Assessing Group Fairness with Social Welfare Optimization

Violet (Xinying) Chen
Stevens Institute of Technology
John Hooker*
Carnegie Mellon University
Derek Leben
Carnegie Mellon University
*presenter
CPAIOR 2024
Uppsala University

Coauthors

Violet Chen
Stevens Institute of
Technology

Derek Leben
Carnegie Mellon University

Fundamental Question

- Can optimization theory can shed light on the intensely discussed issue of how to achieve fairness in AI?
- We explore the implications for group parity of maximizing social welfare in the population as a whole.

Group Parity Metrics

- Group parity metrics are widely used in Al
- To assess whether demographic groups are treated equally
- Selection rates are compared for:
- Job interviews
- University admissions
- Mortgage loans, etc.
- A "protected group" is compared with the rest of the population
- Groups defined by race, gender, ethnicity, class, region, etc.
- Sometimes based on legal mandates
- We study parity metrics as an assessment tool
- Rather than a selection criterion

Problems with Group Parity

- Group parity is intuitively appealing at first...
- But is it really fair?
- On closer examination, it raises many problems:

Problems with Group Parity

- Group parity is intuitively appealing at first...
- But is it really fair?
- On closer examination, it raises many problems:
- Failure to account for actual welfare consequences
- Considers only frequency of selection
- For example, rejection may be more harmful to a protected group

Problems with Group Parity

- Group parity is intuitively appealing at first...
- But is it really fair?
- On closer examination, it raises many problems:
- Failure to account for actual welfare consequences
- Considers only frequency of selection
- For example, rejection may be more harmful to a protected group
- Controversy over which metric is appropriate
- Many statistical metrics have been proposed
- Some are mutually incompatible

Problems with Group Parity

- Group parity is intuitively appealing at first...
- But is it really fair?
- On closer examination, it raises many problems:
- Failure to account for actual welfare consequences
- Considers only frequency of selection
- For example, rejection may be more harmful to a protected group
- Controversy over which metric is appropriate
- Many statistical metrics have been proposed
- Some are mutually incompatible
- Unclear how to identify protected groups
- Groups often have conflicting interests
- No limit to groups that may cry "unfair."

Some Parity Metrics

- Demographic parity.
- Same fraction of each group is selected.

Some Parity Metrics

- Demographic parity.
- Same fraction of each group is selected.

- Equalized odds (specifically, equality of opportunity)
- Same fraction of qualified members of each group are

$$
P(D \mid Y, Z)=P(D \mid Y, \neg Z)
$$ selected

- Qualified = offered a job, repays

Qualified mortgage, success in school.

Some Parity Metrics

- Demographic parity.
- Same fraction of each group is selected.

- Equalized odds (specifically, equality of opportunity)
- Same fraction of qualified members of each group are selected
- Qualified = offered a job, repays

$$
P(D \mid Y, Z)=P(D \mid Y, \neg Z)
$$ mortgage, success in school.

- Predictive rate parity

$$
P(Y \mid D, Z)=P(Y \mid D, \neg Z)
$$

- Same fraction of selected members of each group are qualified

Example: Parole Decisions

- Objective: Select prisoners for parole.
- Based on Al-predicted recidivism rates.
- Without discriminating against minority candidates
- Northpointe (now Equivant) developed the COMPAS system for parole decisions.

Example: Parole Decisions

- Objective: Select prisoners for parole.
- Based on AI-predicted recidivism rates.
- Without discriminating against minority candidates
- Northpointe (now Equivant) developed the COMPAS system for parole decisions.
- Controversy
- COMPAS is unfair because it fails to equalize odds.
- It applies a stricter standard to minority candidates than to majority candidates.
- COMPAS is fair because it achieves predictive rate parity
- It ensures that paroled minority and majority candidates have equal recidivism rates
- Which parity metric is appropriate?

Fairness as Social Welfare

- Group fairness through population-wide social welfare
- Perhaps a broader concept of distributive justice can assess parity metrics and achieve fairness across multiple groups
- while taking welfare into account.

Fairness as Social Welfare

- Group fairness through population-wide social welfare
- Perhaps a broader concept of distributive justice can assess parity metrics and achieve fairness across multiple groups
- while taking welfare into account.
- Assessing fairness with a social welfare function
- Let $\boldsymbol{u}=\left(u_{1}, \ldots, u_{n}\right)$ be utilities distributed to stakeholders $1, \ldots, n$
- Utility = some kind of benefit
- Wealth, negative cost, resources, health, etc.
- A social welfare function $\mathbf{W}(\boldsymbol{u})$ measures the desirability of \boldsymbol{u}
- Taking into account overall utility as well as how it is distributed.

Alpha fairness

- Focus on alpha fairness as a social welfare function
- Frequently used in engineering, etc.
- Various forms studied for over 70 years.
- In particular, by 2 Nobel laureates (John Nash, J.C. Harsanyi).
- Defended by axiomatic and bargaining arguments
- Axiomatic arguments: Nash (1950), Lan, Kao \& Chiang $(2010,2011)$
- Bargaining arguments: Harsanyi (1977), Rubinstein (1982), Binmore, Rubinstein \& Wolinksy (1986)

John Nash

J. C. Harsanyi

Alpha Fairness

- The alpha fairness social welfare function:

$$
W_{\alpha}(\boldsymbol{u})= \begin{cases}\frac{1}{1-\alpha} \sum_{i} u_{i}^{1-\alpha} & \text { for } \alpha \geq 0, \alpha \neq 1 \\ \sum_{i} \log \left(u_{i}\right) & \text { for } \alpha=1\end{cases}
$$

where u_{i} is the utility allocated to individual i

- Larger α implies more fairness.
- Utilitarian when $\alpha=0$, maximin (Rawlsian) when $\alpha \rightarrow \infty$
- Proportional fairness (Nash bargaining solution) when $\alpha=1$
- $\alpha<1$ incentivizes competition, $\alpha>1$ incentivizes cooperation
- To achieve alpha fairness:

Maximize $W_{\alpha}(\boldsymbol{u})$ subject to resource constraints.

Alpha Fairness

- Alpha fair selection

Let $x_{i}=1$ if individual i is selected, 0 otherwise. Then $u_{i}=a_{i} x_{i}+b_{i}$, where $a_{i}=$ selection benefit $b_{i}=$ base utility .
Now

$$
W_{\alpha}(\boldsymbol{u})= \begin{cases}\frac{1}{1-\alpha} \sum_{i}\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha} & \text { for } \alpha \geq 0, \alpha \neq 1 \\ \sum_{i} \log \left(a_{i} x_{i}+b_{i}\right) & \text { for } \alpha=1\end{cases}
$$

We want to maximize $W_{\alpha}(\boldsymbol{u})$ subject to $x_{i} \in\{0,1\}$ and

$$
\sum_{i} x_{i}=m>\begin{gathered}
\text { Number of individuals } \\
\text { selected }
\end{gathered}
$$

Alpha Fairness

- An algebraic trick leads to a solution algorithm

> If $\alpha \neq 1$, we have $$
W_{\alpha}(\boldsymbol{u})=\)\begin{tabular}{|c} \(\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}\) \\ \text { Constant term } \end{tabular}\(. \frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)
$$

Alpha Fairness

- An algebraic trick leads to a solution algorithm

If $\alpha \neq 1$, we have
$W_{\alpha}(\boldsymbol{u})=\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}+\frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)$
So we can maximize

$$
\sum_{i \mid x_{i}=1} \frac{1}{1-\alpha}\left(\left(a_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)
$$

x_{i} eliminated from expression

Alpha Fairness

- An algebraic trick leads to a solution algorithm

If $\alpha \neq 1$, we have
$W_{\alpha}(\boldsymbol{u})=\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}+\frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)$
So we can maximize

$$
\sum_{i \mid x_{i}=1} \frac{1}{1-\alpha}\left(\left(a_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)=\sum_{i \mid x_{i}=1} \Delta_{i}(\alpha)
$$

Welfare differential of individual i
= net increase in social welfare that results from selecting individual i

Alpha Fairness

- An algebraic trick leads to a solution algorithm

If $\alpha \neq 1$, we have
$W_{\alpha}(\boldsymbol{u})=\frac{1}{1-\alpha} \sum_{i} b_{i}^{1-\alpha}+\frac{1}{1-\alpha} \sum_{i}\left(\left(a_{i} x_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)$
So we can maximize

$$
\sum_{i \mid x_{i}=1} \frac{1}{1-\alpha}\left(\left(a_{i}+b_{i}\right)^{1-\alpha}-b_{i}^{1-\alpha}\right)=\sum_{i \mid x_{i}=1} \Delta_{i}(\alpha)
$$

Welfare differential of individual i
= net increase in social welfare that results from selecting individual i
... by selecting the m individuals with the largest welfare differentials $\Delta_{i}(\alpha)$. Similarly if $\alpha=1$.

Alpha Fairness

- We assume that, within a group, individuals with the largest selection benefit are selected first.
- This means that individuals with largest welfare differential are selected first.
- Since the welfare differential increases monotonically with the selection benefit.

Alpha Fairness Example

$\alpha=0.7$, Select 9 individuals

Majority group

a_{i}	$\Delta_{l}(0.7)$	Protected group	
1.5	0.750		
1.4	0.708		
1.3	0.665	a_{i}	$\Delta_{l}(0.7)$
1.2	0.621	0.2	0.187
1.1	0.577	0.4	0.354
1.0	0.531	0.6	0.505
0.9	0.484	0.8	0.643
0.8	0.436	1.0	0.770
0.7	0.387		
0.6	0.336		

Alpha Fairness Example

$\alpha=0.7$, Select 9 individuals

Majority group

a_{i}	$\Delta_{l}(0.7)$
1.5	0.750
1.4	0.708
1.3	0.665
1.2	0.621
1.1	0.577
1.0	0.531
0.9	0.484
0.8	0.436
0.7	0.387
0.6	0.336

9 individuals with
highest welfare differentials

a_{i}	$\Delta_{l}(0.7)$
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

Alpha Fairness Example
 $\alpha=0.7$, Select 9 individuals

- Alpha fairness ($\alpha=0.7$) corresponds to demographic parity.
- 6 of 10 majority individuals selected
- 3 of 5 protected individuals selected
- 60% of both groups

Welfare differential of individual i
= net increase in social welfare that
results from selecting individual i
9 individuals with
highest welfare differentials

a_{i}	$\Delta_{l}(0.7)$
1.0	0.770
1.5	0.750
1.4	0.708
1.3	0.665
0.8	0.643
1.2	0.621
1.1	0.577
1.0	0.531
0.6	0.505

Alpha Fairness Example $\alpha=0.7$, Select 9 individuals

Majority group

a_{i}	$\Delta_{l}(0.7)$		
1.5	0.750		
1.4	0.708	Protected group	
1.3	0.665	a_{i}	$\Delta_{l}(0.7)$
1.2	0.621	0.2	0.187
1.1	0.577	0.4	0.354
1.0	0.531	0.6	0.505
0.9	0.484	0.8	0.643
0.8	0.436	1.0	0.770
0.7	0.387		
0.6	0.336		

Graphical interpretation

Utility Model for 2 Groups

- We want a model that relates alpha fairness to the utility characteristics of the majority and projected groups.
- ...while reducing the number of utility parameters
- Selection benefits uniformly distributed in each group
- Base utility is constant in each group
- More complicated model yields similar results

Majority group	
Selection benefits	
$A_{\max }$	$A_{\min }$
Base utility $=B$	

| Protected group |
| :--- | :--- |
| Selection benefits |
| $a_{\text {max }}$ |
| |
| Base utility $=b$ |

Utility Model for 2 Groups

- Computing the welfare differentials:

Let $S=$ fraction of majority group selected
$s=$ fraction of protected group selected
Then the welfare differential of the last individual selected in the majority group is
$\Delta_{S}(\alpha)= \begin{cases}\frac{1}{1-\alpha}\left(\left((1-S) A_{\max }+S A_{\min }+B\right)^{1-\alpha}-B^{1-\alpha}\right) & \text { if } \alpha \neq 1 \\ \log \left((1-S) A_{\max }+S A_{\min }+B\right)-\log (B) & \text { if } \alpha=1\end{cases}$
and in the protected group is $\Delta_{s}^{\prime}(\alpha)$, similarly defined.

Utility Model for 2 Groups

If $\beta=$ fraction of population that is in the protected group $\sigma=$ fraction of population selected, then

$$
(1-\beta) S+\beta s=\sigma,
$$

which implies

$$
s=s(S)=\frac{\sigma-(1-\beta) S}{\beta}
$$

and. . .

Utility Model for 2 Groups

If $\beta=$ fraction of population that is in the protected group $\sigma=$ fraction of population selected, then
the min and max values of S are

$$
S_{\min }=\max \left\{0, \frac{\sigma-\beta}{1-\beta}\right\}, \quad S_{\max }=\min \left\{1, \frac{\sigma}{1-\beta}\right\}
$$

Utility Model for 2 Groups

Theorem. Selection rates (S, s) achieve alpha fairness for a given α if and only if $s=s(S)$ and

$$
\begin{cases}(S, s)=\left(\min \left\{1, \frac{1}{1-\beta}\right\}, \frac{\sigma}{\beta}\left[1-\min \left\{1, \frac{1-\beta}{\sigma}\right\}\right]\right) & \text { in case (a) } \\ (S, s)=\left(\frac{\sigma}{1-\beta}\left[1-\min \left\{1, \frac{\beta}{\sigma}\right\}\right], \min \left\{1, \frac{\sigma}{\beta}\right\}\right) & \text { in case (b) } \\ \Delta_{S}(\alpha)=\Delta_{s}^{\prime}(\alpha) & \text { in case (c) }\end{cases}
$$

where the cases are

Alpha-fair Selection Rates

- Consider 3 qualitatively different utility scenarios...

| | Scenario 1 | Scenario 2 | Scenario 3 |
| :---: | :---: | :---: | :---: | :---: |
| Majority group | $A_{\text {min }}^{0.5}$ | 1.5 | |

Alpha-fair Selection Rates

- Overall selection rate $=0.25$

- Protected group has lower selection rates in Scenario 1 than in Scenario 2 due to higher utility cost of fairness in scenario 1.
- Protected group selection rate approaches $2 / 3$ asymptotically because $1 / 3$ of group is harmed by selection.

Alpha-fair Selection Rates

- Overall selection rate $=0.6$

- Similar pattern, higher rates.

Alpha-fair Selection Rates

- Overall selection rate $=0.8$

- Similar pattern, still higher rates.

Demographic Parity

Demographic parity is achieved only in case (c), where the Δ curves intersect.

Theorem. An alpha fair selection policy for a given α results in demographic parity if and only if there exists a selection rate S that satisfies the equation $\Delta(S)=\Delta^{\prime}(S)$, in which case (S, S) is such a policy.

Demographic Parity

- Overall selection rate $=0.25$

- Parity achieved when majority \& protected curves intersect.
- Parity corresponds to relatively low degree of fairness.
- Protected group in Scenario 2 has higher rate even with $\boldsymbol{\alpha}=\mathbf{0}$.

Demographic Parity

- Overall selection rate $=0.6$

- Parity in Scenario 2 now requires a slight degree of fairness.
- Scenario 3 parity requires large α due to high cost of fairness.

Demographic Parity

- Overall selection rate $=0.8$

- Parity impossible in Scenario 3 because alpha fairness never calls for harmful selections.

Demographic Parity

- Alpha values that achieve parity.
- Parity generally corresponds to less than proportional fairness.

Equalized Odds

Suppose a fraction Q of the nonprotected group and a fraction q of the protected group are qualified.

Theorem. An alpha fair selection policy $(S, s(S))$ for a given α and selection rate σ results in equalized odds if and only if one of the following holds:

$$
\begin{aligned}
& S=Q \rho \leq Q \text { and } s(S)=q \rho \leq q \\
& S \geq Q \text { and } s(S) \geq q
\end{aligned}
$$

where

$$
\rho=\frac{\sigma}{(1-\beta) Q+\beta q}
$$

The theorem for predictive rate parity is similar.

Equalized Odds

- Assume majority is 65% qualified, protected group 50% qualified.
- Overall selection rate $=\mathbf{0 . 2 5}$ < overall qualification rate of $\mathbf{0 . 6}$

- Even less fair than demographic parity.
- Sometimes viewed as easier to defend than demographic parity.

Equalized Odds

- Overall selection rate $\mathbf{= 0 . 6}=$ overall qualification rate

- Only an accuracy maximizing solution (odds ratio $=1$) yields equalized odds. Fairness not a factor.
- Nearly all odds ratios = 1 when selecting more individuals than are qualified.

Predictive Rate Parity

- Overall selection rate $\mathbf{= 0 . 6}=$ overall qualification rate

- Higher predictive rates = smaller selection rates for protected group.
- Only an accuracy maximizing solution (pred rate $=1$) yields predictive rate parity. Fairness not a factor.

Predictive Rate Parity

- Overall selection rate $=0.8>$ overall qualification rate

- Nearly all predictive rates = 1 when selecting fewer individuals than are qualified.
- Predictive rate parity is a meaningful parity measure only when selecting more individuals than are qualified.

Conclusions

- Accounting for welfare
- Alpha fairness takes utility consequences into account.
- It can normally result in any of the 3 types of parity, for suitable $\boldsymbol{\alpha}$.
- Significant disparity (favoring the protected group) is often necessary to achieve a specified degree of fairness.

Conclusions

- Accounting for welfare
- Alpha fairness takes utility consequences into account.
- It can normally result in any of the 3 types of parity, for suitable $\boldsymbol{\alpha}$.
- Significant disparity (favoring the protected group) is often necessary to achieve a specified degree of fairness.
- Assessing metrics - demographic parity
- Typically corresponds to $\alpha<1$.
- Less fair than proportional fairness.
- Even though proportional fairness is something of an industry standard in engineering.

Conclusions

- Accounting for welfare
- Alpha fairness takes utility consequences into account.
- It can normally result in any of the 3 types of parity, for suitable $\boldsymbol{\alpha}$.
- Significant disparity (favoring the protected group) is often necessary to achieve a specified degree of fairness.
- Assessing metrics - demographic parity
- Typically corresponds to $\alpha<1$.
- Less fair than proportional fairness.
- Even though proportional fairness is something of an industry standard in engineering.
- Assessing metrics - equalized odds \& predictive rate
- Implications of alpha fairness depend heavily on how many individuals are selected relative to number qualified.

Conclusions

- If number selected = number qualified
- Equalized odds and predictive rate parity simply maximize accuracy.
- Select precisely the qualified individuals in each group.
- So, not a meaningful fairness measure.

Conclusions

- If number selected = number qualified
- Equalized odds and predictive rate parity simply maximize accuracy.
- Select precisely the qualified individuals in each group.
- So, not a meaningful fairness measure.
- If number selected < number qualified
- Equalized odds is less fair (measured by α) than demographic parity.
- Which is consistent with the possibility that it is easier to defend on ethical grounds.
- Predictive rate parity is less useful.
- Predictive rate is normally 1 , since selected individuals tend to be qualified.

Conclusions

- If number selected > number qualified
- Perhaps an unusual situation.
- Due to limited resources.
- Even if it occurs, equalized odds is not useful.
- Odds ratio is normally 1 , since qualified individuals tend to be selected.
- Higher predictive rate corresponds to smaller α (less fairness).
- Fairness tends to require reducing minority group predictive rate.

Conclusions

- Parole example
- Equalized odds is relevant only if COMPAS paroles fewer prisoners than are qualified
- That is, fewer than are expected to say out of prison.
- Achieving predictive rate parity is an advantage for COMPAS if it paroles more prisoners than are qualified...
- Because this ensures that minority prisoners have no higher predictive rate than majority prisoners.
- ...which ensures that minority prisoners are not required to meet stricter conditions.
- COMPAS may choose to parole more prisoners than are qualified in order to reduce the minority predictive rate without tightening parole conditions on the majority.

Conclusions

- Multiple protected groups
- Parity for all groups does not correspond to alpha fairness for any α.
- Unless the groups are very similar.
- However, alpha fairness for a given α can achieve a desired degree of fairness across the population as a whole
- and in so doling, treat each group "fairly" in view of its specific circumstances.

