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Optimization and constraint programming

• A natural combination…

– Complementary strengths

– Deep underlying commonality

– Gradual integration since mid-1990s

– Now a fast-moving research area

• In this talk…

– Broad overview

– Examples from 2 very active research streams
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Survey paper: JH and W. V. van Hoeve, Constraint programming and 

operations research, Constraints 23 (2018) 172-195.  Many references.

First CP-AI-OR Workshop 

Ferrera, Italy, 1999



In this talk…

• What is constraint programming?

– Employee scheduling, graph coloring, cumulative scheduling

• Schemes for integration

– Major research streams

• Snapshots of recent research

– Logic-based Benders decomposition

• Home healthcare delivery

• Multiple machine scheduling

• Stochastic machine scheduling

– Decision diagrams

• Tight job sequencing bounds

• Stochastic maximum clique

• Software
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What is constraint programming?

• Grew out of logic programming (e.g., Prolog).

– Steps in a logic program can be interpreted procedurally or 

declaratively.

– Generalized to constraint logic programming.
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What is constraint programming?

• Grew out of logic programming (e.g., Prolog).

– Steps in a logic program can be interpreted procedurally or 

declaratively.

– Generalized to constraint logic programming.

• Logical formalism dropped, resulting in a constraint program.

– A list of constraints that are processed sequentially.

– Unlike an optimization model, which is purely declarative.
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Example: employee scheduling

Assign 4 workers (A,B,C,D) to 3 shifts over 7 days.

CP model (11 constraints):

What is constraint programming?

6

3 different workers assigned 

to the 3 shifts each day.

Each worker assigned 

5 or 6 days.

Initial domain of 

variables w[s,d]

All-different, cardinality and 

nvalues are “global” constraints

At most 2 workers 

assigned to a shift

during the week.



What is constraint programming?
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Example: employee scheduling

Assign 4 workers (A,B,C,D) to 3 shifts over 7 days.

Integer programming model (72 constraints):



What is constraint programming?

• How are constraints processed?

– Variable domains are filtered to remove inconsistent values 

(values that cannot satisfy the constraint).

– Reduced domains propagated (passed on) to next constraint.

– Cycle through constraints until no further domain reduction 

is possible.

8

Filtering reduces domain of 

z to {C}.

In general, matching theory 

is used to filter all-different.



What is constraint programming?

• How are constraints processed?

– Variable domains are filtered to remove inconsistent values 

(values that cannot satisfy the constraint).

– Reduced domains propagated (passed on) to next constraint.

– Cycle through constraints until no further domain reduction 

is possible.

• Then what?

– If a domain is reduced to empty set, problem is infeasible.

– If all domains are singletons, problem is solved.

– Otherwise, branch by splitting a domain (as in IP).
9

Filtering reduces domain of 

z to {C}.

In general, matching theory 

is used to filter all-different.



What is constraint programming?

• Example: graph coloring

– Constraints: no 2 adjacent vertices have the same color.

– Variables: vertex colors.  Initial variable domains shown.

– This instance can be solved by filtering alone.
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What is constraint programming?

• Example: graph coloring

– Constraints: no 2 vertices have the same color.

– Variables: vertex colors.  Initial variable domains shown.

– This instance can be solved by filtering alone.
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What is constraint programming?

• Example: graph coloring

– Constraints: no 2 vertices have the same color.

– Variables: vertex colors.  Initial variable domains shown.

– This instance can be solved by filtering alone.
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What is constraint programming?

• Example: graph coloring

– Constraints: no 2 vertices have the same color.

– Variables: vertex colors.  Initial variable domains shown.

– This instance can be solved by filtering alone.
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• Example: cumulative scheduling

– Schedule jobs, subject to time windows.

– Jobs can run simultaneously as long as resource consumption 

never exceeds C.

– Use the global constraint:

– Filtered by edge finding, originally from optimization literature but 

now a highly developed technology in CP.

Job start times

(variables)
Job processing 

times
Job resource 

requirements

What is constraint programming?



Consider a problem instance with 3 jobs:

A feasible solution:

Time window*

Cumulative scheduling

*Domain of sj is [Ej, Lj − pj]



Total energy 

required = 22
9

5

8

We can deduce that job 3 must finish last.

The total “energy” (area) required by all jobs is

Cumulative scheduling



9

5

8Area available if job 3 

is not last = 20

We can deduce that job 3 must finish last.

The available energy if job 3 is not last is the area between the 

earliest start time and the deadline of jobs 1 & 2:

Total energy 

required = 22

Cumulative scheduling
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5

8Area available if job 3 

is not last = 20

Since 22 > 20,

job 3 must be last

We can deduce that job 3 must finish last.

The energy required exceeds the available area if job 3 is not last:

Total energy 

required = 22

Cumulative scheduling



Energy available for jobs 1 & 2 if space is left for job 3 to start anytime:

Energy available 

for jobs 1 & 2,

which require

9 + 5 = 14

10

We now ask how early can job 3 start?

Space left 

for job 3

Cumulative scheduling



Additional energy required by jobs 1 & 2:

10

4

Energy available 

for jobs 1 & 2 is 10,

but they require

9 + 5 = 14

Additional energy 

required by 

jobs 1 & 2 is 

14 − 10 = 4

Cumulative scheduling

We now ask how early can job 3 start?



We can now reduce domain of s3 from [1,3] to [2,3] by moving up job 3’s 

earliest start time to

10

4 Move up job 3’s 

earliest start time 

to 4/2 = 2 units 

beyond E{1,2}

E3

Additional energy 

required by 

jobs 1 & 2 is 

14 − 10 = 4

Energy available 

for jobs 1 & 2 is 10,

but they require

9 + 5 = 14

Cumulative scheduling

We deduce that job 3 can start no earlier than time 2.



• Now what?

– An O(n2) algorithm finds all applications of the edge finding rule.

– Apply additional domain reduction rules.

– If no solution identified, branch on which job is first, etc.

• Other domain reduction rules:

– Extended edge finding.

– Timetabling.

– Not-first/not-last rules.

– Energetic reasoning.

Cumulative scheduling
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CP & optimization compared

CP

• Deals naturally with discrete 

variables
− which need not be numerical

• Good at sequencing/scheduling
− where MILP has weak 

relaxations

• Messy constraints OK
− More constraints make the 

problem easier.

• Powerful modeling language
− Global constraints lead to 

succinct models

− and convey structure to solver.

Traditional Opt

• Deals naturally with continuous 

variables
− using numerical methods

• Good at knapsack constraints, 

assignments, costs
− which have tight relaxations

• Focus on optimality bounds 
− due to advanced relaxation 

technology

• Highly engineered solvers
− at least for LP, MILP

− due to decades of development



• Optimization-based filtering methods.

– Network and matching theory for sequencing constraints.

– Dynamic programming for employee scheduling constraints.

– Edge-finding for disjunctive & cumulative scheduling constraints.

• Constraint propagation + relaxation.

– In a branching context, reduce domains with CP and tighten 

relaxation with cutting planes.

– Each builds on the other.

• CP-based column generation.

– For branch-and-price methods.

• Logic-based Benders decomposition.

– Allows CP and optimization solvers to cooperate.

• Decision diagrams.

– Combine constraint propagation with discrete relaxation.

Schemes for combining CP & optimization



• Useful when fixing certain variables greatly simplifies problem.

– Master problem searches over ways to fix variables.

– Subproblem solves simplified problem that remains.

– Benders cut from subproblem guides next solution of master 

problem.

• LBBD is an extension of classical Benders decomposition.

– Subproblem can be any optimization problem (not just LP).

– Benders cuts based on inference dual (rather than LP dual).

• Frequently used to combine math programming and CP.

– For instance, MILP solves master problem, CP solves subproblem.

Logic-based Benders decomposition

Survey paper: JH, Logic-based Benders decomposition for large-scale optimization, 

in Large-Scale Optimization Applied to Supply Chain and Smart Manufacturing, Springer (2019)

Forthcoming book: JH, Logic-based Benders Decomposition: 

Theory and Applications, Springer (2023)



• Planning and scheduling:

– Machine allocation and scheduling

– Steel production scheduling

– Chemical batch processing (BASF, etc.)

– Auto assembly line management (Peugeot-Citroën)

– Allocation and scheduling of multicore processors 

(IBM, Toshiba, Sony)

– Edge-cloud computing

– Container port 

management

– Electric vehicle ride 

sharing

26

Some LBBD applications



• Planning and scheduling:

– Lock scheduling

– Shift scheduling

– Flow shop scheduling 

– Hospital scheduling

– Covid vaccine delivery

– Mass Covid testing

– Optimal control of 

dynamical systems

– Sports scheduling

– Underground mine 

scheduling

– Multiperiod distribution 

network logistics

27

Some LBBD applications



• Routing and scheduling

– Multiple vehicle routing

– Drone-assisted

parcel delivery

– Home health care

– Food distribution

– Automated guided 

vehicles in flexible 

manufacturing

– Traffic diversion 

around blocked 

routes

– Concrete delivery

– Train dispatching

28

Some LBBD applications



• Planning and scheduling:

– Allocation of frequency

spectrum (U.S. FCC)

– Wireless local area 

network design

– Facility location-allocation

– Stochastic facility location 

and fleet management

– Wind turbine maintenance

– Queuing design and control

29
29

Some LBBD applications



• Other:

– Logical inference (SAT solvers essentially use Benders)

– Logic circuit verification

– Warehouse robot

control

– Shelf space 

allocation

– Bicycle sharing

– Service restoration 

in a network

– Infrastructure 

resilience planning

– Supply chain 

management

– Space packing

– Part assembly planning
30

Some LBBD applications



• Solves problem of the form

Logic-based Benders decomposition

Minimize cost z subject to 

bounds given by Benders 

cuts, obtained from values 

of x attempted in previous 

iterations k.

Obtain proof of optimality 

(solution of inference dual).

Use same proof to deduce 

cost bounds for other 

assignments, yielding 

Benders cut.

Trial value x

that solves 

master

Benders cut

z  gk(x)

Master problem Subproblem

x

31JH (2000), JH & Ottosson (2003) 



• Caregiver assignment and routing

– Focus on regular hospice care

– Qualifications matched to patient needs

– Time windows, breaks, etc., observed

– Weekly schedule

• Rolling time horizon

– New patients every week.

– Minimal schedule change for existing patients.

• Efficient staff utilization

– Maximize number of patients served by given staff level.

– Optimality important, due to cost of taking on staff.

32

LBBD example: Home healthcare

Heching, JH, Kimura (2019) 



= 1 if patient j scheduled

= 1 if patient j

assigned to aide I

on day k

= 1 if patient j

assigned to aide i

33

LBBD example: Home healthcare

Required number 

of visits per week

Master problem

Assign patients 

to healthcare aides 

and days of the 

week

MILP model



LBBD example: Home healthcare

Subproblem

Sequence and schedule visits for each healthcare aide j separately.  

nth patient in sequence

Start time

Visit duration Travel time

CP model

(or use interval variables)

Patients assigned 

to aide i

34



Reduced set of patients whose assignment

to aide i on day k creates infeasibility, obtained 

by re-solving subproblem with fewer aides.    

This excludes many assignments that cannot be 

feasible.

35

LBBD example: Home healthcare

Benders cuts

If no feasible schedule for aide j, generate a cut requiring that at least 

one patient be assigned to another aide.

Branch and check

Variant of LBBD that generates Benders cuts during branch-and-

bound solution of master problem.  Master problem solved only once.

JH (2000), Thorsteinsson (2001) 
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LBBD example: Home healthcare

Computational results

Data from home hospice care firm.
Heching, JH, Kimura (2019) 

Better results for slightly easier instances in

Grenouilleau, Lahrichi, Rousseau (2020) 
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LBBD example: Home healthcare

Computational results

Data from Danish home care agency.
Heching, JH, Kimura (2019) 



• Master problem

– Use MILP to assign tasks to (nonidentical) machines.

– Minimize makespan, etc.

• Subproblem

– Schedule tasks on each machine, subject to time windows.

– Use CP (cumulative scheduling) for each machine.

– Minimize makespan, etc.

• Benders cuts

– Use analytical cuts based on structure of subproblem.

38

LBBD example: Multiple machine scheduling

JH (2007) 
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Performance profile for 50 problem instances

LBBD example: Multiple machine scheduling

Ciré, Coban, JH (2015)



• Random processing times

– Represented by multiple scenarios.

– Processing times revealed after machine assignment but before 

scheduling on each machine.

– Solve subproblem by CP

• Previous state of the art

– Integer L-shaped method.

– Classical Benders cuts based on LP relaxation of MILP subproblem.

– Weak “integer cuts” to ensure convergence.

40

LBBD example: Stochastic machine scheduling



41

Computation time

10 jobs, 2 machines, processing times drawn from uniform distribution

Each time (seconds) is average over 3 instances

LBBD example: Stochastic machine scheduling

Scenarios Integer

L-shaped

Branch & 

Check

1 127 1

5 839 2

10 2317 3

50 > 3600 17

100 > 3600 37

500 > 3600 279

Elçi and JH (2022) 



• Binary decision diagrams

– Graphical representation of Boolean function.

– Traditionally used for logic circuit verification, product configuration, etc.

– Can be generalized to multivalued DDs.

42

Decision diagrams

Survey paper: M.P. Castro, A.A. Cire, J.C. Beck, Decision diagrams for discrete 

optimization: A survey of recent advances, INFORMS Journal on Computing 34 (2022)

Bryant (1986)

Lee (1959), Akers (1978)



• Binary decision diagrams

– Graphical representation of Boolean function.

– Traditionally used for logic circuit verification, product configuration, etc.

– Can be generalized to multivalued DDs.

• Constraint programming applications

– Representation and filtering of global constraints (e.g. table constraint).

– Relaxed DDs provide data structure for constraint propagation.

43

Decision diagrams

Survey paper: M.P. Castro, A.A. Cire, J.C. Beck, Decision diagrams for discrete 

optimization: A survey of recent advances, INFORMS Journal on Computing 34 (2022)

Bryant (1986)

Lee (1959), Akers (1978)

Andersen, Hadžić, JH, Tiedemann  (2007) Hadžić, JH, O’Sullivan, Tiedemann  (2008) 



• Binary decision diagrams

– Graphical representation of Boolean function.

– Traditionally used for logic circuit verification, product configuration, etc.

– Can be generalized to multivalued DDs.

• Constraint programming applications

– Representation and filtering of global constraints (e.g. table constraint).

– Relaxed DDs provide data structure for constraint propagation.

• A new perspective on optimization

– DDs can perform all functions of an optimization solver...

44

Decision diagrams

Survey paper: M.P. Castro, A.A. Cire, J.C. Beck, Decision diagrams for discrete 

optimization: A survey of recent advances, INFORMS Journal on Computing 34 (2022)

Bryant (1986)

Lee (1959), Akers (1978)

Andersen, Hadžić, JH, Tiedemann  (2007) 

Hadžić and JH (2006, 2007) 

Hadžić, JH, O’Sullivan, Tiedemann  (2008) 
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Modeling
with recursive 

formulations

Relaxation
with relaxed 

diagrams

Primal

heuristics
with restricted 

diagrams

Constraint

propagation
through a 

relaxed diagram

Search
with a novel branch-and-

bound method

Optimization

Postoptimality

analysis
with sound diagrams

Decision diagrams

Book: D. Bergman, A. A. Cire, W. J. van Hoeve, JH, 

Decision Diagrams for Optimization, Springer (2016)



• Sequence jobs

– Release times and due dates.

– Minimize total tardiness.

– Problems often too hard to solve to proven optimality.

• Find a tight bound on min tardiness

– To evaluate heuristic solutions.

– Use DDs and Lagrangian relaxation

on dynamic programming model.

46

DD example: Job sequencing bounds

Release time Due date

Processing time

Job



𝑥𝑗 = j th job
in sequence

Decision diagram for job sequencing

𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j

DD example: Job sequencing bounds



𝑥𝑗 = j th job
in sequence

Decision diagram for job sequencing

𝑥𝑗

Each r-t path corresponds 

to a feasible solution

Tardiness 

of job j

DD example: Job sequencing bounds

An optimal solution:

Sequence 2-3-1

Schedule [1,3], [3,5], [5,7]

Tardiness 0 + 0 + 4 = 4



Interpret DD as dynamic programming 

state transition graph

𝑥𝑗

DD example: Job sequencing bounds

State variable:

jobs scheduled 

so far

State variable:

finish time 

of last job

Cost to go

Minimum tardiness



Interpret DD as dynamic programming 

state transition graph

𝑥𝑗

DD example: Job sequencing bounds

State variable:

jobs scheduled 

so far

State variable:

finish time 

of last job

Cost to go

Minimum tardiness



DD example: Job sequencing bounds

Example: merge these nodes

Relax DD by 

merging some nodes

Exact DD grows exponentially.  

Obtain lower bound on tardiness 

from smaller relaxed DD

Andersen, Hadžić, JH, Tiedemann  (2007) 

Bergman, Ciré, van Hoeve, JH (2013) 

Ciré and van Hoeve (2013) 



Exact DD grows exponentially.  

Obtain lower bound on tardiness 

from smaller relaxed DD

DD example: Job sequencing bounds

State variable:

min finish time 

of last jobs 

on paths from root
State variable:

Jobs scheduled

along all paths from root

Andersen, Hadžić, JH, Tiedemann  (2007) 

Bergman, Ciré, van Hoeve, JH (2013) 

Ciré and van Hoeve (2013) 

Relax DD by 

merging some nodes



Exact DD grows exponentially.  

Obtain lower bound on tardiness 

from smaller relaxed DD

DD example: Job sequencing bounds

Andersen, Hadžić, JH, Tiedemann  (2007) 

Bergman, Ciré, van Hoeve, JH (2013) 

Ciré and van Hoeve (2013) 

Relax DD by 

merging some nodes



Exact DD grows exponentially.  

Obtain lower bound on tardiness 

from smaller relaxed DD

DD example: Job sequencing bounds

Sufficient conditions for a 

state merger rule that yields 

a valid relaxed DD given in

Shortest path yields a 

lower bound of 2 on 

optimal value of 4.

JH (2017) 



Path length now includes 

total Lagrange penalty

Bergman, Cire, van Hoeve (2015)

DD example: Job sequencing bounds

We can tighten bound by including 

Lagrange penalties on infeasible paths.

JH (2019) 



Theorem. Lagrangian relaxation can be implemented in a relaxed DD 

if nodes are merged only when their states agree on the values 

of the state variables on which the arc costs and Lagrangian arc 

penalties depend.

56

– Applies to dynamic programming in general.

– Useful when immediate cost and penalty functions 

depend on only a few state variables.

DD example: Job sequencing bounds

JH (2019) 
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DD example: Job sequencing bounds

• For which problems is Lagrangian + DD relaxation practical, 

based on the theorem?

– Min tardiness.*

– Min tardiness + earliness.*

– Min tardiness with time-dependent processing times.

– Min tardiness with state-dependent processing times.

– TSP without time windows.

– TSP with time windows.

* Computational tests to follow…
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DD example: Job sequencing bounds

• Min tardiness

– Crauwells-Potts-Wassenhove instances.

– Provably optimal solutions known for most instances.

– Compare DD bound with known optimal values.

• Min tardiness + earliness

– Biskup-Feldman instances.

– Provably optimal solutions previously unknown for all instances.

– Compare DD bound with best solutions known.

Computational tests.



59Time = about 40 minutes per instance

DD example: Job sequencing bounds

Min tardiness, 50 jobs

JH (2019)
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DD example: Job sequencing bounds

Min tardiness + earliness, 50 jobs

Time = about 8 minutes per instance JH (2019)
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DD example: Job sequencing bounds

Min tardiness + earliness, 100 jobs

Time = about 65 minutes per instance JH (2019)
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Stochastic DD example: Max clique

• Find clique in a graph with max expected size

– Each edge occurs with probability 0.6.

– Even small instances are intractable for exact solution.

• Find bound on max expected clique size

– For solving stochastic dynamic programming models.

– Requires relaxed stochastic DDs.

A maximum clique

JH (2022) 
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Stochastic DD example: Max clique

A max clique

(longest path)

DD for deterministic problem
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Stochastic DD example: Max clique

DD for stochastic problem

Transition 

probabilities

Control x3 = 1 (put vertex 3 in clique)

has 2 possible outcomes:

• edges exist to vertices 1 and 2, 

yielding clique {1,2,3}

• edge missing to vertex 1 or 2, 

yielding clique {1,2}

State = 

{vertices currently in clique}

Max expected clique size

A solution is a 

policy (not a path) 

that specifies a 

control in every 

possible state.
JH (2022) 
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Stochastic DD example: Max clique

Relax DD by merging nodes

Merge these 

2 nodes

Sufficient conditions for a 

state merger rule that yields a 

valid relaxed DD given in JH (2022) 

JH (2022) 
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Stochastic DD example: Max clique

Relax DD by merging nodes

Result of 

merger

Expected longest path length 

of 2.4736 is bound 

on optimal value 2.056 

Sufficient conditions for a 

state merger rule that yields a 

valid relaxed DD given in JH (2022) 

JH (2022) 
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Stochastic DD example: Max clique

• Basic issue

– Need exact (or very good) solution to judge quality of bound.

– Nearly all nontrivial instances are intractable.

• Random instances

– Choose parameters that allow solution to proven optimality.

– Measure quality of bound against time required to process DDs 

of increasing width.

• DIMACS instances + edge probabilities

– Only 2 could be solved to optimality, one requiring 24 hours.

– Take others up to 1000 seconds.

• Results

– Bound quality degrades slowly as exact DD is relaxed.

– Gap varies roughly with logarithm of time investment

Computational tests.
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Stochastic DD example: Max clique

Random instances (solved to optimality)

Last point of each series is optimal

JH (2022) 
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Stochastic DD example: Max clique

Random instances (solved to optimality)

JH (2022) 
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Stochastic DD example: Max clique

2 DIMACS instances (solved to optimality)

JH (2022) 
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Stochastic DD example: Max clique

DIMACS instances (not solved to optimality)

JH (2022) 

• Conclusion

– Bound quality degrades slowly as exact DD is relaxed.

– Gap varies roughly with logarithm of time investment



• General CP/opt integration 

– IBM ILOG CPLEX Optimizer

– MiniZinc modeling language (open source) 

for cooperating solvers

– SCIP (open source)

– BARON (global optimization)

• Constraint programming solvers

– IBM ILOG CPLEX Optimizer

– Gecode (open source)

– Chuffed (open source)

– Google OR Tools CP solver and CP-SAT solver (open source)

• Logic-based Benders

– Automatic LBBD in MiniZinc (open source)

– Nutmeg (branch and check, open source)

• Decision diagrams

– DDO (open source)

– Haddock (CP + DDs, open source)

– Hop (developed by nextmv for logistics) 72

Software




