Assessing Group Fairness with Social Welfare Optimization

Violet (Xinying) Chen

Stevens Institute of Technology

John Hooker* Carnegie Mellon University

Derek Leben Carnegie Mellon University

*presenter

CPAIOR 2024 Uppsala University

Coauthors

Violet Chen Stevens Institute of Technology

Derek Leben Carnegie Mellon University

Fundamental Question

- Can **optimization theory** can shed light on the intensely discussed issue of how to achieve **fairness in AI**?
 - We explore the implications for **group parity** of **maximizing social welfare** in the population as a whole.

Group Parity Metrics

- Group parity metrics are widely used in AI
 - To assess whether demographic **groups** are treated **equally**
 - Selection rates are compared for:
 - Job interviews
 - University admissions
 - Mortgage loans, etc.
- A "protected group" is compared with the rest of the population
 - Groups defined by race, gender, ethnicity, class, region, etc.
 - Sometimes based on **legal** mandates
- We study parity metrics as an **assessment tool**
 - Rather than a selection criterion

- Group parity is intuitively appealing at first...
 - But is it really **fair**?
 - On closer examination, it raises many problems:

- Group parity is intuitively appealing at first...
 - But is it really **fair**?
 - On closer examination, it raises many **problems**:
- Failure to account for actual welfare consequences
 - Considers only **frequency** of selection
 - For example, rejection may be more harmful to a protected group

- Group parity is intuitively appealing at first...
 - But is it really **fair**?
 - On closer examination, it raises many **problems**:
- Failure to account for actual welfare consequences
 - Considers only **frequency** of selection
 - For example, rejection may be **more harmful** to a protected group
- Controversy over **which metric** is appropriate
 - Many statistical metrics have been proposed
 - Some are mutually incompatible

- Group parity is intuitively appealing at first...
 - But is it really **fair**?
 - On closer examination, it raises many **problems**:
- Failure to account for actual welfare consequences
 - Considers only **frequency** of selection
 - For example, rejection may be more harmful to a protected group
- Controversy over **which metric** is appropriate
 - Many statistical metrics have been proposed
 - Some are mutually **incompatible**
- Unclear how to **identify** protected groups
 - Groups often have **conflicting interests**
 - **No limit** to groups that may cry "unfair."

Some Parity Metrics

- Demographic parity.
 - Same fraction of each group is selected.

 $P(D|Z) = P(D|\neg Z)$ $\bigwedge_{\text{Protected}} \bigwedge_{\text{Not}}$ Selected

Some Parity Metrics

- Demographic parity.
 - Same fraction of each group is selected.

- Equalized odds (specifically, equality of opportunity)
 - Same fraction of qualified members of each group are selected
 - Qualified = offered a job, repays mortgage, success in school.

$$P(D|Y,Z) = P(D|Y,\neg Z)$$

Some Parity Metrics

- Demographic parity.
 - Same fraction of each group is selected.

$$P(D|Z) = P(D|\neg Z)$$

$$\bigwedge_{\text{Protected}} \bigwedge_{\text{Not}}$$

- Equalized odds (specifically, equality of opportunity)
 - Same fraction of qualified members of each group are selected
 - Qualified = offered a job, repays mortgage, success in school.
- Predictive rate parity
 - Same fraction of selected members of each group are qualified

$$P(D|Y,Z) = P(D|Y,\neg Z)$$

$$P(Y|D,Z) = P(Y|D,\neg Z)$$

Example: Parole Decisions

• Objective: Select prisoners for parole.

- Based on AI-predicted recidivism rates.
- Without discriminating against minority candidates
- Northpointe (now Equivant) developed the COMPAS system for parole decisions.

Example: Parole Decisions

• Objective: Select prisoners for parole.

- Based on AI-predicted recidivism rates.
- Without discriminating against minority candidates
- Northpointe (now Equivant) developed the COMPAS system for parole decisions.
- Controversy
 - COMPAS is unfair because it fails to equalize odds.
 - It applies a *stricter standard* to minority candidates than to majority candidates.
 - COMPAS is fair because it achieves predictive rate parity
 - It ensures that *paroled* minority and majority candidates *have equal recidivism rates*
 - Which parity metric is appropriate?

Fairness as Social Welfare

- Group fairness through population-wide social welfare
 - Perhaps a **broader concept of distributive justice** can assess parity metrics and achieve fairness across multiple groups
 - while taking *welfare* into account.

Fairness as Social Welfare

- Group fairness through **population-wide social welfare**
 - Perhaps a **broader concept of distributive justice** can assess parity metrics and achieve fairness across multiple groups
 - while taking *welfare* into account.
- Assessing fairness with a **social welfare function**
 - Let $u = (u_1, ..., u_n)$ be **utilities** distributed to stakeholders 1, ..., n
 - Utility = some kind of **benefit**
 - Wealth, negative cost, resources, health, etc.
 - A social welfare function W(u) measures the desirability of u
 - Taking into account overall utility as well as how it is distributed.

- Focus on **alpha fairness** as a social welfare function
 - Frequently used in engineering, etc.
 - Various forms studied for over 70 years.
 - In particular, by 2 Nobel laureates (John Nash, J.C. Harsanyi).
 - Defended by axiomatic and bargaining arguments
 - Axiomatic arguments: Nash (1950), Lan, Kao & Chiang (2010,2011)
 - *Bargaining arguments:* Harsanyi (1977), Rubinstein (1982), Binmore, Rubinstein & Wolinksy (1986)

John Nash

J. C. Harsanyi

• The **alpha fairness** social welfare function:

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(u_{i}) & \text{for } \alpha = 1 \end{cases}$$

where u_i is the utility allocated to individual i

- Larger α implies more fairness.
- Utilitarian when $\alpha = 0$, maximin (Rawlsian) when $\alpha \to \infty$
- **Proportional fairness** (Nash bargaining solution) when $\alpha = 1$
- $\alpha < 1$ incentivizes competition, $\alpha > 1$ incentivizes cooperation
- To achieve alpha fairness:

Maximize $W_{\alpha}(\boldsymbol{u})$ subject to resource constraints.

• Alpha fair selection

Let $x_i = 1$ if individual *i* is selected, 0 otherwise. Then $u_i = a_i x_i + b_i$, where $a_i =$ **selection benefit** $b_i =$ base utility.

Now

$$W_{\alpha}(\boldsymbol{u}) = \begin{cases} \frac{1}{1-\alpha} \sum_{i} (a_{i}x_{i}+b_{i})^{1-\alpha} & \text{for } \alpha \geq 0, \ \alpha \neq 1 \\ \sum_{i} \log(a_{i}x_{i}+b_{i}) & \text{for } \alpha = 1 \end{cases}$$

We want to maximize $W_{\alpha}(\boldsymbol{u})$ subject to $x_i \in \{0, 1\}$ and

$$\sum_{i} x_{i} = m \quad \textbf{Number of individuals} \\ \textbf{selected}$$

• An algebraic trick leads to a solution algorithm

If
$$\alpha \neq 1$$
, we have

$$W_{\alpha}(\boldsymbol{u}) = \boxed{\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}}_{i} + \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i} + b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right)$$
Constant term

• An algebraic trick leads to a solution algorithm

If
$$\alpha \neq 1$$
, we have

$$W_{\alpha}(\boldsymbol{u}) = \frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha} + \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right)$$
So we can maximize
$$\sum_{i|x_{i}=1} \frac{1}{1-\alpha} \left((a_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right)$$
x, eliminated from expression

• An algebraic trick leads to a solution algorithm

If
$$\alpha \neq 1$$
, we have

$$W_{\alpha}(\boldsymbol{u}) = \frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha} + \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) \right)$$
So we can maximize
$$\sum_{i|x_{i}=1} \frac{1}{1-\alpha} \left((a_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) = \sum_{i|x_{i}=1} \Delta_{i}(\alpha)$$
Welfare differential of individual *i*
= net increase in social welfare that
results from selecting individual *i*

• An algebraic trick leads to a solution algorithm

If
$$\alpha \neq 1$$
, we have

$$W_{\alpha}(\boldsymbol{u}) = \frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha} + \frac{1}{1-\alpha} \sum_{i} \left((a_{i}x_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) \right)$$
So we can maximize

$$\sum_{i|x_{i}=1} \frac{1}{1-\alpha} \left((a_{i}+b_{i})^{1-\alpha} - b_{i}^{1-\alpha} \right) = \sum_{i|x_{i}=1} \Delta_{i}(\alpha)$$
Welfare differential of individual *i*
= net increase in social welfare that
results from selecting individual *i*

... by selecting the *m* individuals with the largest welfare differentials $\Delta_i(\alpha)$. Similarly if $\alpha = 1$.

- We assume that, **within a group**, individuals with the **largest** selection benefit are selected **first**.
 - This means that individuals with **largest welfare differential** are selected first.
 - Since the welfare differential increases monotonically with the selection benefit.

Alpha Fairness Example α = 0.7, Select 9 individuals

Majority group

a _i	∆ _/ (0.7)			
1.5	0.750	Ductoct		
1.4	0.708	Protected		
1.3	0.665	a _i	2	
1.2	0.621	0.2		
1.1	0.577	0.4		
1.0	0.531	0.6		
0.9	0.484	0.8		
0.8	0.436	1.0		
0.7	0.387			
0.6	0.336			

group

	$\Delta_{I}(0.7)$	
2	0.187	
F.	0.354	
5	0.505	
3	0.643	
)	0.770	

Alpha Fairness Example α = 0.7, Select 9 individuals

Majority group

9 individuals with highest welfare differentials

a _i	∆ <mark>,(0.7)</mark>
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

a _i	∆ ,(0.7)
1.5	0.750
1.4	0.708
1.3	0.665
1.2	0.621
1.1	0.577
1.0	0.531
0.9	0.484
0.8	0.436
0.7	0.387
0.6	0.336

Protected group			
a _i	∆ /(0.7)		
0.2	0.187		
0.4	0.354		
0.6	0.505		
0.8	0.643		
1.0	0.770		

Alpha Fairness Example α = 0.7, Select 9 individuals

- Alpha fairness ($\alpha = 0.7$) corresponds to demographic parity.
 - 6 of 10 majority individuals selected
 - 3 of 5 protected individuals selected
 - 60% of both groups

Welfare differential of individual *i* = net increase in social welfare that results from selecting individual *i* 9 individuals with highest welfare differentials

a _i	∆ _/ (0.7)
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

Alpha Fairness Example α = 0.7, Select 9 individuals

Majority group

Graphical interpretation

- We want a model that relates alpha fairness to the utility characteristics of the majority and projected groups.
 - ...while reducing the number of utility parameters
 - Selection benefits **uniformly distributed** in each group
 - Base utility is **constant** in each group
 - More complicated model yields similar results

• Computing the welfare differentials:

Let S = fraction of majority group selected s = fraction of protected group selected

Then the welfare differential of the last individual selected in the majority group is

$$\Delta_S(\alpha) = \begin{cases} \frac{1}{1-\alpha} \left(\left((1-S)A_{\max} + SA_{\min} + B \right)^{1-\alpha} - B^{1-\alpha} \right) & \text{if } \alpha \neq 1 \\ \log \left((1-S)A_{\max} + SA_{\min} + B \right) - \log(B) & \text{if } \alpha = 1 \end{cases}$$

and in the protected group is $\Delta'_s(\alpha)$, similarly defined.

If β = fraction of population that is in the protected group σ = fraction of population selected, then

$$(1-\beta)S + \beta s = \sigma,$$

which implies

$$s = s(S) = \frac{\sigma - (1 - \beta)S}{\beta}$$

and. . .

If β = fraction of population that is in the protected group σ = fraction of population selected, then

the min and max values of S are

$$S_{\min} = \max\left\{0, \ \frac{\sigma - \beta}{1 - \beta}\right\}, \ S_{\max} = \min\left\{1, \ \frac{\sigma}{1 - \beta}\right\}$$

Theorem. Selection rates (S, s) achieve alpha fairness for a given α if and only if s = s(S) and

$$\begin{cases} (S,s) = \left(\min\left\{1,\frac{1}{1-\beta}\right\}, \frac{\sigma}{\beta}\left[1-\min\left\{1,\frac{1-\beta}{\sigma}\right\}\right]\right) & \text{in case (a)} \\ (S,s) = \left(\frac{\sigma}{1-\beta}\left[1-\min\left\{1,\frac{\beta}{\sigma}\right\}\right], \min\left\{1,\frac{\sigma}{\beta}\right\}\right) & \text{in case (b)} \\ \Delta_S(\alpha) = \Delta'_s(\alpha) & \text{in case (c)} \end{cases} \end{cases}$$

where the cases are

• Consider 3 qualitatively different utility scenarios...

	Scenario 1		Scenario 2		Scenario 3	
Majority group	0.5 A _{min}	1.5 ——— A _{max}	0.5 A _{min} ⊢	0.8 A _{max}	A_{\min}	$A \mapsto A_{\max}$
Protected group	0.2 a _{min}	1.0 <i>a</i> _{max}	0.2 a _{min}	1.0 a _{max}	-0.5 a _{min}	1.0

Protected group benefits somewhat less from selection

For example, granting job interviews Some protected individuals benefit most For example, admission of talented

individuals

to university

Some protected individuals *harmed* by selection

For example, mortgage loans with possible foreclosure

• Overall selection rate = 0.25

- Protected group has lower selection rates in Scenario 1 than in Scenario 2 due to higher utility cost of fairness in scenario 1.
- Protected group selection rate approaches 2/3 asymptotically because 1/3 of group is harmed by selection.

• Overall selection rate = 0.6

• Similar pattern, higher rates.

• Overall selection rate = 0.8

• Similar pattern, still higher rates.

Demographic parity is achieved only in case (c), where the Δ curves intersect.

Theorem. An alpha fair selection policy for a given α results in demographic parity if and only if there exists a selection rate S that satisfies the equation $\Delta(S) = \Delta'(S)$, in which case (S, S) is such a policy.

• Overall selection rate = 0.25

- Parity achieved when majority & protected curves intersect.
- Parity corresponds to relatively **low** degree of fairness.
- Protected group in Scenario 2 has higher rate even with $\alpha = 0$.

• Overall selection rate = 0.6

- Parity in Scenario 2 now requires a **slight** degree of fairness.
- Scenario 3 parity requires large α due to high cost of fairness.

• Overall selection rate = 0.8

 Parity impossible in Scenario 3 because alpha fairness never calls for harmful selections.

- Alpha values that achieve parity.
- Parity generally corresponds to less than proportional fairness.

Equalized Odds

Suppose a fraction Q of the nonprotected group and a fraction q of the protected group are qualified.

Theorem. An alpha fair selection policy (S, s(S)) for a given α and selection rate σ results in equalized odds if and only if one of the following holds:

$$S = Q\rho \le Q$$
 and $s(S) = q\rho \le q$
 $S \ge Q$ and $s(S) \ge q$

where

$$\rho = \frac{\sigma}{(1-\beta)Q + \beta q}$$

The theorem for predictive rate parity is similar.

Equalized Odds

- Assume majority is 65% qualified, protected group 50% qualified.
- Overall selection rate = 0.25 < overall qualification rate of 0.6

- Even less fair than demographic parity.
- Sometimes viewed as easier to defend than demographic parity.

Equalized Odds

• Overall selection rate = **0.6** = overall qualification rate

- Only an accuracy maximizing solution (odds ratio = 1) yields equalized odds. Fairness not a factor.
- Nearly all odds ratios = 1 when selecting more individuals than are qualified.

Predictive Rate Parity

• Overall selection rate = **0.6** = overall qualification rate

- Higher predictive rates = **smaller** selection rates for protected group.
- Only an accuracy maximizing solution (pred rate = 1) yields predictive rate parity. Fairness not a factor.

Predictive Rate Parity

• Overall selection rate = **0.8** > overall qualification rate

- Nearly all predictive rates = 1 when selecting fewer individuals than are qualified.
- Predictive rate parity is a meaningful parity measure only when selecting **more** individuals than are qualified.

- Accounting for **welfare**
 - Alpha fairness takes **utility consequences** into account.
 - It can normally result in any of the 3 types of parity, for suitable α .
 - **Significant disparity** (favoring the protected group) is often necessary to achieve a specified degree of fairness.

- Accounting for **welfare**
 - Alpha fairness takes **utility consequences** into account.
 - It can normally result in any of the 3 types of parity, for suitable α .
 - **Significant disparity** (favoring the protected group) is often necessary to achieve a specified degree of fairness.
- Assessing metrics demographic parity
 - Typically corresponds to $\alpha < 1$.
 - Less fair than proportional fairness.
 - Even though proportional fairness is something of an *industry standard* in engineering.

- Accounting for **welfare**
 - Alpha fairness takes **utility consequences** into account.
 - It can normally result in any of the 3 types of parity, for suitable α .
 - **Significant disparity** (favoring the protected group) is often necessary to achieve a specified degree of fairness.
- Assessing metrics demographic parity
 - Typically corresponds to $\alpha < 1$.
 - Less fair than proportional fairness.
 - Even though proportional fairness is something of an *industry standard* in engineering.
- Assessing metrics equalized odds & predictive rate
 - Implications of alpha fairness depend heavily on how many individuals are selected relative to number qualified.

- If number selected = number qualified
 - Equalized odds and predictive rate parity simply **maximize accuracy**.
 - Select precisely the qualified individuals in each group.
 - So, not a meaningful fairness measure.

- If number selected = number qualified
 - Equalized odds and predictive rate parity simply **maximize accuracy**.
 - Select precisely the qualified individuals in each group.
 - So, not a meaningful fairness measure.
- If number selected < number qualified
 - Equalized odds is less fair (measured by α) than demographic parity.
 - Which is consistent with the possibility that it is *easier to defend* on ethical grounds.
 - Predictive rate parity is **less useful.**
 - Predictive rate is normally 1, since selected individuals tend to be qualified.

- If number selected > number qualified
 - Perhaps an **unusual** situation.
 - Due to limited resources.
 - Even if it occurs, equalized odds is not useful.
 - Odds ratio is normally 1, since qualified individuals tend to be selected.
 - Higher predictive rate corresponds to smaller α (less fairness).
 - Fairness tends to require *reducing* minority group predictive rate.

- Parole example
 - Equalized odds is relevant only if COMPAS paroles fewer prisoners than are qualified
 - That is, fewer than are expected to say out of prison.
 - Achieving predictive rate parity is an advantage for COMPAS if it paroles more prisoners than are qualified...
 - Because this ensures that minority prisoners have *no higher predictive rate* than majority prisoners.
 - ...which ensures that minority prisoners are not required to meet stricter conditions.
 - COMPAS may choose to parole more prisoners than are qualified in order to reduce the minority predictive rate without tightening parole conditions on the majority.

- Multiple protected groups
 - Parity for all groups does not correspond to alpha fairness for any α.
 - Unless the groups are very similar.
 - However, alpha fairness for a given α can achieve a desired degree of fairness across the population as a whole
 - and in so doling, treat each group "fairly" in view of its specific circumstances.

