Combining Optimization and
Constraint Programming

John Hooker
Carnegie Mellon University

Amazon Modeling and Optimization
November 2022

Optimization and constraint programming

* A natural combination...
— Complementary strengths
— Deep underlying commonality
— Gradual integration since mid-1990s
— Now a fast-moving research area

BN (B SORR -

* Inthis talk... First CP-AI-OR Workshop
— Broad overview Ferrera, Italy, 1999
— Examples from 2 very active research streams

Survey paper: JH and W. V. van Hoeve, Constraint programming and
operations research, Constraints 23 (2018) 172-195. Many references.

In this talk...

« What is constraint programming?

— Employee scheduling, graph coloring, cumulative scheduling
« Schemes for integration

— Major research streams
* Snapshots of recent research

— Logic-based Benders decomposition
 Home healthcare delivery
« Multiple machine scheduling
« Stochastic machine scheduling

— Decision diagrams

« Tight job sequencing bounds =
« Stochastic maximum clique @

« Software

C3

What is constraint programming?

« Grew out of logic programming (e.g., Prolog).

— Steps in a logic program can be interpreted procedurally or
declaratively.

— Generalized to constraint logic programming.

grandmother (X, Y) :- mother (X, Z), parent(Z, Y).
parent (X, Y) :- mother (X, Y).
parent (X, Y) :- father (X, Y).

mother {(mary, stan).
mother (gwen, alice).
mother (valery, gwen).
father(stan, alice).

What is constraint programming?

« Grew out of logic programming (e.g., Prolog).

— Steps in a logic program can be interpreted procedurally or
declaratively.

— Generalized to constraint logic programming.

grandmother (X, Y) :- mother (X, Z), parent(Z, Y).
parent (X, Y) :- mother (X, Y).
parent (X, Y) :- father (X, Y).

mother {(mary, stan).
mother (gwen, alice).
mother (valery, gwen).
father(stan, alice).

* Logical formalism dropped, resulting in a constraint program.
— Alist of constraints that are processed sequentially.
— Unlike an optimization model, which is purely declarative.

What is constraint programming?

Example: employee scheduling
Assign 4 workers (A,B,C,D) to 3 shifts over 7 days.

CP model (11 constraints):

3 different workers assigned
to the 3 shifts each day.

/

all—different(w[*,]), d=1,...,7 <

cardinality(w[*, x|, (A, B,C,D),5, 6) « Eic;h(sv(\;(;g(:r assigned

nvalues(w[s, *]’ 1, 2)’ s=1,2,3 \\ At most 2 workers
w(s,d] € {A,B,C,D}, all s,d assigned to a shift

\ during the week.
I Initial domain of

ws, d] = worker assigned to shift s on day d variables w(s,d]

All-different, cardinality and
nvalues are “global” constraints

What is constraint programming?

Example: employee scheduling
Assign 4 workers (A,B,C,D) to 3 shifts over 7 days.

Integer programming model (72 constraints):

insd =1, all s,d; insd <1, all 7,d
5<) @isa <6, alli

s,d
Y vis <2, alls; > @i < Tyis, all i,s

7 d
Lidss Yis S {07 1}5 a’u ?;,d,S

T;sq = 1 if worker ¢ assigned to shift s on day d

What is constraint programming?

 How are constraints processed?

— Variable domains are filtered to remove inconsistent values
(values that cannot satisfy the constraint).

— Reduced domains propagated (passed on) to next constraint.
— Cycle through constraints until no further domain reduction

IS possible.
Filtering reduces domain of
all-different(z, y, z) z to {C}.
x,Y € {A,B}, = {A’B?C} In general, matching theory
Is used to filter all-different.

What is constraint programming?

 How are constraints processed?

— Variable domains are filtered to remove inconsistent values
(values that cannot satisfy the constraint).

— Reduced domains propagated (passed on) to next constraint.
— Cycle through constraints until no further domain reduction

IS possible.

all-different(z, y, z)
x,y € {A,B}, z € {A,B,C}

e Then what?

Filtering reduces domain of
z to {C}.

In general, matching theory
IS used to filter all-different.

— If a domain is reduced to empty set, problem is infeasible.
— If all domains are singletons, problem is solved.
— Otherwise, branch by splitting a domain (as in IP).

What is constraint programming?

« Example: graph coloring

— Constraints: no 2 adjacent vertices have the same color.
— Variables: vertex colors. Initial variable domains shown.

— This instance can be solved by filtering alone.

@

O O
00 000 ©

O
L

10

What is constraint programming?

« Example: graph coloring
— Constraints: no 2 vertices have the same color.

— Variables: vertex colors. Initial variable domains shown.

— This instance can be solved by filtering alone.

11

What is constraint programming?

« Example: graph coloring
— Constraints: no 2 vertices have the same color.

— Variables: vertex colors. Initial variable domains shown.

— This instance can be solved by filtering alone.

o0
O

12

What is constraint programming?

« Example: graph coloring
— Constraints: no 2 vertices have the same color.

— Variables: vertex colors. Initial variable domains shown.

— This instance can be solved by filtering alone.

13

What is constraint programming?

Example: cumulative scheduling

Schedule jobs, subject to time windows.

Jobs can run simultaneously as long as resource consumption
never exceeds C.

Use the global constraint:

Cumulative((sl, ey Sn), (P D)y (Cly e ey Cn), C’)

/]

Job start times Job processing Job resource
(variables) times requirements

Filtered by edge finding, originally from optimization literature but
now a highly developed technology in CP.

Cumulative scheduling

Consider a problem instance with 3 jobs:

Cumulative((sl, 52, 83)5 (p1:p29p3)7 (cla Cc2, 63)7 4)

A feasible solution:
Time window*

\

Job j pj Cj [Ej, LJ]

1 5 1 [0,5]
2 3 3 [0,5]
3 4 2 (L7

*Domain of s; is [E;, L, — p]

Cumulative scheduling

We can deduce that job 3 must finish last.

The total “energy” (area) required by all jobs is

e3s +eqoy|> C (Lo — Friogy)

Total energy
required = 22

Cumulative scheduling

We can deduce that job 3 must finish last.

The available energy if job 3 is not last is the area between the
earliest start time and the deadline of jobs 1 & 2:

€3 + €{1,2} >

C-(Lizy — Epiasy)

Total energy
required = 22

Area available if job 3
IS not last = 20

L3

Cumulative scheduling

We can deduce that job 3 must finish last.

The energy required exceeds the available area if job 3 is not last:

e3s +eqoy > C - (Lo — Erigy)

Total energy
required = 22

Area available if job 3] 38
Is not last = 20

Since 22 > 20, 5

job 3 must be last , ‘ ‘ ,
E1 Eg Ll LS

Cumulative scheduling

We now ask how early can job 3 start?

Energy available for jobs 1 & 2 if space is left for job 3 to start anytime:

er1,2y —|(C —e3)(Ly1,2y — Ep12y)

B0y +

C3

Space left
for job 3

Energy available
for jobs 1 & 2,
which require

9+5=14

Cumulative scheduling

We now ask how early can job 3 start?
Additional energy required by jobs 1 & 2:

er1,2y — (C —e3)(Ly1,2y — Ep12y)

C3

B0y +

R s T

Additional energy SRR

required by — 4 SIS N—

jobs1&2is DS B S

14 -10=4 | B BHSHBUBEEEE
Energy available g

for jobs 1 & 2is 10, 7 10 oo

but they require o

9+5=14 x T S R E— T

Cumulative scheduling

We deduce that job 3 can start no earlier than time 2.

We can now reduce domain of s; from [1,3] to [2,3] by moving up job 3’s
earliest start time to

er1,2y — (C —e3)(Ly1,2y — Ep12y)

E
{12} F o

R s T

Additional energy SRR

Move up job 3’s
earliest start time
to 4/2 = 2 units
beyond E,, ,,

required by — 4
jobs1&2is
14-10=4

Energy available
for jobs 1 & 2is 10,] 10
but they require
9+5=14 T T :

Ev Es E3

Cumulative scheduling

 Now what?
— An O(n?) algorithm finds all applications of the edge finding rule.
— Apply additional domain reduction rules.
— If no solution identified, branch on which job is first, etc.
e Other domain reduction rules:
— Extended edge finding.
— Timetabling.
— Not-first/not-last rules.
— Energetic reasoning.

CP & optimization compared

CP

Deals naturally with discrete
variables
— which need not be numerical
Good at sequencing/scheduling
— where MILP has weak
relaxations
Messy constraints OK
— More constraints make the
problem easier.
Powerful modeling language
— Global constraints lead to
succinct models

— and convey structure to solver.

Traditional Opt

Deals naturally with continuous
variables

— using numerical methods
Good at knapsack constraints,
assignments, costs

— which have tight relaxations
Focus on optimality bounds

— due to advanced relaxation

technology

Highly engineered solvers
— atleast for LP, MILP

— due to decades of development

23

Schemes for combining CP & optimization

Optimization-based filtering methods.

— Network and matching theory for sequencing constraints.

— Dynamic programming for employee scheduling constraints.

— Edge-finding for disjunctive & cumulative scheduling constraints.
Constraint propagation + relaxation.

— In a branching context, reduce domains with CP and tighten
relaxation with cutting planes.

— Each builds on the other.
CP-based column generation.

— For branch-and-price methods.

Logic-based Benders decomposition.

— Allows CP and optimization solvers to cooperate.
Decision diagrams.

— Combine constraint propagation with discrete relaxation.

Logic-based Benders decomposition

» Useful when fixing certain variables greatly simplifies problem.
— Master problem searches over ways to fix variables.
— Subproblem solves simplified problem that remains.

— Benders cut from subproblem guides next solution of master
problem.

« LBBD is an extension of classical Benders decomposition.
— Subproblem can be any optimization problem (not just LP).
— Benders cuts based on inference dual (rather than LP dual).
* Frequently used to combine math programming and CP.
— For instance, MILP solves master problem, CP solves subproblem.

Survey paper: JH, Logic-based Benders decomposition for large-scale optimization,
in Large-Scale Optimization Applied to Supply Chain and Smart Manufacturing, Springer (2019)

Forthcoming book: JH, Logic-based Benders Decomposition:
Theory and Applications, Springer (2023)

Some LBBD applications

« Planning and scheduling:
— Machine allocation and scheduling
— Steel production scheduling
— Chemical batch processing (BASF, etc.)
— Auto assembly line management (Peugeot-Citroén)

— Allocation and scheduling of multicore processors
(IBM, Toshiba, Sony)

— Edge-cloud computing
— Container port
management

— Electric vehicle ride
sharing

Some LBBD applications

* Planning and scheduling:
— Lock scheduling
— Shift scheduling
— Flow shop scheduling
— Hospital scheduling
— Covid vaccine delivery
— Mass Covid testing

— Optimal control of
dynamical systems

— Sports scheduling

— Underground mine
scheduling

— Multiperiod distribution
network logistics

27

Some LBBD applications

* Routing and scheduling
— Multiple vehicle routing

— Drone-assisted
parcel delivery

— Home health care
— Food distribution

— Automated guided
vehicles in flexible
manufacturing

— Traffic diversion
around blocked
routes

— Concrete delivery
— Train dispatching

Some LBBD applications

* Planning and scheduling:

Allocation of frequency
spectrum (U.S. FCC)

Wireless local area
network design

Facility location-allocation

Stochastic facility location
and fleet management

Wind turbine maintenance
Queuing design and control

Some LBBD applications

Other:

Logical inference (SAT solvers essentially use Benders)
Logic circuit verification

Warehouse robot
control

Shelf space
allocation

Bicycle sharing

Service restoration
in a network

Infrastructure
resilience planning

Supply chain
management

Space packing
Part assembly planning

30

Logic-based Benders decomposition

Solves problem of the form

Master problem

min z
z > gr(x), all cuts k
X € Dy

Minimize cost z subject to
bounds given by Benders
cuts, obtained from values
of x attempted in previous
iterations k.

min f(x,y)

(x,y) €5
x€Dx,ye€Dy

>

Trial value X
that solves
master

<€
Benders cut

Z > g(X)

JH (2000), JH & Ottosson (2003)

Subproblem

min f(X,y)
(X,y) €S
y € Dy

Obtain proof of optimality
(solution of inference dual).
Use same proof to deduce

cost bounds for other
assignments, yielding
Benders cut.

31

LBBD example: Home healthcare

« Caregiver assignment and routing
— Focus on regular hospice care
— Qualifications matched to patient needs
— Time windows, breaks, etc., observed
— Weekly schedule
* Rolling time horizon
— New patients every week.
— Minimal schedule change for existing patients.
« Efficient staff utilization
— Maximize number of patients served by given staff level.
— Optimality important, due to cost of taking on staff.

Heching, JH, Kimura (2019)

32

LBBD example: Home healthcare

Master problem

Assign patients

max Z 5, / = 1 if patient j scheduled

to healthcare aides _
and days of the Z Tij =|0j{ all j Required number
week i of visits per week

> Tyije|=|vs6;, allj

i
=1 if patient j ﬂ:k/; wij| all 2,7,k

assigned to aide | Spacing constraints on visit days
on day k enders cuts
- 1 if patient | Relaxation of subproblem
assigned to aide i 0, Tij, Yijk € 10,1}
MILP model

33

LBBD example: Home healthcare

Subproblem

Sequence and schedule visits for each healthcare aide j separately.

nth patient In sequence Patients assigned

/ / to aide |

all-different{my, || v = 1,...,||P|}
Starttirg“ [SjJSj ‘|‘pj] - [Tjadj]
Sﬂ'kv —l_pﬂ'k:v —'_ tﬂ'kuﬂ'k,u—}—l E Sﬂ-k,u—l—l’ all k’ v

/N

Visit duration Travel time

CP model

(or use interval variables) a4

LBBD example: Home healthcare

Benders cuts

If no feasible schedule for aide |, generate a cut requiring that at least
one patient be assigned to another aide.

Z (1 —yijr) =21

JEP;

\ Reduced set of patients whose assignment
to aide i on day k creates infeasibility, obtained

by re-solving subproblem with fewer aides.
This excludes many assignments that cannot be
feasible.

Branch and check

Variant of LBBD that generates Benders cuts during branch-and-
bound solution of master problem. Master problem solved only once.

JH (2000), Thorsteinsson (2001)

35

LBBD example: Home healthcare

Computational results

Heching, JH, Kimura (2019)

Data from home hospice care firm.

10000

v 100
¥o; '
g g MILP
3 ==l=5 | BBD
)
Y = B&Ch
24 26

0.1

Number of new patients

Better results for slightly easier instances in
Grenouilleau, Lahrichi, Rousseau (2020)

36

LBBD example: Home healthcare

Computational results

Data from Danish home care agency.

Instance | Patients Crews

Heching, JH, Kimura (2019)

Weighted objective

Covering objective

MILP LBBD B&Ch | MILP LBBD B&Ch

hh 30 15
111 30 8
112 30 7
113 30 6

316 1.41
* 174 0.43
2868 1.56 0.32
1398 216 0.30

* 23.3 441

* 108 1.41
* 1.38 6.45
* 3.07 5.98

*Computation time exceeded one hour.

37

LBBD example: Multiple machine scheduling

Master problem
— Use MILP to assign tasks to (nonidentical) machines.
— Minimize makespan, etc.
Subproblem
— Schedule tasks on each machine, subject to time windows.
— Use CP (cumulative scheduling) for each machine.
— Minimize makespan, etc.
Benders cuts
— Use analytical cuts based on structure of subproblem.

JH (2007)

38

LBBD example: Multiple machine scheduling

Performance profile for 50 problem instances

e

5%’4

Number of nstances solved

0.01

/ / == Relax + strong cuts
== Relax + weak cuts
/ ——MIP (CPLEX)
=
0.1 1 10 100 1000 10000

Computation time (sec)

Ciré, Coban, JH (2015)

39

LBBD example: Stochastic machine scheduling

Random processing times
— Represented by multiple scenarios.

— Processing times revealed after machine assignment but before
scheduling on each machine.

— Solve subproblem by CP
Previous state of the art
— Integer L-shaped method.
— Classical Benders cuts based on LP relaxation of MILP subproblem.
— Weak “integer cuts” to ensure convergence.

40

LBBD example: Stochastic machine scheduling

Computation time

10 jobs, 2 machines, processing times drawn from uniform distribution

Each time (seconds) is average over 3 instances

Scenarios Integer Branch &
L-shaped Check

127
839 2

10 2317
50 > 3600 17
100 > 3600 37
500 > 3600 279

Elci and JH (2022)

41

Decision diagrams

Binary decision diagrams

— Graphical representation of Boolean function. | Lee (1959), Akers (1978)

— Traditionally used for logic circuit verification, product configuration, etc.

— Can be generalized to multivalued DDs. Bryant (1986)

Survey paper: M.P. Castro, A.A. Cire, J.C. Beck, Decision diagrams for discrete
optimization: A survey of recent advances, INFORMS Journal on Computing 34 (2022)

42

Decision diagrams

Binary decision diagrams

— Graphical representation of Boolean function. | Lee (1959), Akers (1978)

— Traditionally used for logic circuit verification, product configuration, etc.

— Can be generalized to multivalued DDs. Bryant (1986)

Constraint programming applications

— Representation and filtering of global constraints (e.g. table constraint).
— Relaxed DDs provide data structure for constraint propagation.

Andersen, Hadzi¢, JH, Tiedemann (2007)

Hadzi¢, JH, O’Sullivan, Tiedemann (2008)

Survey paper: M.P. Castro, A.A. Cire, J.C. Beck, Decision diagrams for discrete
optimization: A survey of recent advances, INFORMS Journal on Computing 34 (2022)

43

Decision diagrams

Binary decision diagrams

— Graphical representation of Boolean function. | Lee (1959), Akers (1978)

— Traditionally used for logic circuit verification, product configuration, etc.

— Can be generalized to multivalued DDs. Bryant (1986)

Constraint programming applications
— Representation and filtering of global constraints (e.g. table constraint).
— Relaxed DDs provide data structure for constraint propagation.

Andersen, Hadzi¢, JH, Tiedemann (2007)

A new perspective on optimization

Hadzi¢, JH, O’Sullivan, Tiedemann (2008)

Hadzi¢ and JH (2006, 2007)

— DDs can perform all functions of an optimization solver...

Survey paper: M.P. Castro, A.A. Cire, J.C. Beck, Decision diagrams for discrete
optimization: A survey of recent advances, INFORMS Journal on Computing 34 (2022)

44

Decision diagrams

Modeling
with recursive
formulations

Search

with a novel branch-and-

bound method

N

Relaxation
with relaxed
diagrams

7~

|

Optimization

I

Primal

heuristics
with restricted
diagrams

v
N

Postoptimality
analysis
with sound diagrams

Constraint
propagation
through a
relaxed diagram

Book: D. Bergman, A. A. Cire, W. J. van Hoeve, JH,
Decision Diagrams for Optimization, Springer (2016)

45

DD example: Job sequencing bounds

e Seguence jobs
— Release times and due dates.
— Minimize total tardiness.
— Problems often too hard to solve to proven optimality.

* Find a tight bound on min tardiness

— To evaluate heuristic solutions. ‘]Ob\
— Use DDs a_md Lagrangiz_;m relaxation j ri|[p; 1]d;
on dynamic programming model.
1 Ol 3|5
2 1112 |3
3 1112 |5

Release time [Due date

Processing time

46

DD example: Job sequencing bounds

W N R .
= = O
DD N W
Ot W Ot

Decision diagram for job sequencing

X .
1 x]
Tardiness
T2 / of job
2(2)
X3
x; = jthjob

in sequence
Each r-t path corresponds

to a feasible solution

Jo| i piodj
DD example: Job sequencing bounds 110 3 5
2 1 2 3
3 1 2 5

Decision diagram for job sequencing
An optimal solution:
Sequence 2-3-1

T1 X; Schedule [1,3], [3,5], [5,7]
Tardiness0+0+4=4
Tardiness
o / of job j
2(2)
X3
x; = jthjob

in sequence
Each r-t path corresponds

to a feasible solution

J | Ti DPj
DD example: Job sequencing bounds 110 3
2 1 2
3 1 2

L2

L3

Interpret DD as dynamic programming

state transition graph

{}0{4)] +—— Minimum tardiness

State variable:
jobs scheduled
so far

State variable: Cost to go

finish time
of last job

J | Ti DPj
DD example: Job sequencing bounds 110 3
2 1 2
3 1 2

L2

L3

Interpret DD as dynamic programming

state transition graph

{}0{4)] +—— Minimum tardiness

State variable:
jobs scheduled
so far

State variable: Cost to go

finish time
of last job

J r; p; dj
DD example: Job sequencing bounds ; (i g g
_ 311 2 5
Exact DD grows exponentially.
Obtain lower bound on tardiness
{10(4) Relax DD by
" from smaller relaxed DD - merging some nodes
1(0 2(0) 3(0)
T2 {1}3(4) {2}3(4) {3}3(6)
3(0)
2(2) 1(2) 2(2) 1(2)
vs {12)5(2) $112)6(3) w{23)5(1) | _»{13}6(5)
3(3) 1(4)
2(5)

Andersen, HadZi¢, JH, Tiedemann (2007)

Ciré and van Hoeve (2013)

Bergman, Ciré, van Hoeve, JH (2013)

Example: merge these nodes

J ri pj dj
DD example: Job sequencing bounds 110 3 5
2 1 2 3
3 1 2 5

Exact DD grows exponentially.
Obtain lower bound on tardiness 10(2) Relax DD by
from smaller relaxed DD merging some nodes

1
T2 {1}3(4) {313(4)

2(2) 1(2)
3 {12}5(2) {13}6(5)

State variable:

min finish time
of last jobs

on paths from root

Andersen, HadZi¢, JH, Tiedemann (2007)

State variable:

Ciré and van Hoeve (2013) Jobs scheduled
along all paths from root

Bergman, Ciré, van Hoeve, JH (2013)

Jo| i piodj
DD example: Job sequencing bounds 110 3 5
2 1 2 3
3 1 2 5

Exact DD grows exponentially.
Obtain lower bound on tardiness 10(2) Relax DD by
from smaller relaxed DD merging some nodes

1
T2 {1}3(4) {313(4)

2(2) 1(2)
3 {12}5(2) {13}6(5)

Andersen, HadZi¢, JH, Tiedemann (2007)

New state ({2},5) =
Ciré and van Hoeve (2013) = ({1,2} n{2,3}, min{6,5})

Bergman, Ciré, van Hoeve, JH (2013)

J ri Pi dj
DD example: Job sequencing bounds 110 3 5
2 1 2 3
3 1 2 5

Exact DD grows exponentially.

Obta:cln lower bound on tardiness {10[2] ——_ Shortest path yields a
rom smaller relaxed DD lower bound of 2 on

L1 optimal value of 4.
T2 {113(4) {313(4)
2(2) 1(2)
T {12}5(2) {13}6(5)

Sufficient conditions for a
state merger rule that yields
a valid relaxed DD given in | JH (2017)

DD example: Job sequencing bounds

We can tighten bound by including

i - - Path length now includ
Lagrange penalties on infeasible paths. ath fength now Includes

total Lagrange penalty

1
304+ A3 —> . \i)
T
2(2 + \2) L2+ A1)
3
3(2+ A 2(5 + A
JH (2019) (2+2) 5+)

Bergman, Cire, van Hoeve (2015)

DD example: Job sequencing bounds

Theorem. Lagrangian relaxation can be implemented in a relaxed DD
If nodes are merged only when their states agree on the values

of the state variables on which the arc costs and Lagrangian arc
penalties depend.

— Applies to dynamic programming in general.

— Useful when immediate cost and penalty functions
depend on only a few state variables.

JH (2019)

56

DD example: Job sequencing bounds

» For which problems is Lagrangian + DD relaxation practical,
based on the theorem?

Min tardiness.* @

Min tardiness + earliness.* @

Min tardiness with time-dependent processing times. @
Min tardiness with state-dependent processing times. @
TSP without time windows. &
TSP with time windows. @

* Computational tests to follow...

57

DD example: Job sequencing bounds

Computational tests.

* Min tardiness
— Crauwells-Potts-Wassenhove instances.
— Provably optimal solutions known for most instances.
— Compare DD bound with known optimal values.
 Mintardiness + earliness
— Biskup-Feldman instances.

— Provably optimal solutions previously unknown for all instances.

— Compare DD bound with best solutions known.

58

DD example: Job sequencing bounds

Min tardiness, 50 jobs

50 jobs 50 jobs
Instance Target Bound Gap | Percent Instance Target Bound Gap| Percent
gap gap
1 2134 2100 34| 1.59% 14 *51785 51702 83| 0.16%
2 1996 1864 132| 6.61% 15 38934 38910 47| 0.12%
3 2583 2552 31| 1.20% 16 87902 87512 390| 0.44%
4 2691 2673 18| 0.67% 17 84260 84066 194| 0.23%
5 1518 1342 176 | 11.59% 18 104795 104633 162| 0.15%
6 26276 26054 222 0.84% 19 *89299 89163 136| 0.15%
7 11403 11128 275 2.41% 20 72316 72222 94| 0.13%
8 8499 8490 9 0.11% 21 214546 214476 70| 0.03%
9 9884 9507 377| 3.81% 22 150800 150800 0 0%
10 10655 10594 61| 0.57% 23 224025 223922 103| 0.05%
11 *43504 43472 32| 0.07% 24 116015 115990 25| 0.02%
12 *36378 36303 75| 0.21% 25 240179 240172 7| 0.003%
13 45383 45310 73| 0.16% *Best known solution
*Best known solution
JH (2019)
Time = about 40 minutes per instance 59

DD example: Job sequencing bounds

Min tardiness + earliness, 50 jobs

(h1,h2) = (0.1,0.2) (h1,hs) = (0.2,0.5)
Instance | Target Bound Gap | Percent Instance | Target Bound Gap |Percent
gap gap
50 jobs 50 jobs
1] 39250 39250 0 0% 1| 12754 12752 2| 0.02%
2 29043 29043 0 0% 2 8468 8463 51 0.06%
31 33180 33180 0 0% 3 9935 9935 0 0%
4| 25856 25847 9| 0.03% 4 7373 7335 38| 0.52%
5| 31456 31439 17| 0.05% 5) 8947 8938 91 0.10%
6| 33452 33444 81 0.02% 6| 10221 10213 8 0.08%
7| 42234 42228 6| 0.01% 7| 12002 11981 21| 0.17%
8| 42218 42203 15| 0.04% 8| 11154 11141 13| 0.12%
9| 33222 33218 41 0.01% 9| 10968 10965 3| 0.03%
10| 31492 31481 11| 0.03% 10] 9652 9650 3| 0.03%
Time = about 8 minutes per instance JH (2019)

60

DD example: Job sequencing bounds

Min tardiness + earliness, 100 jobs

(h1,h2) = (0.1,0.2)

(h1,h2) = (0.2,0.5)

Instance | Target Bound Gap |Percent
gap

100 jobs
1139573 139556 17 | 0.01%
21120484 120465 19 | 0.02%
31124325 124289 36 | 0.03%
41122901 122876 25 | 0.02%
51119115 119101 14 | 0.01%
6| 133545 133536 9 10.007%
71129849 129830 19 | 0.01%
8| 153965 153958 7 10.005%
91111474 111466 8 10.007%
10 | 112799 112792 7 10.006%

Time = about 65 minutes per instance

Instance | Target Bound Gap |Percent
gap
100 jobs
1| 39495 39467 28 | 0.07%
2| 35293 35266 27 | 0.08%
3| 38174 38150 24 | 0.06%
4| 35498 35467 31 | 0.09%
5| 34860 34826 34 | 0.10%
6| 35146 35123 23 | 0.07%
71 39336 39303 33 | 0.08%
8| 44963 44927 36 | 0.08%
9| 31270 31231 39| 0.12%
10 | 34068 34048 20 | 0.06%
JH (2019)

61

Stochastic DD example: Max ¢

lique

Find clique in a graph with max expected size

— Each edge occurs with probability 0.6.

— Even small instances are intractable for exact solution.

Find bound on max expected clique size
— For solving stochastic dynamic programming models.

— Requires relaxed stochastic DDs.

JH (2022)

A maximum clique

62

Stochastic DD example: Max clique

DD for deterministic problem

T

T2

T3

T4

(longest path)
63

Stochastic DD example: Max clique

Control x; = 1 (put vertex 3 in clique)
has 2 possible outcomes:

+ edges exist to vertices 1 and 2,
yielding clique {1,2,3}

DD for stochastic problem

T
1 * edge missing to vertex 1 or 2,
yielding clique {1,2}
T2
3 : ' {1210.36
' ' " Transition
probabilities
w0 (23
A solutionis a State =

policy (not a path) {vertices currently in clique}
that specifies a
control in every

possible state.

JH (2022)

64

Stochastic DD example: Max clique

Relax DD by merging nodes

T

Z2

T3

T4 01

Sufficient conditions for a

state merger rule that yields a

valid relaxed DD given in

JH (2022)

(2.056

Merge these
2 nodes

JH (2022)

65

Stochastic DD example: Max clique

Relax DD by merging nodes

Expected longest path length
02.4736 «—— of 2.4736 is bound

Z1 on optimal value 2.056

T2
) Result of
T3 01.66 merger
v New state {2}
y = {2)n {12}
2310.36
T4 M1 123}
Sufficient conditions for a
state merger rule that yields a JH (2022)

valid relaxed DD given in| j (2022)

66

Stochastic DD example: Max clique

Computational tests.

Basic issue
— Need exact (or very good) solution to judge quality of bound.
— Nearly all nontrivial instances are intractable.

Random instances
— Choose parameters that allow solution to proven optimality.

— Measure quality of bound against time required to process DDs
of increasing width.

DIMACS instances + edge probabillities
— Only 2 could be solved to optimality, one requiring 24 hours.
— Take others up to 1000 seconds.
Results
— Bound quality degrades slowly as exact DD is relaxed.
— Gap varies roughly with logarithm of time investment

67

Stochastic DD example: Max clique

Random instances (solved to optimality)

Density 0.6 Density 0.7

12 12
10 10

8 8

6 vG\

4 4 Last point of each series is optimal

2 2

0 0

0.1 1 10 100 1000 0.1 1 10 100 1000
Seconds Seconds
—-70 vertices =65 vertices -+-60 vertices —-50 vertices -+-48 vertices 45 vertices

JH (2022) 68

Stochastic DD example: Max clique

Random instances (solved to optimality)

Density 0.4
12 12
10 10
8 8
6 6
4 4
2 2
0 0
0.1 1 10 100 1000 0.1 1
Seconds
—e—-130 vertices —+-120 vertices —+-110 vertices —-90 vertices

JH (2022)

Density 0.5

10
Seconds

——80 vertices

100 1000

-+-70 vertices

69

Stochastic DD example: Max clique

2 DIMACS instances (solved to optimality)

12

10

-eo—c-fat200-1
4 -o—c-fat500-1

0.1 1 10 100 1000 10000 100000
Seconds

JH (2022)

70

Stochastic DD example: Max clique

DIMACS instances (not solved to optimality)

70

60

50

40 o

\.——0\./.
30'\’\\‘

Conclusion

10

100
Seconds

1000

gen200 _p0.9 55
—e-c125.9

DSJC500_5
—e—brock200_1
—s—hamming6-2
——s5an200_0.7_1
—s—johnson8-4-4
——p_hat300-1

JH (2022)

— Bound quality degrades slowly as exact DD is relaxed.
— Gap varies roughly with logarithm of time investment

71

Software

* General CP/opt integration
— IBM ILOG CPLEX Optimizer

— MiniZinc modeling language (open source)
for cooperating solvers

— SCIP (open source)
— BARON (global optimization)

« Constraint programming solvers
— IBM ILOG CPLEX Optimizer
— Gecode (open source)
— Chuffed (open source)
— Google OR Tools CP solver and CP-SAT solver (open source)

« Logic-based Benders

— Automatic LBBD in MiniZinc (open source)
— Nutmeg (branch and check, open source)

« Decision diagrams
— DDO (open source)

— Haddock (CP + DDs, open source)
— Hop (developed by nextmv for logistics) 72

