formula in conjunctive normal form (CNF) is a
conjunction of clauses.

• A literal is or

• A clause is a disjunction of literals, e.g.

• Example of CNF:

CP Tutorial Slide 362

jx jx

1 2 3x x x∨ ∨

1 3 2 1 2 3() () ()x x x x x x∨ ∧ ∨ ∧ ∨

Propositional Logic

• The SAT problem is to satisfy a formula in CNF.

• That is, assign truth values (0 or 1) to the variables to
make the formula true.

CP Tutorial Slide 363

Propositional Logic

• The SAT problem is to satisfy a formula in CNF.

• That is, assign truth values (0 or 1) to the variables to
make the formula true.

• Some problems already have logical form

• Circuit verification.

• Product configuration.

• These can be converted to CNF and solved as SAT
problems.

• Most problems must be rewritten in logical form.

CP Tutorial Slide 364

Propositional Logic

• Converting a problem to CNF is a key element of
SAT-based problem solving.

• General syntactic methods.

• General semantic methods.

• Problem-specific methods (growing literature).

CP Tutorial Slide 365

Conversion to CNF

• Syntactic rules for converting a propositional formula to CNF.

• These are useful if we already know how to write the
constraints as a propositional formula.

CP Tutorial Slide 366

De Morgan's law

De Morgan

()

()

((

's law

distribution)) (() ())

A B A B

A B A B

A B C A B B C

∨ ≡ ∧

∧ ≡ ∨
∨ ∧ ≡ ∨ ∧ ∨

Conversion to CNF

• Example

CP Tutorial Slide 367

1 2 1 3

1 2 1 3

1 1 1 3 2 1 2 3

1 3 2 1 2 3

() ()

() ()

() () () (

De Morgan

distribution

remove tautol

)

() ()) o y(g

x x x x

x x x x

x x x x x x x x

x x x x x x

∨ ∨ ∧
≡ ∧ ∨ ∧
≡ ∨ ∧ ∨ ∧ ∨ ∧ ∨
≡ ∨ ∧ ∨ ∧ ∨

Conversion to CNF

• Another example: Hiring problem

• A company must hire some staff to complete a task and
has workers 1, …, 6 to choose from.

• Workers 3 and 4 are temporary workers.

CP Tutorial Slide 368

1 5 6

6 1 5

5 2 6

5 6 2

Must hire at least 1 of workers 1,5,6

Cannot hire 6 unless it hires 1 or 5

Cannot hire 5 unless it hires 2 or 6

Must hire 2 if it hires 5 and

()

()

()6.

Must hire a temporary

x x x

x x x

x x x

x x x

∨ ∨
→ ∨
→ ∨
∧ →

1 2 3 4

3 4 1 2

 worker if 1 or 2

Can hire neither 1 nor 2 if a temp worker

() ()

() ()

x x x x

x x x x

∨ → ∨
∨ → ∧

Conversion to CNF

• Another example: Hiring problem

• A company must hire some staff to complete a task and
has workers 1, …, 6 to choose from.

• Workers 3 and 4 are temporary workers.

CP Tutorial Slide 369

1 5 6

6 1 5

5 2 6

5 6 2

Must hire at least 1 of workers 1,5,6

Cannot hire 6 unless it hires 1 or 5

Cannot hire 5 unless it hires 2 or 6

Must hire 2 if it hires 5 and

()

()

()6.

Must hire a temporary

x x x

x x x

x x x

x x x

∨ ∨
→ ∨
→ ∨
∧ →

1 2 3 4

3 4 1 2

 worker if 1 or 2

Can hire neither 1 nor 2 if a temp worker

() ()

() ()

x x x x

x x x x

∨ → ∨
∨ → ∧

Conversion to CNF

• This is easily converted to CNF.

CP Tutorial Slide 370

1 5 6 1 5 6

6 1 5 6 1 5

5 2 6 5 2 6

5 6 2 5 2 6 2

1 2 3 4 1 3 4 2 3 4

3 4 1 2 3 1 3 2 4 1 4 2

()

()

() () ()

() () () ()

() () () () () ()

x x x x x x

x x x x x x

x x x x x x

x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

∨ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
∧ → ≡ ∨ ∧ ∨
∨ → ∨ ≡ ∨ ∨ ∧ ∨ ∨
∨ → ∧ ≡ ∨ ∧ ∨ ∧ ∨ ∧ ∨

Conversion to CNF

• However, this method can require exponential time and space.

• For example,

converts to a conjunction of 2n clauses of the form

where each Fj is xj or yj.

CP Tutorial Slide 371

1 2() ()n nx y x y∨ ∨ ∨ ∨⋯

1 nF F∨ ∨⋯

Conversion to CNF

• To avoid exponential blowup, lift into higher dimensional space.

• Rather than distribute F ∨ G, replace it with

where z1, z2 are new variables.

CP Tutorial Slide 372

1 2 1 2() () ()z z z F z G∨ ∧ ∨ ∧ ∨

Conversion to CNF

• To avoid exponential blowup, lift into higher dimensional space.

• Rather than distribute F ∨ G, replace it with

where z1, z2 are new variables.

• For example,

converts to the CNF formula

This requires linear time and space.

CP Tutorial Slide 373

1 2 1 2() () ()z z z F z G∨ ∧ ∨ ∧ ∨

1 2() ()n nx y x y∨ ∨ ∨ ∨⋯

1
1

() () ()
n

n j j j j
j

z z z x z y
=

∨ ∨ ∧ ∨ ∧ ∨Λ⋯

Conversion to CNF

• Semantic conversion can be used whenever a truth table is
available.

• However, it is exponential in time and space.

CP Tutorial Slide 374

Conversion to CNF

• Semantic conversion can be used whenever a truth table is
available.

• However, it is exponential in time and space.

• Example: The buildings assigned to the block on the left must fit:

CP Tutorial Slide 375

1

2
3 4

Conversion to CNF

• Let xi = 1 (true) when building i is
assigned to the block.

CP Tutorial Slide 376

1

2
3 4

1 2 3 4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1

1

1

1

1

1

1

0

1

0

0

0

1

1 1 0 1

1 1 1 0

0

0

1 1 1 01

x x x x

Truth table:

Conversion to CNF

• Each false entry generates a clause

CP Tutorial Slide 377

1 2 3 4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1

1

1

1

1

1

1

0

1

0

0

0

1

1 1 0 1

1 1 1 0

0

0

1 1 1 01

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

1 2 3 4x x x x∧ ∧ ∧

This says
(x1,x2,x3,x4)
≠ (0,1,1,1),

or

Conversion to CNF

• Each false entry generates a clause

CP Tutorial Slide 378

1 2 3 4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1

1

1

1

1

1

1

0

1

0

0

0

1

1 1 0 1

1 1 1 0

0

0

1 1 1 01

x x x x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

1 2 3 4x x x x∧ ∧ ∧

This says
(x1,x2,x3,x4)
≠ (0,1,1,1),

or

We will simplify this later.

• Problem specific conversion to CNF.

• Sometimes, constraints in binary variables are easy to
covert to CNF.

• Example: Airline crew rostering

• Assign rosters (sequences of flights) to crews.

• Each crew gets exactly one roster.

• Each flight is staffed by at least one crew.

CP Tutorial Slide 379

Conversion to CNF

• Small problem instance: 2 crews and 4 rosters.

• Each s-t path below is a feasible sequence of flights
(roster) for a crew.

• Namely, 135, 146, 235, 246.

CP Tutorial Slide 380

Flight number

Conversion to CNF

• Small problem instance: 2 crews and 4 rosters.

• Rosters: 135, 146, 235, 246.

• Let xij = 1 when crew i is assigned to roster j.

• Two types of constraints:

• Each crew is assigned exactly one roster.

• Each flight is covered by at least one crew.

CP Tutorial Slide 381

Conversion to CNF

• Small problem instance: 2 crews and 4 rosters.

• Rosters: 135, 146, 235, 246.

• Let xij = 1 when crew i is assigned to roster j.

• Each crew is assigned exactly one roster.

• Exactly one of xi1, xi2, xi3, xi4 is true for each crew i.

CP Tutorial Slide 382

11 11 11 14

11 12

11 13

11 14

12 13

12 14

13 14

x x x x

x x

x x

x x

x x

x x

x x

∨ ∨ ∨
∨
∨
∨
∨
∨
∨

21 21 21 24

21 22

21 23

21 24

22 23

22 24

23 24

x x x x

x x

x x

x x

x x

x x

x x

∨ ∨ ∨
∨
∨
∨
∨
∨
∨

Conversion to CNF

• Small problem instance: 2 crews and 4 rosters.

• Rosters: 135, 146, 235, 246.

• Let xij = 1 when crew i is assigned to roster j.

• Each flight is covered by at least one crew:

CP Tutorial Slide 383

11 12 21 22

13 14 23 24

11 13 21 23

12 14 22 24

11 13 21 23

12 14 22 24

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

Flight 1 is in
rosters 1 and 2

Flight 2 is in
rosters 3 and 4

Conversion to CNF

• Many problems are hard to encode in SAT.

• Such as problems that include quantities.

CP Tutorial Slide 384

Conversion to CNF

• Many problems are hard to encode in SAT.

• Such as problems that include quantities.

• Example:

• The 0-1 knapsack inequality

translates to 117,520 clauses.

CP Tutorial Slide 385

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

300 300 285 285 265 265 230 230 190 200

400 200 400 200 400 200 400 200 400 2701

x x x x x x x x x x

x x x x x x x x x

+ + + + + + + + + +
+ + + + + + + + ≥

Conversion to CNF

Resolution Method

• Resolution is a simple but complete inference method for
clauses.

• Provably exponential (very hard proof).

• Far too slow in practice to solve problems, but it has
practical applications for simplifying expressions.

• Invented by W. V. Quine in 1950s (“consensus” for DNF).

• Achieves domain and k-consistency for CNF.

CP Tutorial Slide 386

Resolution Method

• Resolution is a simple but complete inference method for
clauses.

• Provably exponential (very hard proof).

• Far too slow in practice to solve problems, but it has
practical applications for simplifying expressions.

• Invented by W. V. Quine in 1950s (“consensus” for DNF).

• Achieves domain and k-consistency for CNF.

• Important special cases:

• Unit resolution

• Linear-time propagation method

• Parallel resolution
CP Tutorial Slide 387

Resolution Method

• Resolution generates resolvents recursively.

• Clause set is unsatisfiable if empty clause results.

• If absorbed clauses removed, this generates all prime
implications.

• = strongest possible implications.

CP Tutorial Slide 388

1 2 3

1 2

2 3 4

4

x x x

x x x

x x x

∨
∨

∨
∨

∨

∨

Resolvent, obtained by
resolving on x1

Must be no other sign
changes between clauses.

Resolution Method

• Example of refutation

CP Tutorial Slide 389

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

Resolution Method

• Example of refutation

CP Tutorial Slide 390

Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

Resolution Method

• Example of refutation

CP Tutorial Slide 391

Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1 2

1 2

1

x x

x x

x

∨
∨

Absorb

Resolution Method

• Example of refutation

CP Tutorial Slide 392

Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Absorb

Resolve

Resolution Method

• Example of refutation

CP Tutorial Slide 393

Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Absorb

Resolve

1

1

x

x

Absorb

Resolution Method

• Example of refutation

CP Tutorial Slide 394

Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

1

1

x

x

∅
Absorb

Absorb
Resolve

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Resolve

1

1

x

x

Resolution Method

• Example of refutation

CP Tutorial Slide 395

Resolve

1 3

1 2

1 2

1 2

1 2

x x

x x

x x

x x

x x

∨
∨
∨
∨
∨

1 3

1 2

1 2

1 2

1 2

1

x x

x x

x x

x x

x x

x

∨
∨
∨
∨
∨

∅
Absorb

Resolve Absorb

1

1

x

x

∅Absorb

1 2

1 2

1

x x

x x

x

∨
∨

1 2

1 2

1

1

x x

x x

x

x

∨
∨

Resolve

1

1

x

x

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

Resolution Method

• Example of prime implications

• Simplify CNF expression
derived earlier

CP Tutorial Slide 396

simplifies to

1 3

1 4

2 3 4

x x

x x

x x x

∨
∨
∨ ∨

Prime implications

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x

∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨
∨ ∨ ∨

Resolution Method

• Example of prime implications

• Simplify CNF expression
derived earlier

CP Tutorial Slide 397

Projection onto each xi is {0,1},
because resolution fixes no variables.
So the problem is domain consistent
without reducing the domains {0,1}.

simplifies to

1 3

1 4

2 3 4

x x

x x

x x x

∨
∨
∨ ∨

Prime implications

Resolution Method

• Parallel resolution resolves only on the last variable in each
clause.

CP Tutorial Slide 398

1 2 3

1 2

1 2

3

x x x

x x

x

x

x

∨ ∨
∨
∨

∨
Parallel

resolvent

1 2 3

1 2 3

x x x

x x x

∨ ∨
∨ ∨

No parallel
resolvent

Resolution Method

• Parallel absorption will be used with parallel resolution.

• Clause C parallel-absorbs D if: C is the empty clause,
C = D, or the last literal of C occurs before last in D.

CP Tutorial Slide 399

1 2 3

1 2

1 2

3

x x x

x x

x

x

x

∨ ∨
∨
∨

∨
The parallel resolvent
parallel-absorbs both
parents because x2
occurs before last in both.

Unit Resolution

• In unit resolution, at least one parent clause must be a unit
clause (contains only 1 literal).

• Runs in linear time.

• Very efficient using watched literals .

CP Tutorial Slide 400

Unit Resolution

• Example:

CP Tutorial Slide 401

1

2

1 3

1 2 3 4

1 2 3 4 5

2 3 5

x

x

x x

x x x x

x x x x x

x x x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Unit Resolution

• Example:

CP Tutorial Slide 402

1

1

1

1

2

3

2 3 4

2 3 4 5

2 3 5

x

x

x x x

x x x x

x

x

x

x x x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Unit Resolution

• Example:

CP Tutorial Slide 403

1

1

1

1

2

3

2 3 4

2 3 4 5

2 3 5

x

x

x x x

x x x x

x

x

x

x x x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

2

3

2 3 4

2 3 4 5

2 3 5

x

x

x x x

x x x x

x x x

∨
∨ ∨
∨ ∨ ∨
∨ ∨

Unit Resolution

• Example:

CP Tutorial Slide 404

2

2

2

2

3

3 4

3 4 5

3 5

x

x x

x

x

x

x

x

x x

x x

∨
∨ ∨
∨ ∨ ∨
∨ ∨

Unit Resolution

• Example:

CP Tutorial Slide 405

2

2

2

2

3

3 4

3 4 5

3 5

x

x x

x

x

x

x

x

x x

x x

∨
∨ ∨
∨ ∨ ∨
∨ ∨

3

3 4

3 4 5

3 5

x

x x

x x x

x x

∨
∨ ∨

∨

Unit Resolution

• Example:

CP Tutorial Slide 406

3

3

3

3

4

4 5

5

x

x

x

x

x

x

x

x

∨
∨ ∨

∨

Unit Resolution

• Example:

CP Tutorial Slide 407

3

3

3

3

4

4 5

5

x

x

x

x

x

x

x

x

∨
∨ ∨

∨

4

4 5

5

x

x x

x

∨

Unit Resolution

• Example:

CP Tutorial Slide 408

4

4 5

5

x

x x

x

∨

Unit Resolution

• Example:

CP Tutorial Slide 409

4

4 5

5

x

x x

x

∨∅

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 410

1

2

1 3

1 2 3 4

1 2 3 4 5

2 3 5

()

()

()

()

()

()

x a

x b

x x c

x x x x d

x x x x x e

x x x f

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 411

1

2

3 4

1 2 5

1 3

1 2

3 4

2 53

()

()

()

()

()

()

x a

x b

c

x x d

x x

x x

x x x e

x

x

x f

x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Arbitrarily select 2 watched literals
in each clause

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 412

1

2

3 4

1 2 5

1 3

1 2

3 4

2 53

()

()

()

()

()

()

x a

x b

c

x x d

x x

x x

x x x e

x

x

x f

x

x

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Arbitrarily select 2 watched literals
in each clause.

If unit resolution reduces a clause
to a single literal, it must at some
point fix one of the watched
literals.

So it suffices to examine a clause
only when one of its watched
literals is fixed.

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 413

3 4

1 2

1

2

1 3

1 2

3 4

2 5

5

3

()

()

()

()

()

()

a

b

c

x x d

x x x e

x

x

x x

x x

x x

x x fx

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨
1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−

Keep list of watched literals:

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 414

3 4

1 2

2

1 3

1 2

3 4

2 5

5

3

1 ()

()

()

()

()

()

a

b

c

x x d

x x x e

x

x x

x x

x x

x x

x

x f

∨
∨ ∨ ∨
∨ ∨ ∨ ∨

∨ ∨

To resolve on x1, examine only the
clauses in which is a watched literal
(enormous savings).

For absorption, check clauses in which
x1 is a watched literal (none here)

1x

1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 415

3

1

2

3

2 4

2 53

2 5

1

3

4

()

()

()

()

()

()

x

x

x x

x x

x x

a

b

c

x d

x x x e

x f

x

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Arbitrarily select a new watched
literal in clause d.

1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 416

3

1 2 5

2

3

2 4

3

3 4

2 5

()

()

()

()

()

()

x

x

x x

x x

a

b

c

x d

x

x

e

x x

x x

f

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

1x

Keep list of fixed variables:

1x

1

2

3

4

5

,

x a

x d f

x c

x

x

−
−
−
−
−

1

2

3

4

5

,x c d

x b

x e

x e

x f

−
−
−
−
−

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 417

1

2

3

4

5

,

x

x d f

x c

x d

x

−
−
−
−
−

1

2

3

4

5

x

x b

x e

x e

x f

−
−
−
−
−

Update list of watched literals:

1x

Keep list of fixed variables:

1x

3

1 2 5

2

3

2 4

3

3 4

2 5

()

()

()

()

()

()

x

x

x x

x x

a

b

c

x d

x

x

e

x x

x x

f

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 418

1

2

3

4

5

,

x

x d f

x c

x d

x

−
−
−
−
−

1

2

3

4

5

x

x b

x e

x e

x f

−
−
−
−
−

1x

3

1 2 5

3

2 4

32 5

2

3 4

()

()

()

()

()

()

x

x x

x x

x x

a

b

c

x d

x x x e

x f

x

∨ ∨
∨ ∨ ∨ ∨

∨ ∨

Keep list of fixed variables:

1x

Resolve on x2

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 419

1

2

3

4

5

x

x

x c

x d

x

−
−
−
−
−

1

2

3

4

5

, ,

x

x

x d e f

x e

x f

−
−
−
−
−

3

3 4

3 4

3 5

1 2 5

()

()

()

()

()

()

a

b

c

d

x x

x

x x

x x

x x

x e

f

∨
∨ ∨ ∨ ∨

∨

Keep list of fixed variables:

1 2,x x

Resolve on x2

Update list of watched literals:

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 420

1

2

3

4

5

x

x

x c

x d

x

−
−
−
−
−

1

2

3

4

5

, ,

x

x

x d e f

x e

x f

−
−
−
−
−

3 4

3 4

3 5

1 2

3

5

()

()

()

()

()

()

a

b

c

d

x x

x x

x x

x

x

e

x

x

f

∨
∨ ∨ ∨ ∨

∨

Keep list of fixed variables:

1 2,x x

Resolve on x3

Update list of watched literals:

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 421

1

2

3

4

5

x

x

x

x d

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x e

x f

−
−
−
−
−

4

4 5

5

1 2

()

()

()

()

()

()

a

b

c

d

x x

x

x x

x

e

f

∨ ∨ ∨
∨

Keep list of fixed variables:

1 2 3, ,x x x

Resolve on x3

Update list of watched literals:

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 422

1

2

3

4

5

x

x

x

x d

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x e

x f

−
−
−
−
−

4 5

5

1 2

4

()

()

()

()

()

()

a

b

c

d

x x x x

x

e

x

f

∨ ∨ ∨
∨

Keep list of fixed variables:

1 2 3, ,x x x

Resolve on x4

We know that (e) becomes a unit
clause because of list of fixed
variables

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 423

1

2

3

4

5

x

x

x

x

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x

x f

−
−
−
−
−

5

5

()

()

()

()

()

()

x

x

a

b

c

d

e

f

Keep list of fixed variables:

1 2 3 4, , ,x x x x

Resolve on x4

Update list of watched literals:

Unit Resolution

• Now use watched literals.

CP Tutorial Slide 424

1

2

3

4

5

x

x

x

x

x e

−
−
−
−
−

1

2

3

4

5

x

x

x

x

x f

−
−
−
−
−

5

5

()

()

()

()

()

()

x

x

a

b

c

d

e

f

Keep list of fixed variables:

1 2 3 4, , ,x x x x

Resolve on x5 and derive empty
clause.

DPLL

• The DPLL (Davis-Putnam-Loveland-Logemann) algorithm
combines branching with unit resolution.

• Unit resolution serves as a propagation algorithm at each
node of the search tree.

CP Tutorial Slide 425

DPLL

• The DPLL (Davis-Putnam-Loveland-Logemann) algorithm
combines branching with unit resolution.

• Unit resolution serves as a propagation algorithm at each
node of the search tree.

• CDCL (conflict-directed clause learning) uses nogoods to
direct the search and reduce backtracking.

• An old idea in AI.

• The best solvers generally use DPLL + CDCL (and many
tricks).

CP Tutorial Slide 426

DPLL

• Example: Hiring problem

CP Tutorial Slide 427

1 5 6 1 5 6

6 1 5 6 1 5

5 2 6 5 2 6

5 6 2 5 2 6 2

1 2 3 4 1 3 4 2 3 4

3 4 1 2 3 1 3 2 4 1 4 2

()

()

() () ()

() () () ()

() () () () () ()

x x x x x x

x x x x x x

x x x x x x

x x x x x x x

x x x x x x x x x x

x x x x x x x x x x x x

∨ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
→ ∨ ≡ ∨ ∨
∧ → ≡ ∨ ∧ ∨
∨ → ∨ ≡ ∨ ∨ ∧ ∨ ∨
∨ → ∧ ≡ ∨ ∧ ∨ ∧ ∨ ∧ ∨

Slide 428

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x

Branch by trying xi = 0 first.
Apply unit resolution
after adding unit
clause

Pass simplified
clause set to child
node.

1x

Simple DPLL

Slide 429

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x

Branch by trying xi = 0 first.
Apply unit resolution
after adding unit
clause

Pass simplified
clause set to child
node.

At this point, unit resolution
derives the empty clause.

1x

Simple DPLL

Slide 430

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x
Backtrack and take this branch
(depth-first search)=5 1x

Simple DPLL

Slide 431

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x

Continue in this fashion until search is
exhaustive.

Solution is never found.

Simple DPLL

Slide 432

• Use conflict clauses to direct the search.

• A conflict clause is a nogood that rules out a partial
assignment that caused infeasibility.

DPLL with Conflict Clauses

Slide 433

Again branch to here. Unit resolution
proves infeasibility.

Setting (x1,x5) = (0,0) is enough
for unit resolution to prove infeasibility.

How do we know? To be discussed… .

=5 0x

=4 0x

=3 0x

=2 0x

=1 0x

DPLL with Conflict Clauses

Slide 434

∨1 5x x

Generate conflict clause to
rule out partial assignment that
created infeasibility.

Future branching must satisfy
the conflict clause.

=5 0x

=4 0x

=3 0x

=2 0x

=1 0x

DPLL with Conflict Clauses

Slide 435

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

∨2 5x x Branch to here and generate
another conflict clause

∨1 5x x

DPLL with Conflict Clauses

Slide 436

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

∨2 5x x Branch to here and generate
another conflict clause

∨1 5x x

Actually, we can forget about
branching and simply solve
the nogood set {x1 ∨ x5}.

We will make sure the nogood
set can always be solved by
forward checking.

Here, we try xi = 0 first. This
yields the next leaf node.

DPLL with Conflict Clauses

Slide 437

=1 0x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

∨1 2x x

Apply parallel resolution
and parallel absorption
to obtain simplified nogood
set

Now the nogood set contains

∨2 5x x∨1 5x x

∨2 5x x∨1 5x x

∨1 2x x

DPLL with Conflict Clauses

Slide 438

=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x

Now solve nogood set by
forward checking.

Because we processed
nogoods with parallel
resolution, we can solve it by
forward checking (if feasible).

Perform unit resolution after
each variable is fixed, which
yields empty clause after
fixing 2 variables.

1x

∨1 5x x ∨1 2x x

Nogood set

=5 1x

DPLL with Conflict Clauses

Slide 439

=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x

When backtracking, there is
no need to retrace how
watched literals were
assigned.

This is a lazy data structure.

1x

∨1 5x x ∨1 2x x

Nogood set

=5 1x

DPLL with Conflict Clauses

Slide 440

=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x 15 =x

∨1 2x x

1x

∨1 5x x ∨1 2x x

General new nogood to obtain
nogood set

∨1 2x x ∨1 2x x

DPLL with Conflict Clauses

Slide 441

=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x 15 =x

General new nogood to obtain
nogood set

∨1 5x x ∨1 2x x

∨1 2x x ∨1 2x x

Apply parallel resolution to
obtain simplified nogood set

1x

1x

DPLL with Conflict Clauses

Slide 442

=1 0x

=2 0x =2 1x

=3 0x

=4 0x

=5 0x 15 =x

General new nogood to obtain
nogood set

∨1 5x x ∨1 2x x

∨1 2x x ∨1 2x x

Apply parallel resolution to
obtain simplified nogood set.

Parallel resolution is always
fast in this context.

1x

1x

Backjump

DPLL with Conflict Clauses

Slide 443

=1 0x =1 1x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

1x
Again solve nogood set.

Unit resolution derives
empty clause after fixing
only x1

Generate nogood.

∨1 5x x ∨2 5x x

∨1 2x x

1x

DPLL with Conflict Clauses

Slide 444

=1 0x =1 1x

=2 0x

=3 0x

=4 0x

=5 0x =5 1x

1x
Now the nogood set is

∨1 5x x ∨2 5x x

∨1 2x x

1x

1x 1x

Parallel resolution derives
the empty clause.

Forward checking cannot
solve the nogood set, so
the search is complete.

There is no solution.

DPLL with Conflict Clauses

Slide 445

• Conflict clauses are identified by analyzing the implication
graph .

Implication Graph

Slide 446

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Implication Graph

Slide 447

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add a vertex for every branching literal.

Implication Graph

Slide 448

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (a), which is
Both antecedents are vertices.

1 5 6()x x x∧ →

Implication Graph

Slide 449

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (b), which is 1 5 6()x x x∧ →

Implication Graph

Slide 450

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

No edges for clause (c)

Implication Graph

Slide 451

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

No edges for clause (d)

Implication Graph

Slide 452

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (e1), which is 3 4 1()x x x∧ →

Implication Graph

Slide 453

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add edges for clause (e2), which is 3 4 2()x x x∧ →

Implication Graph

Slide 454

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Identify conflict literals , i.e., both
are present.

 and i ix x

Implication Graph

Slide 455

• Hiring example: Build conflict graph at first leaf node.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Add arcs from conflict literals to ∅.

Implication Graph

Slide 456

• A proof of infeasibility is represented by a conflict graph from
the implication graph.

• There may be several proofs.
1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨

Implication Graph

Slide 457

• Build a conflict graph G from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Create edges in G for any two conflict literals

and ∅.

Implication Graph

Slide 458

• Build a conflict graph G from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Select a non-branching vertex in G for which

there are no incoming edges in G.

Implication Graph

Slide 459

• Build a conflict graph from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Select a label on some incoming edge and

create in G all edges bearing this label.

Implication Graph

Slide 460

• Build a conflict graph from the implication graph.

1 5 6

1 5 6

2 5 6

2 5 6

1 3 4

2 3 4

3

3 2

4 1

4 2

()

()

()

()

(1)

(2)

(1)

(2)

(3)

(4)

x x x a

x x x b

x x x c

x x x d

x x x e

x x x e

x x f

x x f

x x f

x x f

∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨ ∨
∨
∨
∨
∨Repeat.

Implication Graph

• Now we have a conflict graph that represents a proof of
infeasibility.

Implication Graph

• Now we have a conflict graph that represents a proof of
infeasibility.

Identify a cut such that:
all branching literals are on one side (the reason side)
and at least one conflict literal on the other side (the conflict side).

Implication Graph

• Now we have a conflict graph that represents a proof of
infeasibility.

Identify frontier of the cut:
all vertices having at least one outgoing edge that crosses the cut

Implication Graph

CP Tutorial Slide 463

• Now we have a conflict graph that represents a proof of
infeasibility.

Negate these literals to obtain a conflict clause.

1 5x x∨

Implication Graph

CP Tutorial Slide 464

• Now we have a conflict graph that represents a proof of
infeasibility.

Another conflict clause (absorbed by the first).

1 5 6x x x∨ ∨

Implication Graph

CP Tutorial Slide 465

• Now we have a conflict graph that represents a proof of
infeasibility.

Another conflict clause (absorbed by the first).

1 5 6x x x∨ ∨

Implication Graph

CP Tutorial Slide 466

• Solvers are extremely efficient.

• Can deal with millions of variables.

• These are complete solvers (not heuristic methods).

• They find a solution if one exists

• And prove infeasibility otherwise.

Assessment of SAT Solvers

CP Tutorial Slide 467

• Solvers are extremely efficient.

• Can deal with millions of variables.

• These are complete solvers (not heuristic methods).

• They find a solution if one exists

• And prove infeasibility otherwise.

• Most industrial problems are easy for their size.

• They are nearly renamable Horn .

• This teaches some important lessons.

Assessment of SAT Solvers

CP Tutorial Slide 468

• A clause set is Horn if each clause contains at most one
positive literal.

• It is renamable Horn if it becomes Horn after
complementing zero or more variables.

Renamable Horn Problems

CP Tutorial Slide 469

1 2 3

1 2 3

x x x

x x x

∨ ∨
∨ ∨

1 3

3

2

21

x x

x

x

xx

∨ ∨
∨ ∨

Renamable Horn

1 2 3

1 2 3

x x x

x x x

∨ ∨
∨ ∨

Not renamable Horn

• A renamable Horn sat problem can be solved by unit
resolution.

• Very fast.

• Industrial SAT problems tend to be nearly renamable Horn.

• They become renamable Horn after fixing a few variables.

• Such a variable set is known as a backdoor .

• This suggests a branching strategy.

• Branch first on backdoor variables.

• Then problems at leaf nodes are easy.

Backdoors and Branching

CP Tutorial Slide 470

• The branching order can make a huge difference.

• Try to identify a small backdoor.

• This is a max clique problem, NP-hard.

• Can use heuristics.

• Try random restarts.

• This may find a smaller backdoor.

Lesson 1

CP Tutorial Slide 471

• NP-complete problems can be easy.

• SAT is NP-complete.

• But the class contains many easy problems

• For example, almost all random instances of 3-SAT are
easy.

• Except when ratio of number of clauses to number of
variables is about 4.3

• This is known as a phase transition .

Lesson 2

CP Tutorial Slide 472

• NP-complete problems can be easy.

• SAT is NP-complete.

• But the class contains many easy problems

• For example, almost all random instances of 3-SAT are
easy.

• Except when ratio of number of clauses to number of
variables is about 4.3

• This is known as a phase transition .

• Think about it: The class NP is NP-complete (trivially).

• Even though it contains all the easy problems in the
world!

Lesson 2

CP Tutorial Slide 473

Advanced Modeling

CP Tutorial Slide 474

Advanced modeling

See slides by Helmut Simonis.

CP Tutorial Slide 475

Integrating OR and CP

Complementary strengths
Simple Example

CP Tutorial Slide 476

Comparison

CP vs. Mathematical Programming

MP CP

Numerical calculation Logic processing

Relaxation Inference (filtering,
constraint propagation)

Atomistic modeling
(linear inequalities)

High-level modeling
(global constraints)

Branching Branching

Independence of model
and algorithm

Constraint-based
processing

CP Tutorial Slide 477

CP vs. MP

• In mathematical programming , equations
(constraints) describe the problem but don’t tell how to
solve it.

• In constraint programming , each constraint invokes a
procedure that screens out unacceptable solutions.

• Much as each line of a computer program invokes
an operation.

CP Tutorial Slide 478

Advantages of CP

• Better at sequencing and scheduling

• …where MP methods have weak relaxations.

• Adding messy constraints makes the problem easier.

• The more constraints, the better.

• More powerful modeling language.

• Global constraints lead to succinct models.

• Constraints convey problem structure to the solver.

CP Tutorial Slide 479

Disdvantages of CP

• Weaker for continuous variables.

• Due to lack of numerical techniques

• May fail when constraints contain many variables.

• These constraints don’t propagate well.

• Not robust

• Lack of relaxation technology

CP Tutorial Slide 480

Obvious solution…

• Integrate CP and MP.

CP Tutorial Slide 481

Software for Integrated Methods

• ECLiPSe

– Exchanges information between ECLiPSEe solver, Xpress-MP

• OPL Studio

– Combines CPLEX and ILOG CP Optimizer with script language

• Mosel

– Combines Xpress-MP, Xpress-Kalis with low-level modeling

• BARON

– Global optimization with relaxation + domain reduction

• SIMPL

– Full integration with high-level modeling (prototype)

• SCIP

– Combines MILP and CP-based propagation

CP Tutorial Slide 482

Example: Freight Transfer

• Transport 42 tons of freight using 8 trucks, which come in
4 sizes…

Truck
size

Number
available

Capacity

(tons)

Cost
per

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40
CP Tutorial Slide 483

Truck
type

Number
available

Capacity

(tons)

Cost
per

truck

1 3 7 90

2 3 5 60

3 3 4 50

4 3 3 40

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Number of trucks of type 1

Knapsack
covering
constraint

Knapsack
packing
constraint

CP Tutorial Slide 484

+ + +
+ + + ≥

+ + + ≤
∈

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{0,1,2,3}i

x x x x

x x x x

x x x x

x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =
1

42 5 3 4 3 3 3
1

7
x

CP Tutorial Slide 485

+ + +
+ + + ≥

+ + + ≤
∈ ∈

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

min 90 60 50 40

7 5 4 3 42

8

{1,2,3}, , , {0,1,2,3}

x x x x

x x x x

x x x x

x x x x

Bounds propagation

− ⋅ − ⋅ − ⋅ ≥ =
1

42 5 3 4 3 3 3
1

7
x

Reduced
domain

CP Tutorial Slide 486

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting Planes

Begin with continuous relaxation

Replace domains
with bounds

This is a linear programming problem, which is easy to
solve.

Its optimal value provides a lower bound on optimal
value of original problem.

CP Tutorial Slide 487

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

We can create a tighter relaxation (larger minimum
value) with the addition of cutting planes .

CP Tutorial Slide 488

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

All feasible solutions of the
original problem satisfy a
cutting plane (i.e., it is valid).

But a cutting plane may
exclude (“cut off ”) solutions of
the continuous relaxation.

Cutting
plane

Feasible solutions

Continuous
relaxation

CP Tutorial Slide 489

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

…because 7x1 + 5x2 alone cannot satisfy the inequality,
even with x1 = x2 = 3.

CP Tutorial Slide 490

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

{1,2} is a packing

{ }
 − ⋅ + ⋅+ ≥ =

3 4

42 (7 3 5 3)
2

max 4,3
x x

So, + ≥ − ⋅ + ⋅3 44 3 42 (7 3 5 3)x x

which implies

Knapsack cut

CP Tutorial Slide 491

Cutting planes (valid inequalities)

Let xi have domain [Li,Ui] and let a ≥ 0.

In general, a packing P for ax ≥ a0 satisfies

∉ ∈

≥ −∑ ∑0i i i i
i P i P

a x a a U

and generates a knapsack cut

{ }
∈

∉
∉

 −
 ≥

∑
∑

0

max

i i
i P

i
i P i

i P

a a U
x

a

CP Tutorial Slide 492

+ + +
+ + + ≥

+ + + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1 2 3 4

1

min 90 60 50 40

7 5 4 3 42

8

0 3, 1i

x x x x

x x x x

x x x x

x x

Cutting planes (valid inequalities)

Maximal Packings Knapsack cuts

{1,2} x3 + x4 ≥ 2

{1,3} x2 + x4 ≥ 2

{1,4} x2 + x3 ≥ 3

Knapsack cuts corresponding to nonmaximal
packings can be nonredundant.

CP Tutorial Slide 493

+ + +
+ + + ≥

+

+ ≥
+ ≥
+ ≥

+ + ≤
≤ ≤ ≥

1 2 3 4

1 2 3 4

1

3 4

2 3

2

1

2 3

4

4

min 90 60 50 40

7 5 4 3 42

8

0 3, 1

2

2

3

i

x x x x

x x x x

x x x

x x

x x

x x

x

x x

Continuous relaxation with cuts

Optimal value of 523.3 is a lower bound on optimal value
of original problem.

Knapsack cuts

CP Tutorial Slide 494

Branch-
infer-and-
relax tree
Propagate bounds
and solve
relaxation of
original problem.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

CP Tutorial Slide 495

Branch on a
variable with
nonintegral value
in the relaxation.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 496

Propagate bounds
and solve
relaxation.

Since relaxation
is infeasible,
backtrack.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ {1,2}
x1 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 497

Propagate bounds
and solve
relaxation.

Branch on
nonintegral
variable.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 498

Branch again.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 499

Solution of
relaxation
is integral and
therefore feasible
in the original
problem.

This becomes the
incumbent
solution .

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 500

Solution is
nonintegral, but
we can backtrack
because value of
relaxation is
no better than
incumbent solution.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 501

Another feasible
solution found.

No better than
incumbent solution,
which is optimal
because search
has finished.

x1 ∈ { 123}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (2⅓,3,2⅔,0)
value = 523⅓

x1 ∈ { 12 }
x2 ∈ { 23}
x3 ∈ { 123}
x4 ∈ { 123}
infeasible
relaxation

x1 ∈ { 3}
x2 ∈ {0123}
x3 ∈ {0123}
x4 ∈ {0123}

x = (3,2.6,2,0)
value = 526

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 123}
x4 ∈ {0123}

x = (3,2,2¾,0)
value = 527½

x1 ∈ { 3}
x2 ∈ { 3}
x3 ∈ {012 }
x4 ∈ {012 }
x = (3,3,0,2)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ { 12 }
x3 ∈ { 12 }
x4 ∈ { 123}
x = (3,2,2,1)
value = 530

feasible solution

x1 ∈ { 3}
x2 ∈ {012 }
x3 ∈ { 3}
x4 ∈ {012 }

x = (3,1½,3,½)
value = 530
backtrack

due to bound

x1 ∈ {1,2}
x1 = 3

x2 ∈ {0,1,2}
x2 = 3

x3 ∈ {1,2}
x3 = 3

Branch-infer-
and-relax tree

CP Tutorial Slide 502

Two optimal solutions…

= (3,2,2,1)x

= (3,3,0,2)x

CP Tutorial Slide 503

Linear Relaxation

Why Relax?
Algebraic Analysis of LP

Linear Programming Duality
LP-Based Domain Filtering

Example: Single-Vehicle Routing

CP Tutorial Slide 504

Why Relax?
Solving a relaxation of a problem can:

• Tighten variable bounds.

• Possibly solve original problem.

• Guide the search in a promising direction.

• Filter domains using reduced costs or Lagrange multipliers.

• Prune the search tree using a bound on the optimal value.

• Provide a more global view, because a single OR relaxation
can pool relaxations of several constraints.

CP Tutorial Slide 505

Some OR models that can provide relaxations:

• Linear programming (LP).

• Mixed integer linear programming (MILP)

– Can itself be relaxed as an LP.

– LP relaxation can be strengthened with cutting planes.

• Lagrangean relaxation.

• Specialized relaxations.

– For particular problem classes.

– For global constraints.

CP Tutorial Slide 506

Motivation

• Linear programming is remarkably versatile for representing
real-world problems.

• LP is by far the most widely used tool for relaxation .

• LP relaxations can be strengthened by cutting planes.

- Based on polyhedral analysis.

• LP has an elegant and powerful duality theory .

- Useful for domain filtering, and much else.

• The LP problem is extremely well solved .

CP Tutorial Slide 507

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

An example…

4x1 + 7x2 = 12

Optimal solution
x = (3,0)

Algebraic Analysis of LP

CP Tutorial Slide 508

1 2

1 2

1 2

1 2

min 4 7

2 3 6

2 4

, 0

x x

x x

x x

x x

+
+ ≥
+ ≥

≥

Rewrite

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

as

In general an LP has the form min

0

cx

Ax b

x

=
≥

Algebraic Analysis of LP

CP Tutorial Slide 509

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

m × n matrix
Basic
variables

where

[]=A B N

Any set of
m linearly
independent
columns of A.

These form a
basis for the
space spanned
by the columns.

Nonbasic
variables

CP Tutorial Slide 510

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

All solutions can be obtained by setting xN to some value.

The solution is basic if xN = 0.

It is a basic feasible solution if xN = 0 and xB ≥ 0.

CP Tutorial Slide 511

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

2x1 + 3x2 ≥ 6

2x1 + x2 ≥ 4

Example…

x2, x3 basic

x1, x2 basic

x1, x4 basic

x2, x4 basic

x3, x4 basic
x1, x3 basic

= basic feasible
solution

x1

x2

CP Tutorial Slide 512

Algebraic analysis of LP

Write as

=
≥

min

0

cx

Ax b

x

+
+ =

≥

min

, 0

B B N N

B N

B N

c x c x

Bx Nx b

x x

where

[]=A B N

Solve constraint equation for xB: − −= −1 1
B Nx B b B Nx

Express cost in terms of nonbasic variables:

− −+ −1 1()B N B Nc B b c c B N x

Vector of reduced costs

Since xN ≥ 0,
basic solution (xB,0)
is optimal if
reduced costs are
nonnegative.

CP Tutorial Slide 513

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

Example…

x1, x4 basic

Consider this
basic feasible
solution

x1

x2

CP Tutorial Slide 514

Example…

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Write… as… cBxB cNxN

BxB

NxN b

1 2

1 2 3

1 2 4

1 2 3 4

min 4 7

2 3 6

2 4

, , , 0

x x

x x x

x x x

x x x x

+
+ − =
+ − =

≥

CP Tutorial Slide 515

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

Example…

b

cBxB cNxN

BxB

NxN

CP Tutorial Slide 516

Example…

− − −= − =

 = = = −

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

Basic solution is

x1, x4 basic

x2

x1

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN b

CP Tutorial Slide 517

[] []

[] []

1

1/ 2 0 3 1
7 0 4 0

1 1 1 0

1 2 0 0

N Bc c B N−−
− = − −

≥=

Example…
Basic solution is

Reduced costs are

Solution is
optimal

[] [] +

− + = −

 ≥

21

34

1 1

4 4

1 1

4 4

min 4 0 7 0

2 0 3 1 6

2 1 1 0 4

0
,

0

xx

xx

x x

x x

x x

x x

cBxB cNxN

BxB

NxN

− − −= − =

 = = = −

1 1 1

1/ 21

4

0 6 3

1 1 4 2

B Nx B b B Nx B b

x

x

CP Tutorial Slide 518

Linear Programming Duality

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x
implies

Dual problem: Find the tightest lower bound on the
objective function that is implied by the constraints.

CP Tutorial Slide 519

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma: If Ax ≥ b, x ≥ 0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c and λb ≥ v

That is, some surrogate
(nonnegative linear
combination) of
Ax ≥ b dominates cx ≥ v

CP Tutorial Slide 520

An LP can be viewed as an inference problem…

≥
≥ ⇒ ≥

0

max
x

v

Ax b cx v

=
≥

≥

min

0

cx

Ax b

x

From Farkas Lemma: If Ax ≥ b, x ≥ 0 is feasible,

0 dominates
iff

for some 0

x Ax b cx v
Ax b cx v

λ λ
λ

≥ ≥ ≥
≥ ⇒ ≥

≥

λA ≤ c and λb ≥ v

λ
λ
λ

≤
≥

max

0

b

A c
= This is the

classical
LP dual

CP Tutorial Slide 521

This equality is called strong duality.

=
≥

≥

min

0

cx

Ax b

x
If Ax ≥ b, x ≥ 0 is feasible

λ
λ
λ

≤
≥

max

0

b

A c
This is the
classical
LP dual

Note that the dual of the dual is the primal
(i.e., the original LP).

CP Tutorial Slide 522

λ
λ

+ =
+ ≥
+ ≥

≥

1

1 2

1 2

1 2

1 2

1

min 4 7

2 3 ()

()

6

2 4

, 0

x x

x x

x x

x x

Example

1 2

1

21 2

2

12

1

(

max 6 4

)

(

12

2 2 4

3 7

,

)

0

x

x

λ λ
λ λ
λ λ

λ λ

+ =
+ ≤
+ ≤

≥

A dual solution is (λ1,λ2) = (2,0)

Primal Dual

2

2

1

1 2

1(2)

(

6

0)

2 3

2 4

x x

x x

λ
λ

⋅
⋅

+
+

=
=

≥
≥

1 24 6 12x x+ ≥

1 24 7 12x x+ ≥
dominates

Dual multipliers

Surrogate

Tightest bound on cost
CP Tutorial Slide 523

Weak Duality

If x* is feasible in the
primal problem

min

0

cx

Ax b

x

≥
≥

λ
λ
λ

≤
≥

max

0

b

A c

and λ* is feasible in the
dual problem

then cx* ≥ λ*b.

This is because
cx* ≥ λ*Ax* ≥ λ*b

λ* is dual
feasible

and x* ≥ 0

x* is primal
feasible

and λ* ≥ 0

CP Tutorial Slide 524

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

The dual of the perturbed LP has the
same constraints at the original LP:

max (

0

)bb

A c

λ
λ
λ

≤
∆

≥

+

So an optimal solution λ* of the original dual is feasible in the
perturbed dual.

CP Tutorial Slide 525

Dual multipliers as marginal costs

min

0

cx

Ax b b

x

≥ ∆
≥

+
Suppose we perturb the RHS of an LP
(i.e., change the requirement levels):

By weak duality, the optimal value of the perturbed LP is at least
λ*(b + ∆b) = λ*b + λ*∆b.

So λi* is a lower bound on the marginal cost of increasing the
i-th requirement by one unit (∆bi = 1).

Optimal value of original LP, by strong duality.

If λi* > 0, the i-th constraint must be tight (complementary slackness).

CP Tutorial Slide 526

Dual of an LP in equality form

Primal Dual

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

CP Tutorial Slide 527

Dual of an LP in equality form

Primal Dual

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

CP Tutorial Slide 528

Dual of an LP in equality form

Primal Dual

Check: 1

1
B B

B N

B c B B c

N c B N c

λ
λ

−

−

= =
= ≤

Because reduced cost is nonnegative
at optimal solution (xB,0).

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

CP Tutorial Slide 529

Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

[] []1/ 21 0
4 0 2 0

1 1Bc Bλ − = = = −

In the example,

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

this solves the dual
if (xB,0) solves the primal

λ

CP Tutorial Slide 530

Dual of an LP in equality form

λ
+

+ =
≥

m n

, 0

)

i

(
B B N N

B N

B N

c x c x

Bx Nx b

x x

Primal Dual

(

max

 unrestric

)

d

)

te

(
B

N

B

B

x

b

B c

c xN

λ
λ
λ
λ

≤
≤

Note that the reduced cost of an individual variable xj is

Recall that reduced cost vector is 1
N Bc c B N−− Nc Nλ= −

λ

j j jr c Aλ= −

Column j of A

CP Tutorial Slide 531

� One way to filter the domain of xj is to minimize and maximize xj
subject to Ax ≥ b, x ≥ 0.

- This is time consuming.

� A faster method is to use dual multipliers to derive valid
inequalities.

- A special case of this method uses reduced costs to bound or
fix variables.

- Reduced-cost variable fixing is a widely used technique in OR.

LP-based Domain Filtering

min

0

cx

Ax b

x

≥
≥

Let be an LP relaxation of a CP problem.

CP Tutorial Slide 532

min

0

cx

Ax b

x

≥
≥

Suppose:

has optimal solution x*, optimal value v*, and
optimal dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight
(complementary slackness);

…and the LP is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value
U, so that U is an upper bound on the optimal value.

CP Tutorial Slide 533

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint
Aix ≥ bi would change by some amount ∆bi.

Since the constraint is tight, this would increase the optimal value
as much as changing the constraint to Aix ≥ bi + ∆bi.

So it would increase the optimal value at least λi*∆bi.

CP Tutorial Slide 534

We have found: a change in x that changes Aix by ∆bi increases
the optimal value of LP at least λi*∆bi.

Since optimal value of the LP ≤ optimal value of the CP ≤ U,
we have λi*∆bi ≤ U − v*, or *

*i
i

U v
b

λ
−∆ ≤

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

CP Tutorial Slide 535

Since ∆bi = Aix − Aix* = Aix − bi, this implies the inequality
*

*
i

i
i

U v
A x b

λ
−≤ +

…which can be propagated.

min

0

cx

Ax b

x

≥
≥

Supposing has optimal solution x*, optimal value v*, and
optimal dual solution λ*:

We have found: a change in x that changes Aix by ∆bi increases
the optimal value of LP at least λi*∆bi.

Since optimal value of the LP ≤ optimal value of the CP ≤ U,
we have λi*∆bi ≤ U − v*, or *

*i
i

U v
b

λ
−∆ ≤

CP Tutorial Slide 536

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution
of the original CP with value U = 13.

*
1

1 *
1

U v
A x b

λ
−≤ +

1 2

13 12
2 3 6 6.5

2
x x

−+ ≤ + =

Since the first constraint is tight, we can propagate
the inequality

or

CP Tutorial Slide 537

Reduced-cost domain filtering

Suppose xj* = 0, which means the constraint xj ≥ 0 is tight.

*

*
i

i
i

U v
A x b

λ
−≤ + becomes

*

j
j

U v
x

r
−≤The inequality

The dual multiplier for xj ≥ 0 is the reduced cost
rj of xj, because increasing xj (currently 0) by 1
increases optimal cost by rj.

Similar reasoning can bound a variable below when it is at its
upper bound.

CP Tutorial Slide 538

1 2

1 2

1 2

2

1

1

1

(2

min

)

4 7

2 3 6

2 4

, 0

(0)

x x

x x

x x

x x

λ
λ

=
+

+ =
+ ≥

≥
≥

Example

Suppose we have a feasible solution
of the original CP with value U = 13.

Since x2* = 0, we have

or

*

2
2

U v
x

r
−≤

2

13 12
0.5

2
x

−≤ =

If x2 is required to be integer, we can fix it to zero.
This is reduced-cost variable fixing.

CP Tutorial Slide 539

Example: Single-Vehicle Routing

A vehicle must make several stops and return home, perhaps subject
to time windows.

The objective is to find the order of stops that minimizes travel time.

This is also known as the traveling salesman problem with time
windows .

Stop i

Stop j

Travel time cij

CP Tutorial Slide 540

Assignment Relaxation

{ }

min

1, all

0,1 , all ,

ij ij
ij

ij ji
j j

ij

c x

x x i

x i j

= =

∈

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and
followed by exactly one stop.

CP Tutorial Slide 541

Assignment Relaxation

min

1, al

0 1, all ,

l

ij ij
ij

ij ji
j j

ij

c

x

i j

x i

x

x

= =

≤ ≤

∑

∑ ∑

= 1 if stop i immediately precedes stop j

Stop i is preceded and
followed by exactly one stop.

Because this problem is totally unimodular , it can be solved as an LP.

The relaxation provides a very weak lower bound on the optimal value.

But reduced-cost variable fixing can be very useful in a CP context.

CP Tutorial Slide 542

Lagrangean Relaxation

Lagrangean Duality
Properties of the Lagrangean Dual
Example: Fast Linear Programming

Domain Filtering
Example: Continuous Global Optimization

CP Tutorial Slide 543

Motivation

• Lagrangean relaxation can provide better bounds than LP
relaxation.

• The Lagrangean dual generalizes LP duality.

• It provides domain filtering analogous to that based on LP
duality.

- This is a technique in continuous global optimization .

• Lagrangean relaxation gets rid of troublesome constraints by
dualizing them.

- That is, moving them into the objective function.

- The Lagrangean relaxation may decouple .

CP Tutorial Slide 544

Lagrangean Duality

Consider an
inequality-constrained
problem

min ()

() 0

f x

g x

x S

≥
∈

Hard constraints

Easy constraints

The object is to get rid of (dualize) the hard constraints
by moving them into the objective function.

CP Tutorial Slide 545

Lagrangean Duality

Consider an
inequality-constrained
problem

max

() ()
x S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈ implies

Lagrangean Dual problem: Find the tightest lower bound
on the objective function that is implied by the constraints.

It is related to an
inference problem

CP Tutorial Slide 546

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

() ()
x S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

CP Tutorial Slide 547

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

Surrogate

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or { }min () ()
x S

v f x g xλ
∈

≤ −

CP Tutorial Slide 548

() 0 dominates () 0
() 0 () iff

for some 0

x S g x f x v
g x f x v

λ
λ

∈ ≥ − ≥
≥ ⇒ ≥

≥

λg(x) ≤ f(x) − v for all x ∈ S

That is, v ≤ f(x) − λg(x) for all x ∈ S

Or

max

() ()
s S

v

g x b f x v
∈

≥ ⇒ ≥

min ()

() 0

f x

g x

x S

≥
∈

Let us say that

Primal Dual

So the dual becomes

{ }
max

min () () for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

{ }min () ()
x S

v f x g xλ
∈

≤ −

Surrogate

CP Tutorial Slide 549

min ()

() 0

f x

g x

x S

≥
∈

Primal Dual

Now we have…

0
max ()

λ
θ λ

≥

or where

{ }() min () ()
x S

f x g xθ λ λ
∈

= −

{ }
max

min () () for some 0
x S

v

v f x g xλ λ
∈

≤ − ≥

Lagrangean
relaxation

Vector of
Lagrange
multipliers

The Lagrangean dual can be viewed as the problem
of finding the Lagrangean relaxation that gives the
tightest bound.

These constraints
are dualized

CP Tutorial Slide 550

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Optimal solution (2,1)

Strongest
surrogate

{ }

{ }
1 2 1 2 1 1 2 2 1 2{0, ,3}

1 2 1 1 2 2 2{0, ,3}

(,) min 3 4 (3) (2 5)

min (3 2) (4 3) 5
j

j

x

x

x x x x x x

x x

θ λ λ λ λ

λ λ λ λ λ
∈

∈

= + − − + − + −

= + − + − − +
…

…

The Lagrangean relaxation is

The Lagrangean relaxation is easy to solve
for any given λ1, λ2:

1 2
1

0 if 3 2 0

3 otherwise
x

λ λ+ − ≥=

1 2
2

0 if 4 3 0

3 otherwise
x

λ λ− − ≥=

CP Tutorial Slide 551

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

θ(λ1,λ2) is piecewise linear and concave.

Optimal solution (2,1)
Value = 10

λ1

λ2

θ(λ)=0

θ(λ)=9 2/7

θ(λ)=5

θ(λ)=0

θ(λ)=7.5

Solution of Lagrangean dual:

(λ1,λ2) = (5/7, 13/7), θ(λ) = 9 2/7

Note duality gap between 10 and 9 2/7
(no strong duality).

CP Tutorial Slide 552

Example

{ }

1 2

1 2

1 2

1 2

min 3 4

3 0

2 5 0

, 0,1,2,3

x x

x x

x x

x x

+
− + ≥

+ − ≥
∈

Note: in this example, the Lagrangean dual
provides the same bound (9 2/7) as the
continuous relaxation of the IP.

This is because the Lagrangean relaxation
can be solved as an LP:

Lagrangean duality is useful when the
Lagrangean relaxation is tighter than an LP
but nonetheless easy to solve.

{ }

{ }
{0,1 2 1 2 1 1 2 2 2

1 2 1 1 2 2 2

,3}

0 3

(,) min (3 2) (4 3) 5

min (3 2) (4 3) 5
j

j

x

x

x x

x x

θ λ λ λ λ λ λ λ

λ λ λ λ λ
∈

≤ ≤

= + − + − − +

= + − + − − +
…

CP Tutorial Slide 553

Properties of the Lagrangean dual

Weak duality: For any feasible x* and any λ* ≥ 0, f(x*) ≥ θ(λ*).

In particular, min ()

() 0

f x

g x

x S

≥
≥

∈

0
max ()

λ
θ λ

≥

Concavity: θ(λ) is concave. It can therefore be maximized by
local search methods.

Complementary slackness : If x* and λ* are optimal, and there
is no duality gap, then λ*g(x*) = 0.

CP Tutorial Slide 554

Solving the Lagrangean dual

Let λk be the kth iterate, and let 1k k k
kλ λ α ξ+ = +

Subgradient of θ(λ) at λ = λk

If xk solves the Lagrangean relaxation for λ = λk, then ξk = g(xk).

This is because θ(λ) = f(xk) + λg(xk) at λ = λk.

The stepsize αk must be adjusted so that the sequence
converges but not before reaching a maximum.

CP Tutorial Slide 555

Example: Fast Linear Programming

• In CP contexts, it is best to process each node of the search tree
very rapidly.

• Lagrangean relaxation may allow very fast calculation of a lower
bound on the optimal value of the LP relaxation at each node.

• The idea is to solve the Lagrangean dual at the root node (which
is an LP) and use the same Lagrange multipliers to get an LP
bound at other nodes.

CP Tutorial Slide 556

At root node, solve min

()

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ*
solves the Lagrangean dual in which

Dualize

{ }
0

() min ()
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

Special structure,
e.g. variable bounds

CP Tutorial Slide 557

At root node, solve min

()

0

cx

Ax b

Dx d

x

λ≥
≥

≥

The (partial) LP dual solution λ*
solves the Lagrangean dual in which

Dualize

{ }
0

() min ()
Dx d

x

cx Ax bθ λ λ
≥

≥

= − −

At another node, the LP is

min

()

0

cx

Ax b

Dx d

Hx h

x

λ≥
≥
≥

≥

Branching
constraints,
etc.

Here θ(λ*) is still a lower bound on the optimal
value of the LP and can be quickly calculated
by solving a specially structured LP.

Special structure,
e.g. variable bounds

CP Tutorial Slide 558

min ()

() 0

f x

g x

x S

≥
∈

Suppose:

has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*.

…and λi* > 0, which means the i-th constraint is tight
(complementary slackness);

…and the problem is a relaxation of a CP problem;

…and we have a feasible solution of the CP problem with value
U, so that U is an upper bound on the optimal value.

Domain Filtering

CP Tutorial Slide 559

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

If x were to change to a value other than x*, the LHS of i-th constraint
gi(x) ≥ 0 would change by some amount ∆i.

Since the constraint is tight, this would increase the optimal value
as much as changing the constraint to gi(x) − ∆i ≥ 0.

So it would increase the optimal value at least λi*∆i.

(It is easily shown that Lagrange multipliers are marginal costs. Dual
multipliers for LP are a special case of Lagrange multipliers.)

CP Tutorial Slide 560

We have found: a change in x that changes gi(x) by ∆i increases
the optimal value at least λi*∆i.

Since optimal value of this problem ≤ optimal value of the CP ≤ U,
we have λi*∆i ≤ U − v*, or *

*i
i

U v
λ
−∆ ≤

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

CP Tutorial Slide 561

Since ∆i = gi(x) − gi(x*) = gi(x), this implies the inequality
*

*()i
i

U v
g x

λ
−≤

…which can be propagated.

We have found: a change in x that changes gi(x) by ∆i increases
the optimal value at least λi*∆i.

Since optimal value of this problem ≤ optimal value of the CP ≤ U,
we have λi*∆i ≤ U − v*, or *

*i
i

U v
λ
−∆ ≤

min ()

() 0

f x

g x

x S

≥
∈

Supposing has optimal solution x*, optimal value v*, and
optimal Lagrangean dual solution λ*:

CP Tutorial Slide 562

Example: Continuous Global Optimization

• Some of the best continuous global solvers (e.g., BARON)
combine OR-style relaxation with CP-style interval arithmetic and
domain filtering.

• These methods can be combined with domain filtering based on
Lagrange multipliers.

CP Tutorial Slide 563

Feasible set

Global optimum

Local optimum

x1

x2

Continuous Global Optimization

1 2

1 2

1 2

1 2

max

4 1

2 2

[0,1], [0,2]

x x

x x

x x

x x

+
=

+ ≤
∈ ∈

CP Tutorial Slide 564

To solve it:

• Search : split interval domains of x1, x2.

– Each node of search tree is a problem restriction.

• Propagation: Interval propagation, domain filtering.

– Use Lagrange multipliers to infer valid inequality for
propagation.

– Reduced-cost variable fixing is a special case.

• Relaxation: Use function factorization to obtain linear
continuous relaxation.

CP Tutorial Slide 565

Interval propagation

Propagate intervals
[0,1], [0,2]

through constraints
to obtain

[1/8,7/8], [1/4,7/4]

x1

x2

CP Tutorial Slide 566

Relaxation (function factorization)

Factor complex functions into elementary functions that have
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

CP Tutorial Slide 567

where domain of xj is [,]j jx x

Relaxation (function factorization)

Factor complex functions into elementary functions that have
known linear relaxations.

Write 4x1x2 = 1 as 4y = 1 where y = x1x2.

This factors 4x1x2 into linear function 4y and bilinear function x1x2.

Linear function 4y is its own linear relaxation.

Bilinear function y = x1x2 has relaxation:

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

x x x x x x y x x x x x x

x x x x x x y x x x x x x

+ − ≤ ≤ + −
+ − ≤ ≤ + −

CP Tutorial Slide 568

The linear relaxation becomes:

Relaxation (function factorization)

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

CP Tutorial Slide 569

Solve linear relaxation.

x1

x2

Relaxation (function factorization)

CP Tutorial Slide 570

x1

x2

Since solution is infeasible,
split an interval and branch.

Solve linear relaxation.

Relaxation (function factorization)

2 [1,1.75]x ∈

2 [0.25,1]x ∈

CP Tutorial Slide 571

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

CP Tutorial Slide 572

Solution of
relaxation is

feasible,
value = 1.25

This becomes
incumbent

solution

x1

x2

x1

x2

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

CP Tutorial Slide 573

Solution of
relaxation is

feasible,
value = 1.25

This becomes
incumbent

solution

x1

x2

x1

x2
Solution of

relaxation is
not quite
feasible,

value = 1.854

Also use
Lagrange

multipliers for
domain

filtering…

2 [1,1.75]x ∈ 2 [0.25,1]x ∈

CP Tutorial Slide 574

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

Associated Lagrange
multiplier in solution of
relaxation is λ2 = 1.1

Relaxation (function factorization)

CP Tutorial Slide 575

This yields a valid inequality for propagation:

Associated Lagrange
multiplier in solution of
relaxation is λ2 = 1.1

1 2

1.854 1.25
2 2 1.451

1.1
x x

−+ ≥ − =

Relaxation (function factorization)

Value of
relaxation Lagrange multiplier

Value of incumbent
solution

1 2

1 2

2 1 1 2 1 2 2 1 1 2 1 2

2 1 1 2 1 2 2 1 1 2 1 2

min

4 1

2 2

, 1,2j j j

x x

y

x x

x x x x x x y x x x x x x

x x x x x x y x x x x x x

x x x j

+
=
+ ≤
+ − ≤ ≤ + −
+ − ≤ ≤ + −

≤ ≤ =

CP Tutorial Slide 576

CP-based Branch and Price

Basic Idea
Example: Airline Crew Scheduling

CP Tutorial Slide 577

Motivation

• Branch and price allows solution of integer programming
problems with a huge number of variables.

• The problem is solved by a branch-and-bound method. The
difference lies in how the LP relaxation is solved.

• Variables are added to the LP relaxation only as needed.

• Variables are priced to find which ones should be added.

• CP is useful for solving the pricing problem, particularly when
constraints are complex.

• CP-based branch and price has been successfully applied
to airline crew scheduling, transit scheduling, and other
transportation-related problems.

CP Tutorial Slide 578

Basic Idea

Suppose the LP relaxation of an integer
programming problem has a huge number of
variables:

min

0

cx

Ax b

x

=
≥

We will solve a restricted master problem ,
which has a small subset of the variables:

()

min

0

j j
j J

j j
j J

j

c x

A x b

x

λ
∈

∈

=

≥

∑

∑
Column j of A

Adding xk to the problem would improve the solution if xk has a
negative reduced cost:

0k k kr c Aλ= − <

CP Tutorial Slide 579

Adding xk to the problem would improve the solution if xk has a
negative reduced cost:

0k k kr c Aλ= − <

Basic Idea

Computing the reduced cost of xk is known as pricing xk.

min

 is a column of
yc y

y A

λ−

If the solution y* satisfies cy* − λy* < 0, then we can add column y to
the restricted master problem.

So we solve the pricing problem:

Cost of column y

CP Tutorial Slide 580

Basic Idea

min

 is a column of
yc y

y A

λ−

need not be solved to optimality, so long as we find a column with
negative reduced cost.

However, when we can no longer find an improving column, we
solved the pricing problem to optimality to make sure we have the
optimal solution of the LP.

The pricing problem

If we can state constraints that the columns of A must satisfy,
CP may be a good way to solve the pricing problem.

CP Tutorial Slide 581

Airline Crew Scheduling

Flight data

Start
time

Finish
time

A roster is the sequence of flights assigned to
a single crew member.

The gap between two consecutive flights in a
roster must be from 2 to 3 hours.

Total flight time for a roster must be between 6
and 10 hours.

The possible rosters are:

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

Assign crew members to flights to minimize cost while
covering the flights and observing complex work rules.

CP Tutorial Slide 582

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

CP Tutorial Slide 583

The LP relaxation of the problem is:

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

Rosters that cover flight 1.

CP Tutorial Slide 584

Airline Crew Scheduling

There are 2 crew members, and the possible rosters are:
1 2 3 4

(1,3,5), (1,4,6), (2,3,5), (2,4,6)

The LP relaxation of the problem is:

= 1 if we assign crew member 1
to roster 2, = 0 otherwise.

Cost c12 of assigning crew member 1 to roster 2

Each crew member is assigned to
exactly 1 roster.

Each flight is assigned at least 1
crew member.

In a real problem, there can be millions of rosters.

CP Tutorial Slide 585

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Optimal
dual

solution

u1
u2
v1
v2
v3
v4
v5
v6

CP Tutorial Slide 586

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

CP Tutorial Slide 587

Airline Crew Scheduling

We start by solving the problem with a subset
of the columns:

The reduced cost of an
excluded roster k for crew
member i is

 in roster k
ik i j

j

c u v− − ∑

We will formulate the
pricing problem as a
shortest path problem.

Dual
variables

u1
u2
v1
v2
v3
v4
v5
v6

CP Tutorial Slide 588

Pricing problem

Crew
member 1

Crew
member 2

CP Tutorial Slide 589

Pricing problem

Each s-t path corresponds to a roster,
provided the flight time is within bounds.

Crew
member 1

Crew
member 2

CP Tutorial Slide 590

Pricing problem
Cost of flight 3 if it immediately follows flight 1,

offset by dual multiplier for flight 1

Crew
member 1

Crew
member 2

CP Tutorial Slide 591

Pricing problem

Cost of transferring from home to flight 1, offset
by dual multiplier for crew member 1

Dual multiplier
omitted to break

symmetry

Crew
member 1

Crew
member 2

CP Tutorial Slide 592

Pricing problem

Length of a path is reduced cost of the
corresponding roster.

Crew
member 1

Crew
member 2

CP Tutorial Slide 593

Crew
member 1

Crew
member 2

Pricing problem

Arc lengths using dual solution of LP relaxation

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

CP Tutorial Slide 594

Crew
member 1

Crew
member 2

Pricing problem

Solution of shortest path problems

−10
5 2

2

0

3

4

5 6
−1

0
5 2

2

-9

3

4

5 6
−1

Reduced cost = −1
Add x12 to problem.

Reduced cost = −2
Add x23 to problem.

After x12 and x23 are added to the problem, no
remaining variable has negative reduced cost.

CP Tutorial Slide 595

Pricing problem

The shortest path problem cannot be solved by traditional shortest path
algorithms, due to the bounds on total duration of flights.

It can be solved by CP:

()
{ }

min max

Path(, ,), all flights

flights , 0, all
i

i i

j j
j X

i i

X z G i

T f s T

X z i
∈

≤ − ≤

⊂ <

∑

Set of flights
assigned to crew

member i

Path
length Graph

Path global constraint

Setsum global constraint

Duration of flight j

CP Tutorial Slide 596

CP-based Benders Decomposition

Benders Decomposition in the Abstract
Classical Benders Decomposition

Example: Machine Scheduling

CP Tutorial Slide 597

Motivation

• Benders decomposition allows us to apply CP and OR to
different parts of the problem.

• It searches over values of certain variables that, when fixed,
result in a much simpler subproblem .

• The search learns from past experience by accumulating
Benders cuts (a form of nogood).

• The technique can be generalized far beyond the original OR
conception.

• Generalized Benders methods have resulted in the greatest
speedups achieved by combining CP and OR.

CP Tutorial Slide 598

Benders Decomposition in the Abstract

Benders decomposition
can be applied to
problems of the form

min (,)

(,)

,x y

f x y

S x y

x D y D∈ ∈

When x is fixed to some
value, the resulting
subproblem is much
easier:

min (,)

(,)

y

f x y

S x y

y D∈

…perhaps
because it
decouples into
smaller problems.

For example, suppose x assigns jobs to machines, and y schedules
the jobs on the machines.

When x is fixed, the problem decouples into a separate scheduling
subproblem for each machine.

CP Tutorial Slide 599

Benders Decomposition

We will search over assignments to x. This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min (,)

(,)

k

k

y

f x y

S x y

y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

The Benders cut says that if we set x = xk again, the resulting cost v
will be at least vk. To do better than vk, we must try something else.

It also says that any other x will result in a cost of at least Bk+1(x),
perhaps due to some similarity between x and xk.

that satisfies Bk+1(xk) = vk. Cost in the original problem

CP Tutorial Slide 600

Benders Decomposition

We will search over assignments to x. This is the master problem .

In iteration k we assume x = xk

and solve the subproblem

min (,)

(,)

k

k

y

f x y

S x y

y D∈

and get optimal
value vk

We generate a Benders cut (a type of nogood) 1()kv B x+≥

that satisfies Bk+1(x) = vk. Cost in the original problem

We add the Benders cut to the master problem, which becomes

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
Benders cuts
generated so far

CP Tutorial Slide 601

Benders Decomposition

We now solve the
master problem

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…
to get the next
trial value xk+1.

The master problem is a relaxation of the original problem, and its
optimal value is a lower bound on the optimal value of the original
problem.

The subproblem is a restriction, and its optimal value is an upper
bound .

The process continues until the bounds meet.

The Benders cuts partially define the projection of the feasible set
onto x. We hope not too many cuts are needed to find the optimum.

CP Tutorial Slide 602

Classical Benders Decomposition

The classical method
applies to problems
of the form

min ()

()

, 0x

f x cy

g x Ay b

x D y

+
+ ≥

∈ ≥

and the subproblem
is an LP

()

min ()

()

0

k

k

f x cy

Ay b g x

y

λ
+

≥ −
≥

()max () ()

0

k kf x b g x

A c

λ

λ
λ

+ −

≤
≥

whose dual is

Let λk solve the dual.

By strong duality, Bk+1(x) = f(x) + λk(b − g(x)) is the tightest lower
bound on the optimal value v of the original problem when x = xk.

Even for other values of x, λλλλk remains feasible in the dual . So by
weak duality, Bk+1(x) remains a lower bound on v.

CP Tutorial Slide 603

Classical Benders

min

(), 1, , 1i

x

v

v B x i k

x D

≥ = +
∈

…

So the master problem becomes

min

() (()), 1, , 1i

x

v

v f x b g x i k

x D

λ≥ + − = +
∈

…

In most applications the master problem is

• an MILP

• a nonlinear programming problem (NLP), or

• a mixed integer/nonlinear programming problem (MINLP).

CP Tutorial Slide 604

Example: Machine Scheduling

• Assign 5 jobs to 2 machines (A and B), and schedule the
machines assigned to each machine within time windows.

• The objective is to minimize makespan .

• Assign the jobs in the master
problem , to be solved by MILP.

• Schedule the jobs in the
subproblem , to be solved by CP.

Time lapse between
start of first job and
end of last job.

CP Tutorial Slide 605

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Machine A

Machine B

CP Tutorial Slide 606

Machine Scheduling

Job Data Once jobs are assigned, we can
minimize overall makespan by
minimizing makespan on each
machine individually.

So the subproblem decouples.

Minimum makespan
schedule for jobs 1, 2, 3, 5

on machine A

CP Tutorial Slide 607

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

CP Tutorial Slide 608

Machine Scheduling

()

min

, all

, all

disjunctive (),() , all

j

j

j x j

j j j x j

j j ij j

M

M s p j

r s d p j

s x i p x i i

≥ +

≤ ≤ −

= =

Start time of job j

Time windows
Jobs cannot overlap

The problem is

For a fixed assignment the subproblem on each machine i is

()

min

, all with

, all with

disjunctive (),()

j

j

j x j j

j j j x j j

j j ij j

M

M s p j x i

r s d p j x i

s x i p x i

≥ + =

≤ ≤ − =

= =

x

CP Tutorial Slide 609

Benders cuts

Suppose we assign jobs 1,2,3,5 to machine A in iteration k.

We can prove that 10 is the optimal makespan by proving that the
schedule is infeasible with makespan 9.

Edge finding derives infeasibility by reasoning only with jobs 2,3,5.
So these jobs alone create a minimum makespan of 10.

So we have a Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ =

CP Tutorial Slide 610

Benders cuts

We want the master problem to be an MILP, which is good for
assignment problems.

So we write the Benders cut
2 3 4

1

10 if
()

0 otherwisek

x x x A
v B x+

= = =≥ =

Using 0-1 variables: ()2 3 510 2

0
A A Av x x x

v

≥ + + −
≥ = 1 if job 5 is

assigned to
machine A

CP Tutorial Slide 611

Master problem

The master problem is an MILP:

{ }

5

1

5

1

5 5

1 3

2 3 5

4

min

10, etc.

10, etc.

, 2 , etc., ,

v 10(2)

8

0,1

Aj Aj
j

Bj Bj
j

ij ij ij ij
j j

A A A

B

ij

v

p x

p x

v p x v p x i A B

x x x

v x

x

=

=

= =

≤

≤

≥ ≥ + =

≥ + + −
≥
∈

∑

∑

∑ ∑

Constraints derived from time windows

Constraints derived from release times

Benders cut from machine A

Benders cut from machine B

CP Tutorial Slide 612

Stronger Benders cuts

If all release times are the same, we can strengthen the Benders cuts.

We are now using the cut
1

ik

ik ij ik
j J

v M x J
∈

≥ − +

∑

Min makespan
on machine i
in iteration k

Set of jobs
assigned to
machine i in
iteration k

A stronger cut provides a useful bound even if only some of the jobs in
Jik are assigned to machine i: (1)

ik

ik ij ij
j J

v M x p
∈

≥ − −∑

These results can be generalized to cumulative scheduling.

CP Tutorial Slide 613

Cumulative scheduling in subproblem

Subproblem for each facility i, given an assignment x from master

()

≥ +

≤ ≤ −

= = =

min

, all

, all

cumulative (),(),()

j

j

j x j

j j j x j

j j ij j ij j

M

M t p j

r t d p j

t x i p x i c x i

Sample Benders cut (all release times the same):

{ } { }
∈ ∈ ∈

≥ − + −

∑ (1) max min

ik ik ik

ik ij ij j j
j J j J j J

M M p y d d

Min makespan
on facility i

in iteration k

Set of jobs
assigned to
facility i in
iteration k

=1 if job j assigned
to facility i (xj = i)

Deadline
for job j

Some Very Recent Work

Benders for scheduling
Cutting planes from CP model

BDDs as constraint store
BDDs for relaxation bounds

CP Tutorial Slide 615

Recent work – Benders for Scheduling

Joint work with Elvin Coban.

Apply logic-based Benders to single-facility scheduling with long time
horizons and many jobs.

Decompose the problem by assigning jobs to segments of time
horizon.

Segmented problem – Jobs cannot cross segment boundaries (e.g.,
weekends).

Unsegmented problem – Jobs can cross segment boundaries.

CP Tutorial Slide 616

Segmented problem

• Benders approach is very similar to that for the pl anning and
scheduling problem.

• Assign jobs to time segments rather than processors .

• Benders cuts are the same.

segment
Jobs do not overlap
segment boundaries

CP Tutorial Slide 617

Segmented problem

• Experiments use most recent versions of CP and IP s olvers.

• IBM OPL Studio 6.1

• CPLEX 12

CP Tutorial Slide 618

619

Segmented problem computational results

Feasibility – Wide time windows (individual instance s)

CP Tutorial Slide 619

620

Segmented problem computational results

Feasibility – Tight time windows (individual instanc es)

CP Tutorial Slide 620

621

Segmented problem computational results

Min makespan – Wide time windows (individual instanc es)

CP Tutorial Slide 621

622

Segmented problem computational results

Min makespan – Tight time windows (individual instan ces)

CP Tutorial Slide 622

623

Segmented problem computational results

Min tardiness – Wide time windows (individual instan ces)

CP Tutorial Slide 623

624

Segmented problem computational results

Min tardiness – Tight time windows (individual insta nces)

CP Tutorial Slide 624

Segmented problem

Computational results – tight time windows

CP Tutorial Slide 625

Segmented problem

Computational results – wide time windows

CP Tutorial Slide 626

Unsegmented problem

• Master problem is more complicated.

• Jobs can overlap two or more segments.

• Master problem variables must keep track of this.

• Benders cuts more sophisticated.

segment
Jobs can overlap

segment boundaries

CP Tutorial Slide 627

Unsegmented problem

• Master problem:

yijk variables keep
track of whether

job j starts,
finishes, or runs

entirely in
segment i.

xijk variables keep
track of how long
a partial job j runs

in segment i.

CP Tutorial Slide 628

Unsegmented problem computational
results

Feasibility -- individual instances

CP Tutorial Slide 629

Unsegmented problem computational results

Min makespan – individual instances

CP Tutorial Slide 630

Unsegmented problem

Computational results

CP Tutorial Slide 631

Unsegmented problem

Computational results

CP solves it quickly
(< 1 sec) or blows
up, in which case

Benders solves it in
6 seconds
(average).

CP Tutorial Slide 632

• Segmented problems:

• Benders is much faster for min cost and min makespa n
problems.

• Benders is somewhat faster for min tardiness proble m.

Summary of results

CP Tutorial Slide 633

• Segmented problems:

• Benders is much faster for min cost and min makespa n
problems.

• Benders is somewhat faster for min tardiness proble m.

• Unsegmented problems:

• Benders and CP can work together.

• Let CP run for 1 second.

• If it fails to solve the problem, it will probably blow up.
Switch to Benders for reasonably fast solution.

Summary of results

CP Tutorial Slide 634

Recent work – Cutting Planes from CP Model

Joint work with David Bergman.

Polyhedral analysis of overlapping all-different constraints (equivalent
to graph coloring).

Used in many scheduling problems, sudoku puzzles, etc. etc.

Derive cutting planes from CP alldiff formulation and map them
into 0-1 model.

Provides tighter bounds than all CPLEX cuts in a small fraction of the
time (e.g., 1%).

CP Tutorial Slide 635

Recent work – BDDs as Constraint Store

Joint work with Henrik Andersen, David Bergman,
Andre Cire, Tarik Hadzic, Willem van Hoeve,
Barry O’Sullivan, Peter Tiedemann

Replace variable domains in CP with relaxed
binary decision diagrams (BDDs).

BDDs have long been used for circuit design,
configuration, etc.

We use them to represent relaxation of feasible set.

Replace domain filtering with BDD-based propagation.

Reduces search tree for multiple alldiffs from 1 million nodes to
1 node, time speedup factor of 100. Speedups on other problems.

Now being incorporated into Google CP solver .

CP Tutorial Slide 636

Recent work – BDDs for Relaxation Bounding

Joint work with David Bergman, Andre Cire,
Willem van Hoeve

Replace LP relaxation with a relaxed binary
decision diagram (BDD).

Shortest path in BDD provides a lower bound
on optimal value.

For most instances of independent set problem,
we get tighter bounds than full cutting plane technology
in CPLEX.

Bound is normally obtained in very small fraction of the time.

CP Tutorial Slide 637

Obrigado!

Vocês têm perguntas?

CP Tutorial Slide 638

