

# Combinatorial Problem Solving with Serial and Nonserial Decision Diagrams

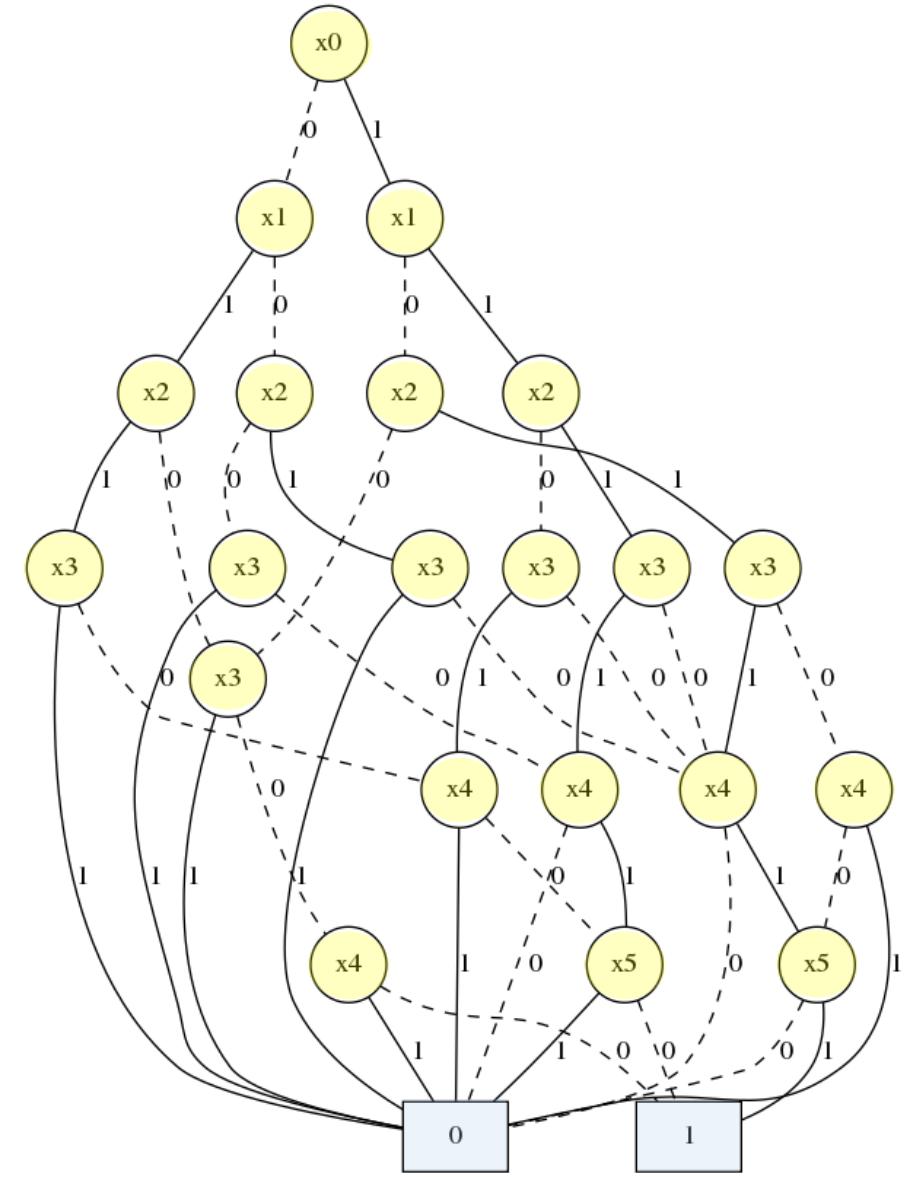
John Hooker  
*Carnegie Mellon University*

Workshop on SAT and Combinatorial Solving  
Banff, Canada  
January 2026

# DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea (1970s).

They have been used for **logic circuit design** and **product configuration** since the 1980s.



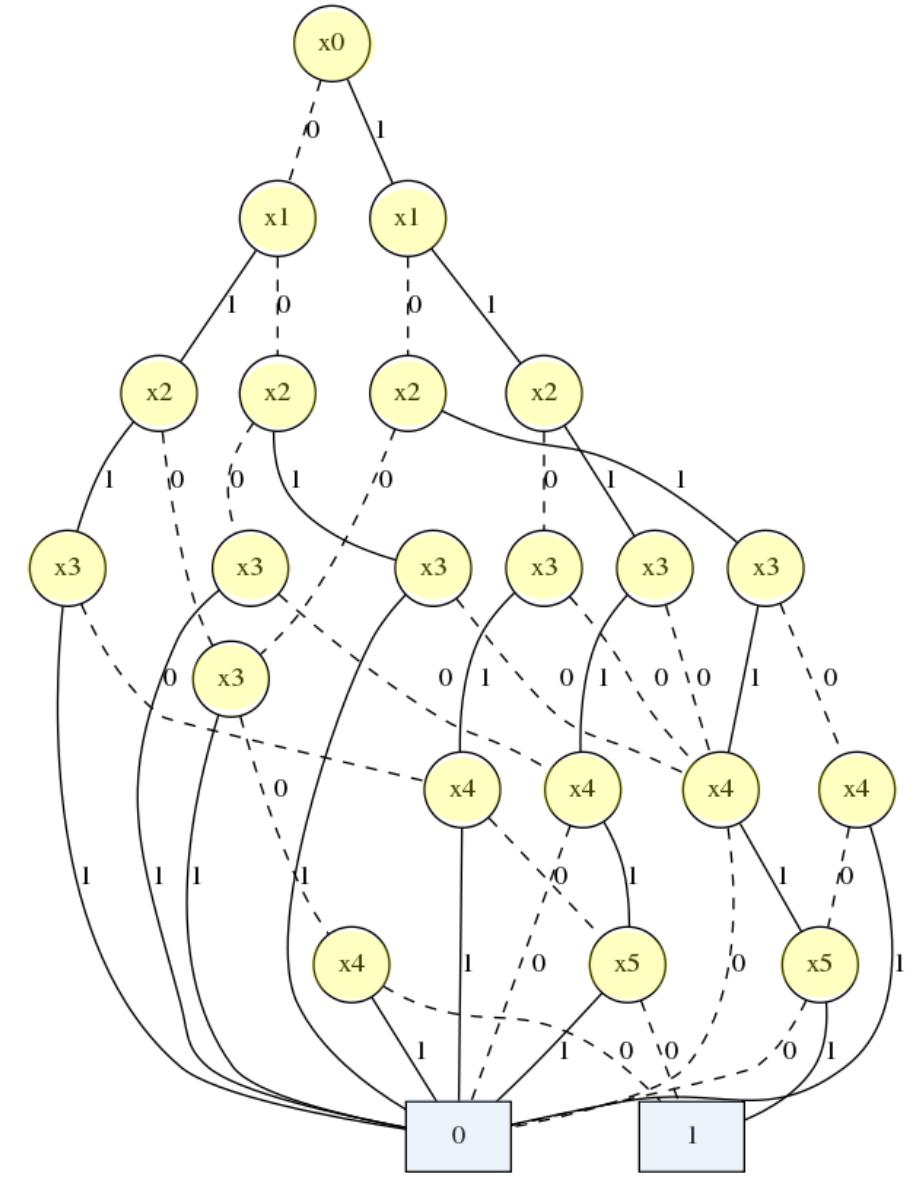
# DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea (1970s).

They have been used for **logic circuit design** and **product configuration** since the 1980s.

DDs have recently been adapted to **combinatorial optimization** and **constraint solving**.

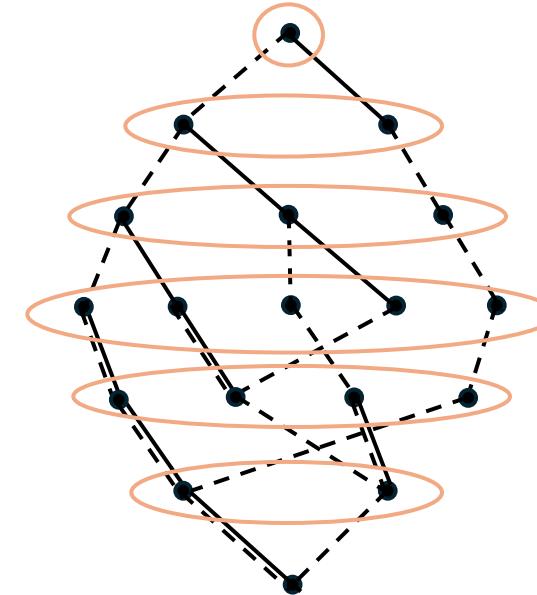
That is the **subject of this talk**.



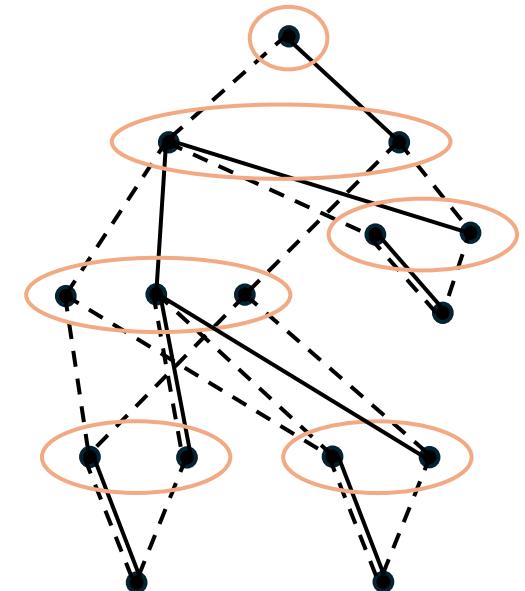
# DD-based combinatorial problem solving

**Part I.** A brief **survey** of previous developments (**serial** DDs)

**Part II.** Recent work on **nonserial** DDs



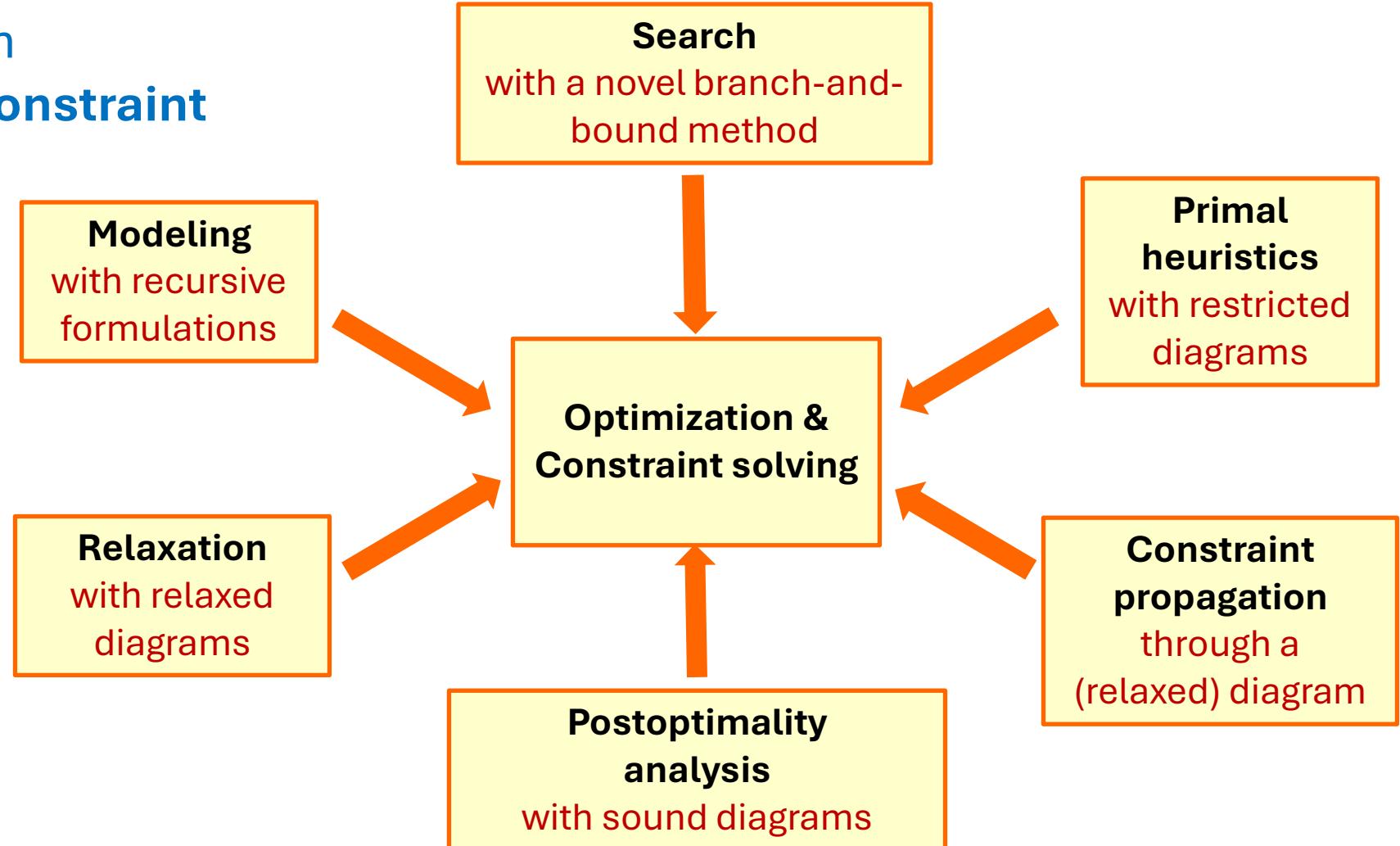
Serial DD



Nonserial DD

# DD-based combinatorial problem solving

DDs can perform the **functions** one typically finds in **optimization and constraint solvers**.



# DD-based combinatorial problem solving

## Some advantages:

- Ideal for **recursive models** (dynamic programming)
- Discrete **problem relaxations** with adjustable tightness
- Fast **primal heuristics**
- No need for **linearity, convexity, or inequality** constraints
- Novel approach to **branch and bound**
- More effective domain propagation for **constraint programming**
- Highly **parallelizable**
- Comprehensive **postoptimality** analysis

# DD-based combinatorial problem solving

## Some advantages:

- Ideal for **recursive models** (dynamic programming)
- Discrete **problem relaxations** with adjustable tightness
- Fast **primal heuristics**
- No need for **linearity, convexity, or inequality** constraints
- Novel approach to **branch and bound**
- More effective domain propagation for **constraint programming**
- Highly **parallelizable**
- Comprehensive **postoptimality** analysis

## Disadvantages:

- Unclear how to extend to **continuous variables**.\*
- Reliance on good **heuristic choices** for tight relaxations

\*But easily embedded in mixed discrete/continuous solvers

# DD-based combinatorial problem solving

## Some advantages:

- Ideal for **recursive models** (dynamic programming)
- Discrete **problem relaxations** with adjustable tightness
- Fast **primal heuristics**
- No need for **linearity, convexity, or inequality** constraints
- Novel approach to **branch and bound**
- More effective domain propagation for **constraint programming**
- Highly **parallelizable**.
- Comprehensive **postoptimality** analysis

## Disadvantages:

- Unclear how to extend to **continuous variables**.\*
- Reliance on good **heuristic choices** for tight relaxations

\*But easily embedded in mixed discrete/continuous solvers

## New advantage:

- Can exploit loosely coupled variables with **nonserial decision diagrams**

# Origin of DDs

- **Boolean logic** Boole (1847,1854)
- **Switching circuits** interpreted as Boolean functions Peirce (1886) Shannon (1937)
- **Binary-decision programs** for representing switching circuits Lee (1959)
- **Graphical representation** of binary-decision programs (**BDDs**) Akers (1978)
- **Reduced ordered BDDs** Bryant (1986)
- **Applications** to circuit design and testing, product configuration, etc.
- **DD-based optimization and constraint programming** Hadžić & JH (2006,2007) Behle (2007)  
Andersen, Hadžić, JH, Tiedemann (2007)

# A comprehensive survey

M. P. Castro, A. A. Ciré, J. C. Beck, Decision diagrams for discrete optimization: A survey of recent advances, *INFORMS Journal on Computing* **34** (2022) 2271-2295

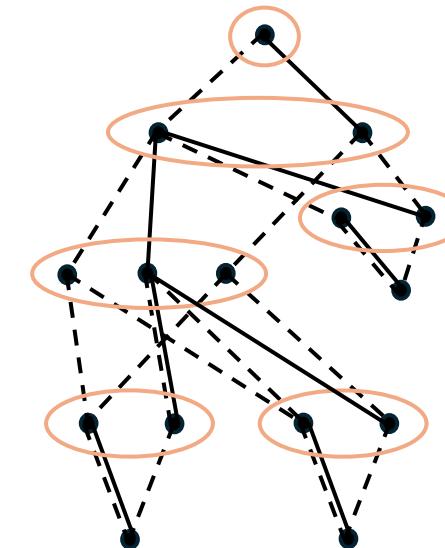
# Outline

## Part I – Survey of previous work

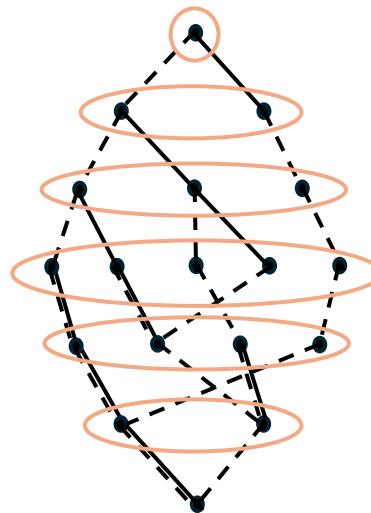
- DD basics
- Set packing example
- Reduced serial DDs
- Relaxed serial DDs
- Restricted serial DDs
- DD-based branch and bound
- DD-based constraint propagation
- DD-based Lagrangian relaxation
- Other developments

## Part II – Nonserial DDs

- Treewidth
- Set packing example
- Computational results



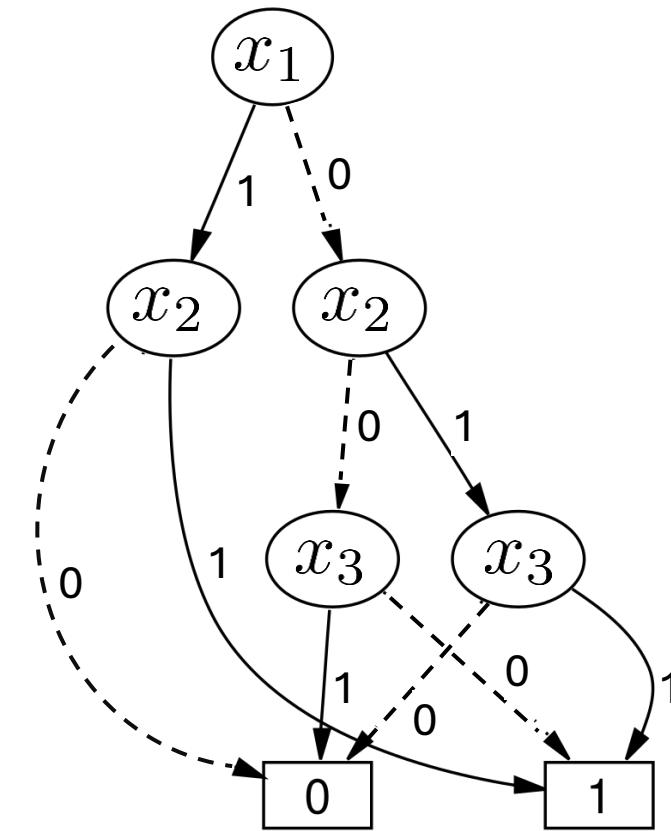
# Part I. Survey of Previous Work



# DD basics

Binary decision  
diagrams (BDDs)  
encode Boolean  
functions.

| $x_1$ | $x_2$ | $x_3$ | $f$ |
|-------|-------|-------|-----|
| 0     | 0     | 0     | 1   |
| 0     | 0     | 1     | 0   |
| 0     | 1     | 0     | 0   |
| 0     | 1     | 1     | 1   |
| 1     | 0     | 0     | 0   |
| 1     | 0     | 1     | 0   |
| 1     | 1     | 0     | 1   |
| 1     | 1     | 1     | 1   |



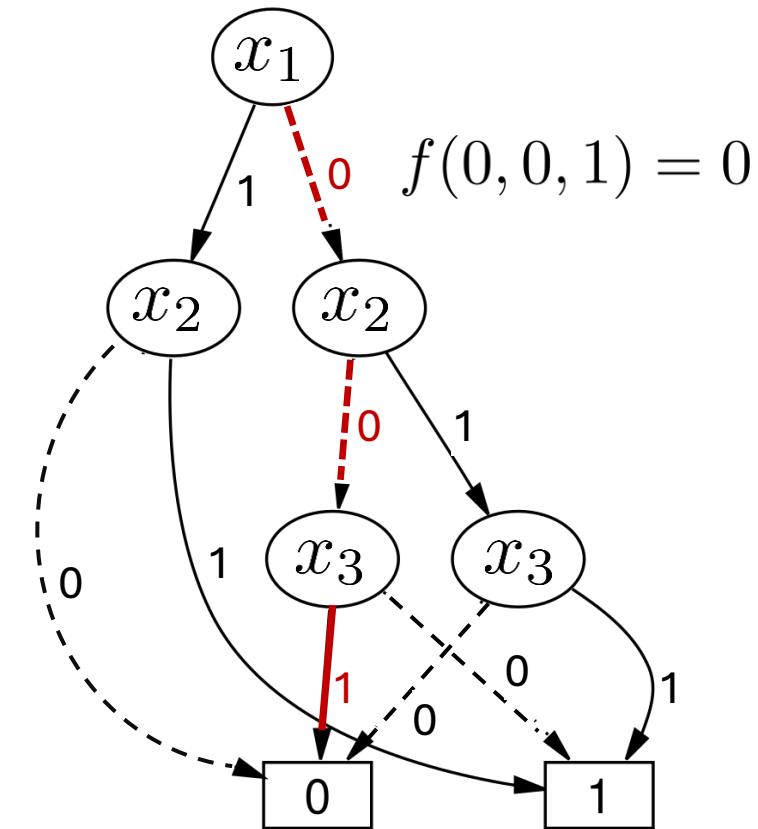
# DD basics

Binary decision diagrams (BDDs) encode Boolean functions.

Paths to 1 node represent values of  $x$  for which  $f(x) = 1$

Paths to 0 node represent values of  $x$  for which  $f(x) = 0$

| $x_1$ | $x_2$ | $x_3$ | $f$ |
|-------|-------|-------|-----|
| 0     | 0     | 0     | 1   |
| 0     | 0     | 1     | 0   |
| 0     | 1     | 0     | 0   |
| 0     | 1     | 1     | 1   |
| 1     | 0     | 0     | 0   |
| 1     | 0     | 1     | 0   |
| 1     | 1     | 0     | 1   |
| 1     | 1     | 1     | 1   |



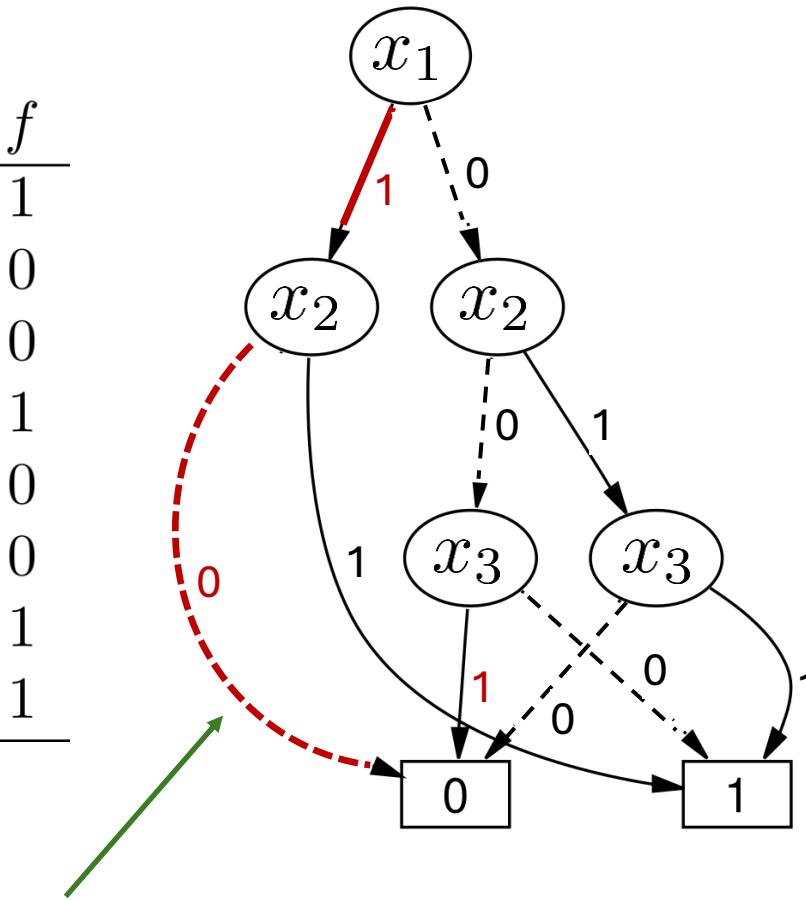
# DD basics

Binary decision diagrams (BDDs) encode Boolean functions.

Paths to 1 node represent values of  $x$  for which  $f(x) = 1$

Paths to 0 node represent values of  $x$  for which  $f(x) = 1$

| $x_1$ | $x_2$ | $x_3$ | $f$ |
|-------|-------|-------|-----|
| 0     | 0     | 0     | 1   |
| 0     | 0     | 1     | 0   |
| 0     | 1     | 0     | 0   |
| 0     | 1     | 1     | 1   |
| 1     | 0     | 0     | 0   |
| 1     | 0     | 1     | 0   |
| 1     | 1     | 0     | 1   |
| 1     | 1     | 1     | 1   |



We will not use long arcs.

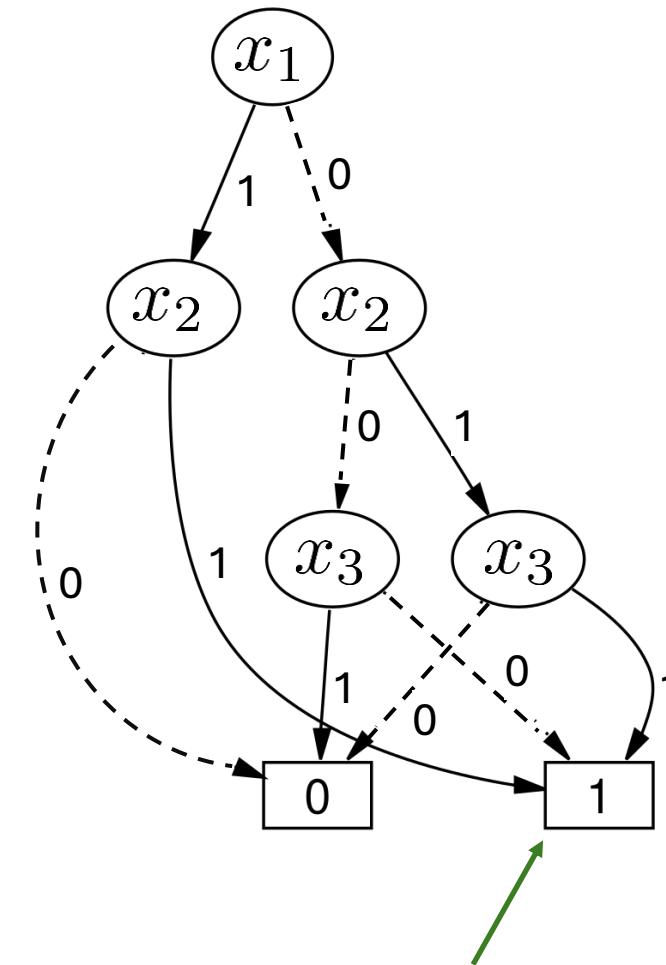
# DD basics

Binary decision diagrams (BDDs) encode Boolean functions.

Paths to 1 node represent values of  $x$  for which  $f(x) = 1$

Paths to 0 node represent values of  $x$  for which  $f(x) = 1$

| $x_1$ | $x_2$ | $x_3$ | $f$ |
|-------|-------|-------|-----|
| 0     | 0     | 0     | 1   |
| 0     | 0     | 1     | 0   |
| 0     | 1     | 0     | 0   |
| 0     | 1     | 1     | 1   |
| 1     | 0     | 0     | 0   |
| 1     | 0     | 1     | 0   |
| 1     | 1     | 0     | 1   |
| 1     | 1     | 1     | 1   |



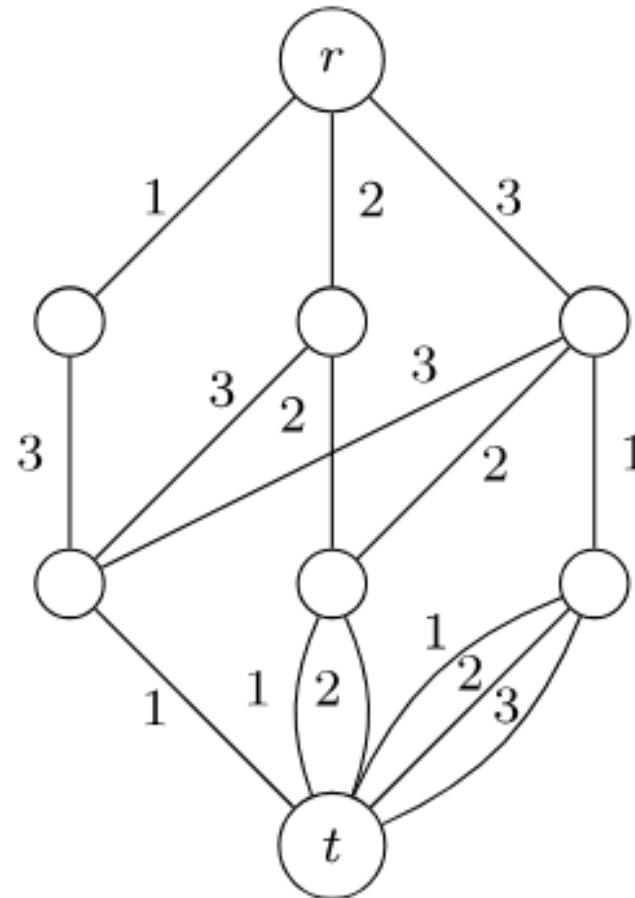
We will need paths only to the **1 terminal node**, to represent feasible solutions of a constraint set.

# DD basics

## Multivalued DDs

allow for variables with multiple discrete values.

All results described here are valid for **both binary and multivalued DDs**.



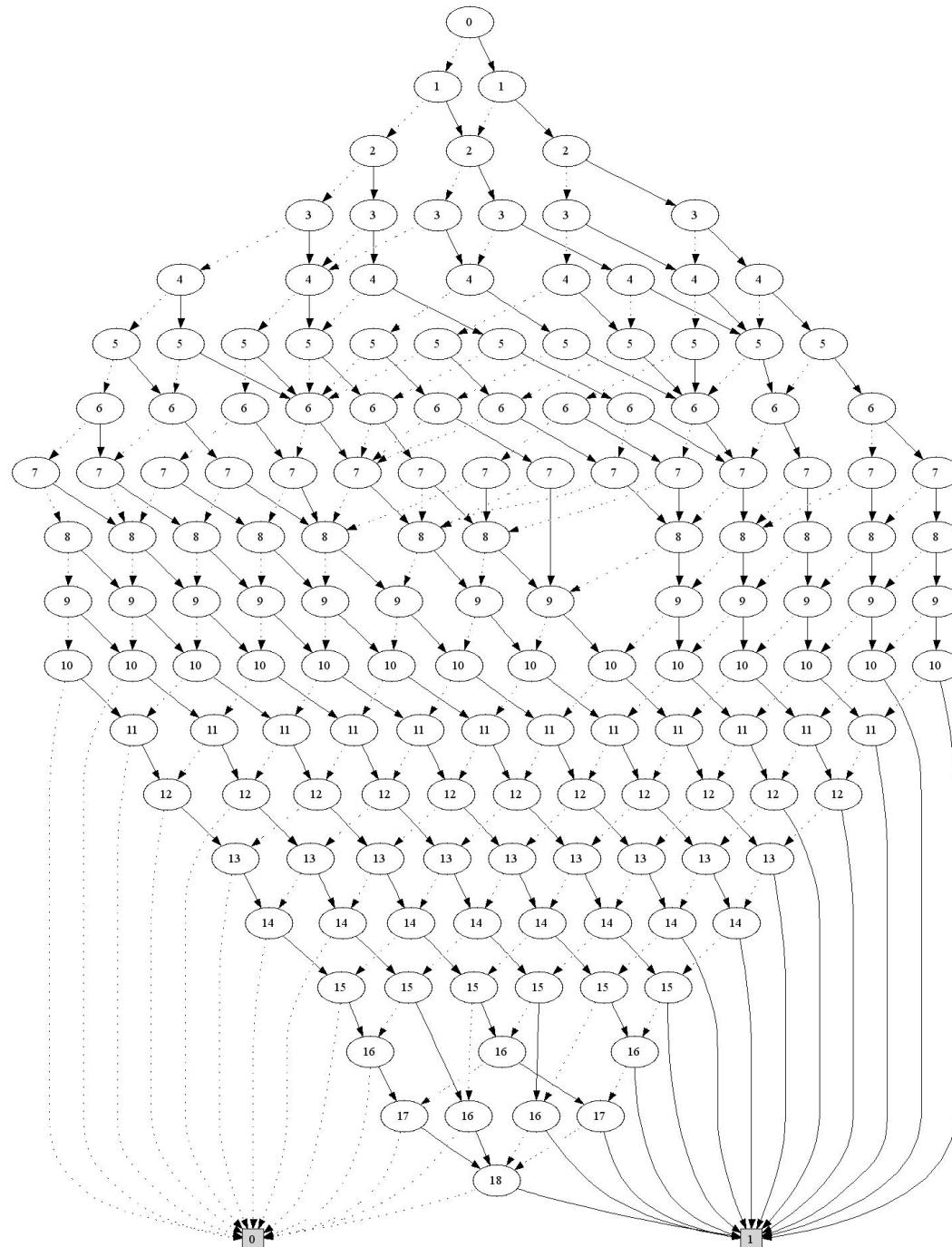
# DD basics

DDs can compactly represent large feasible sets.

This BDD represents all 117,520 maximal 0-1 solutions of

$$\begin{aligned} & 300x_0 + 300x_1 + 285x_2 + 285x_3 + 265x_4 \\ & + 265x_5 + 230x_6 + 230x_7 + 190x_8 + 200x_9 \\ & + 400x_{10} + 200x_{11} + 400x_{12} + 200x_{13} + 400x_{14} \\ & + 200x_{15} + 400x_{16} + 200x_{17} + 400x_{18} \leq 2700 \end{aligned}$$

with only 152 nodes.



# DD basics

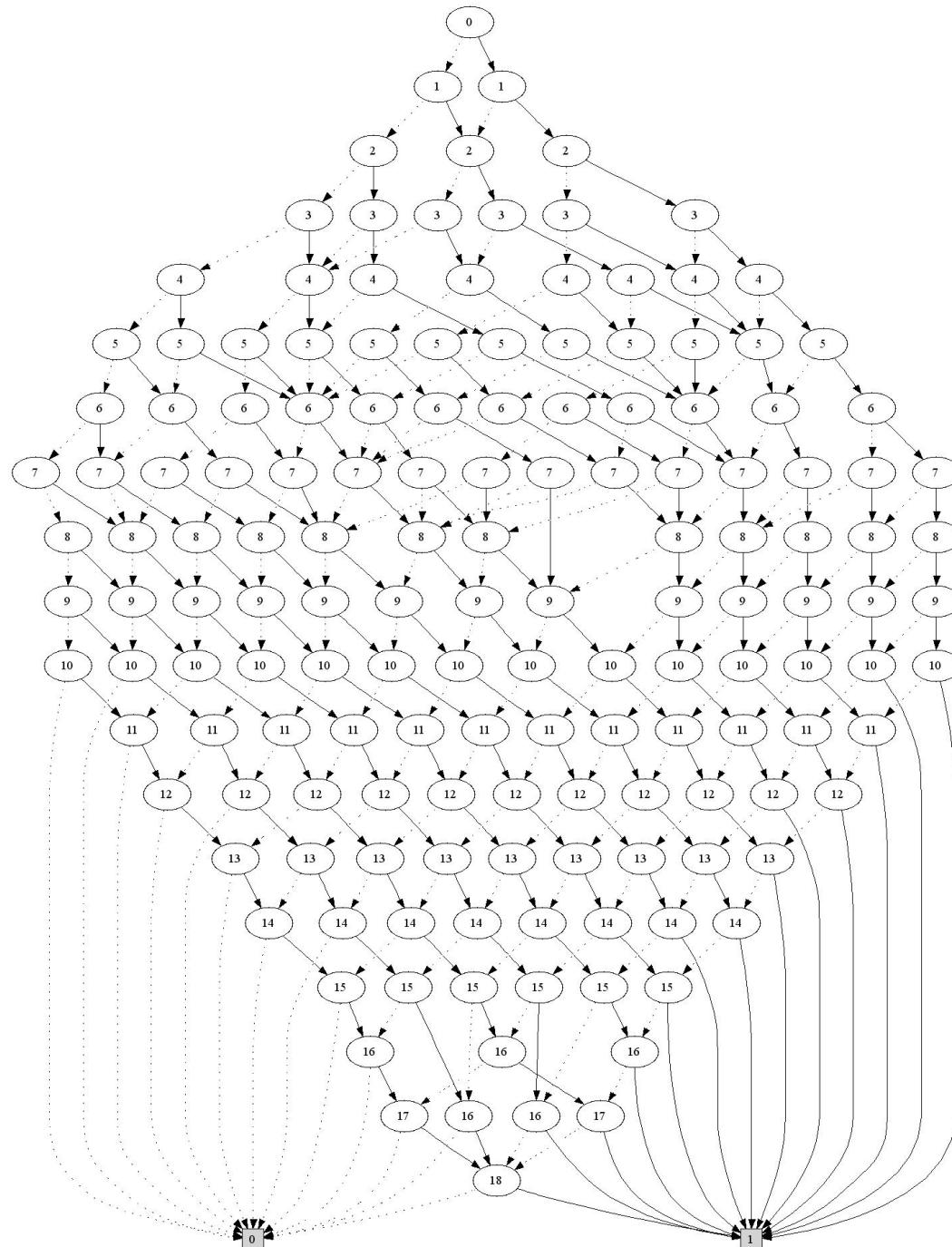
DDs can compactly represent large feasible sets.

This BDD represents all 117,520 maximal 0-1 solutions of

$$\begin{aligned} & 300x_0 + 300x_1 + 285x_2 + 285x_3 + 265x_4 \\ & + 265x_5 + 230x_6 + 230x_7 + 190x_8 + 200x_9 \\ & + 400x_{10} + 200x_{11} + 400x_{12} + 200x_{13} + 400x_{14} \\ & + 200x_{15} + 400x_{16} + 200x_{17} + 400x_{18} \leq 2700 \end{aligned}$$

with only 152 nodes.

However, DDs can grow **exponentially** – for example, all permutations of  $1, \dots, n$



## Example

### Set packing

Find a maximum subcollection of sets  
in which no two sets have common elements.

{A, C }  
{ C,D}  
{A,B }  
{ C }  
{A }  
{ B, D}

## Example

### Set packing

Find a maximum subcollection of sets  
in which no two sets have common elements.

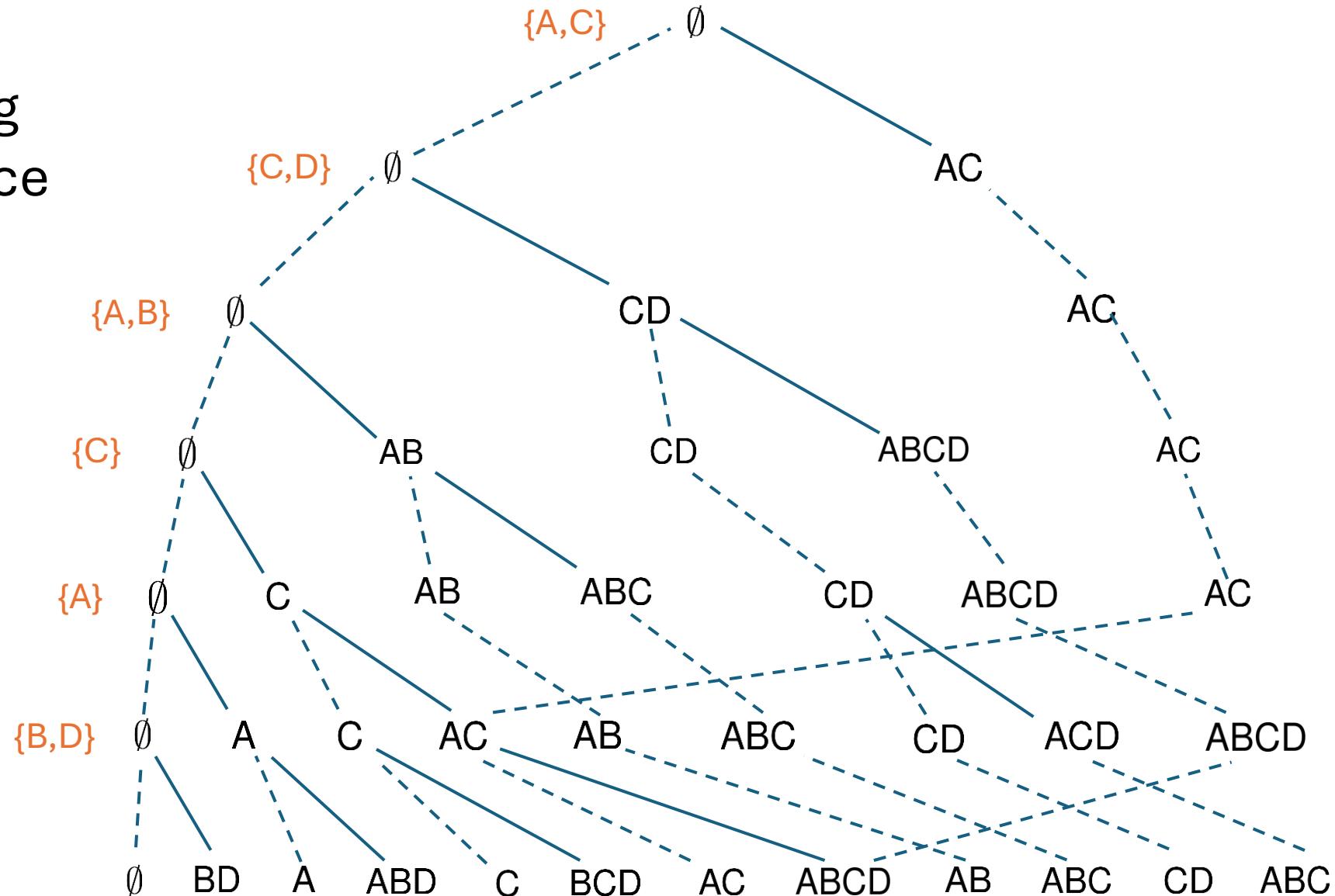
$$\begin{array}{l} \{A, C\} \\ \{C, D\} \\ \{A, B\} \\ \{C\} \\ \{A\} \\ \{B, D\} \end{array} \left. \begin{array}{l} \\ \\ \\ \\ \end{array} \right\} \text{solution}$$

# Serial DD

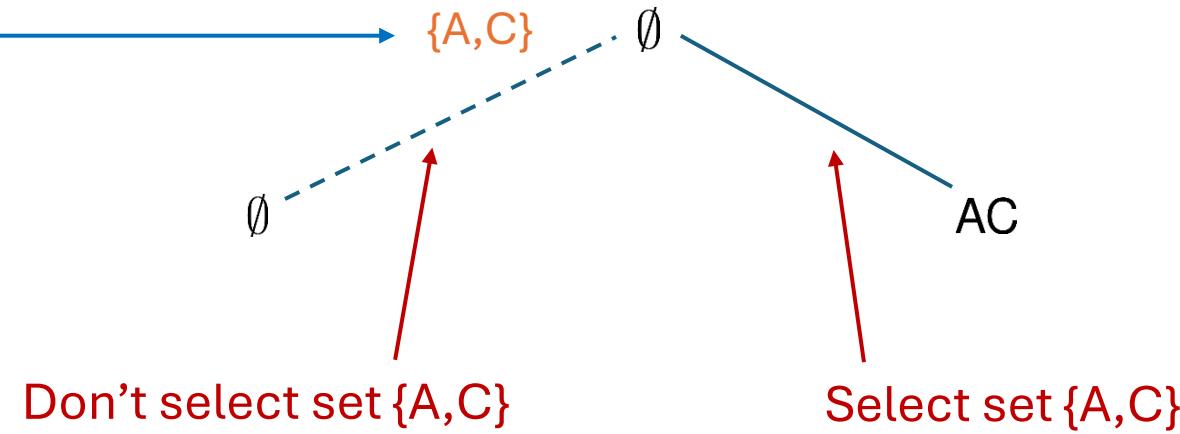
## for a set packing problem instance

Layers correspond to selection decisions for each set.

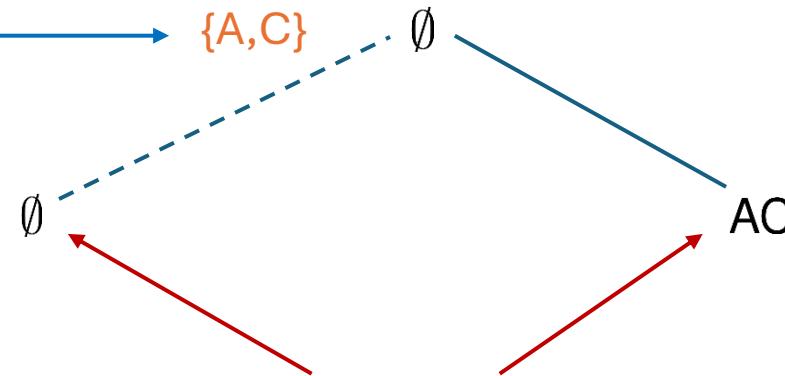
**Variables**  
indicate the  
decisions  
(controls).



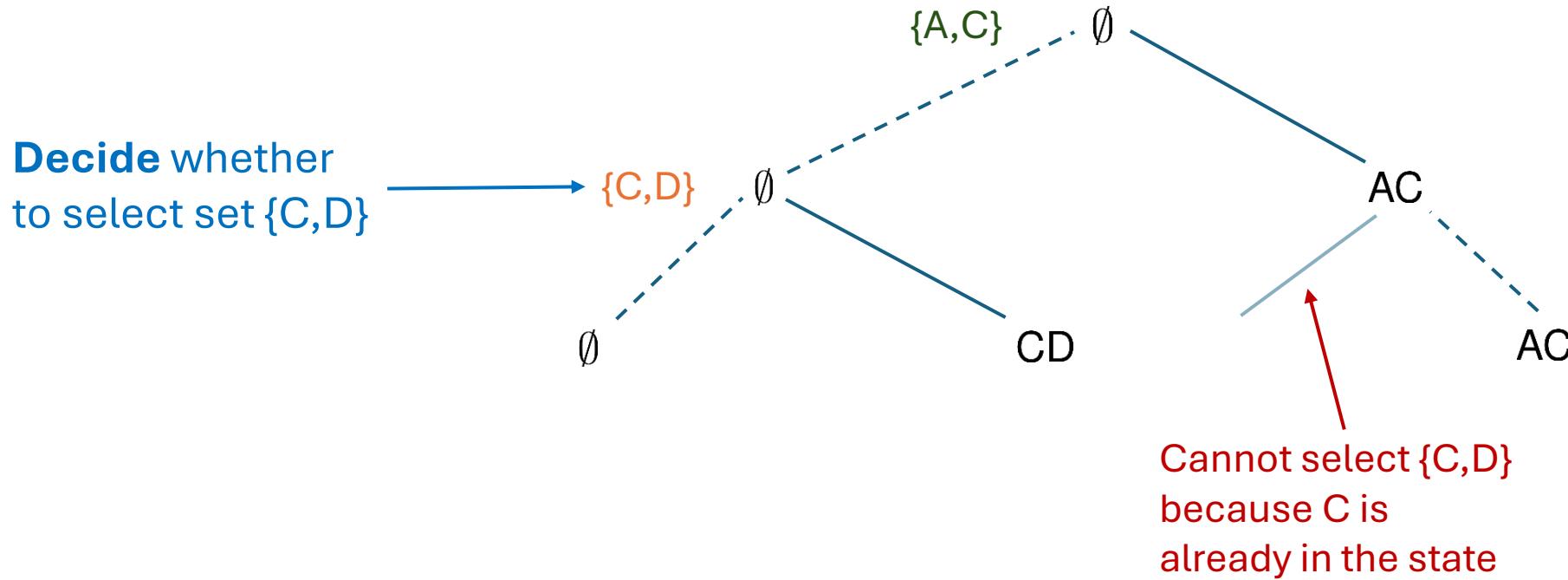
Decide whether  
to select set {A,C}



Decide whether  
to select set {A,C}

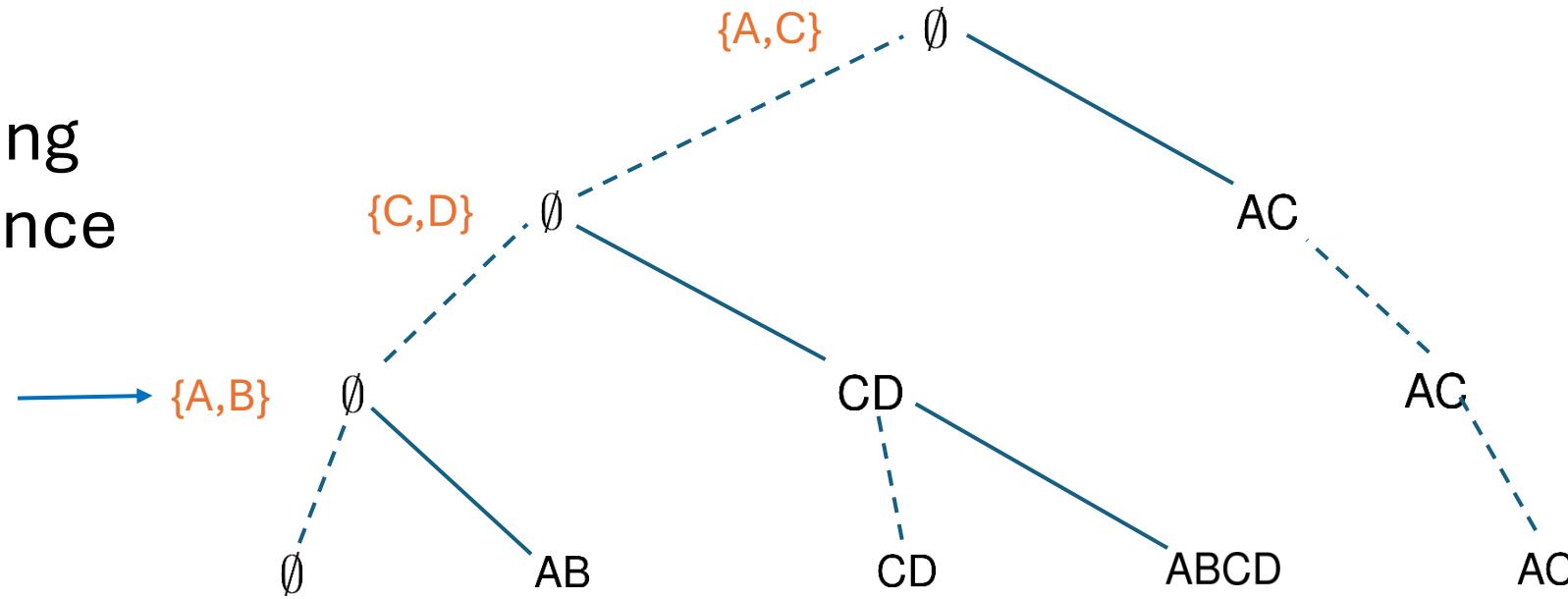


**State** consists of  
elements in sets  
so far selected.  
As in dynamic  
programming.



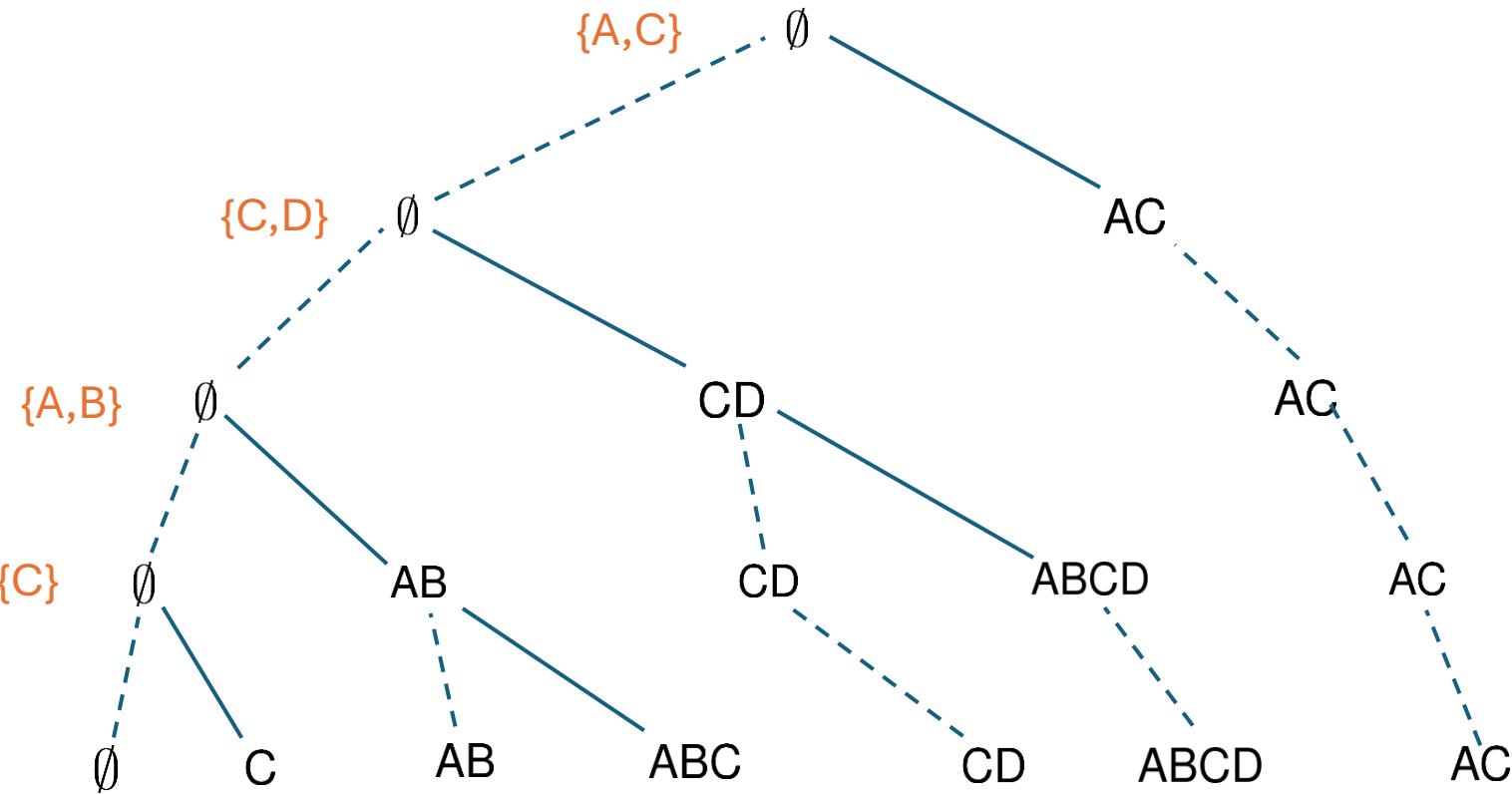
# Serial DD for a set packing problem instance

Decide whether  
to select set  $\{A, B\}$



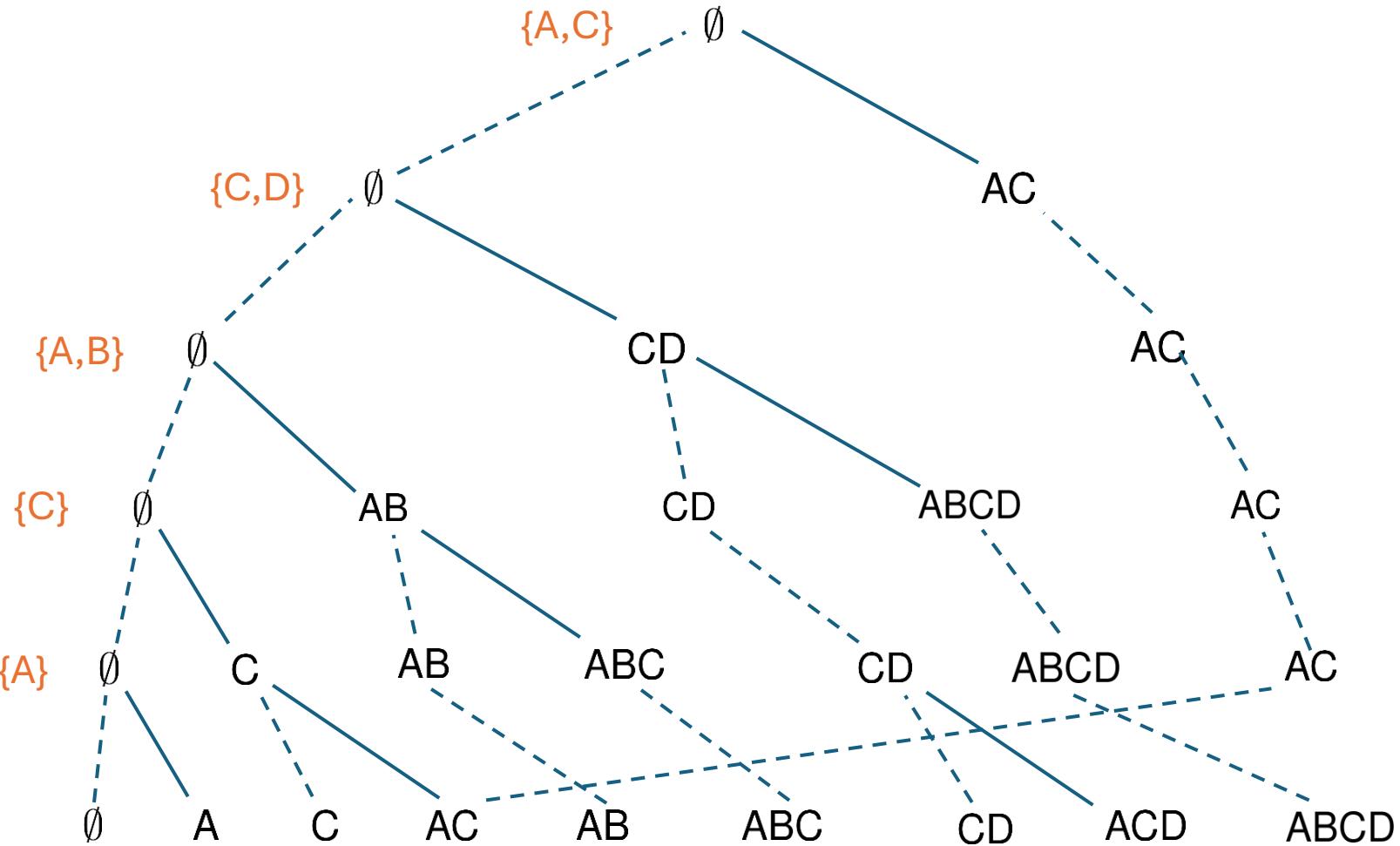
# Serial DD for a set packing problem instance

Decide whether  
to select set  $\{C\}$



# Serial DD for a set packing problem instance

Decide whether  
to select set  $\{A\}$

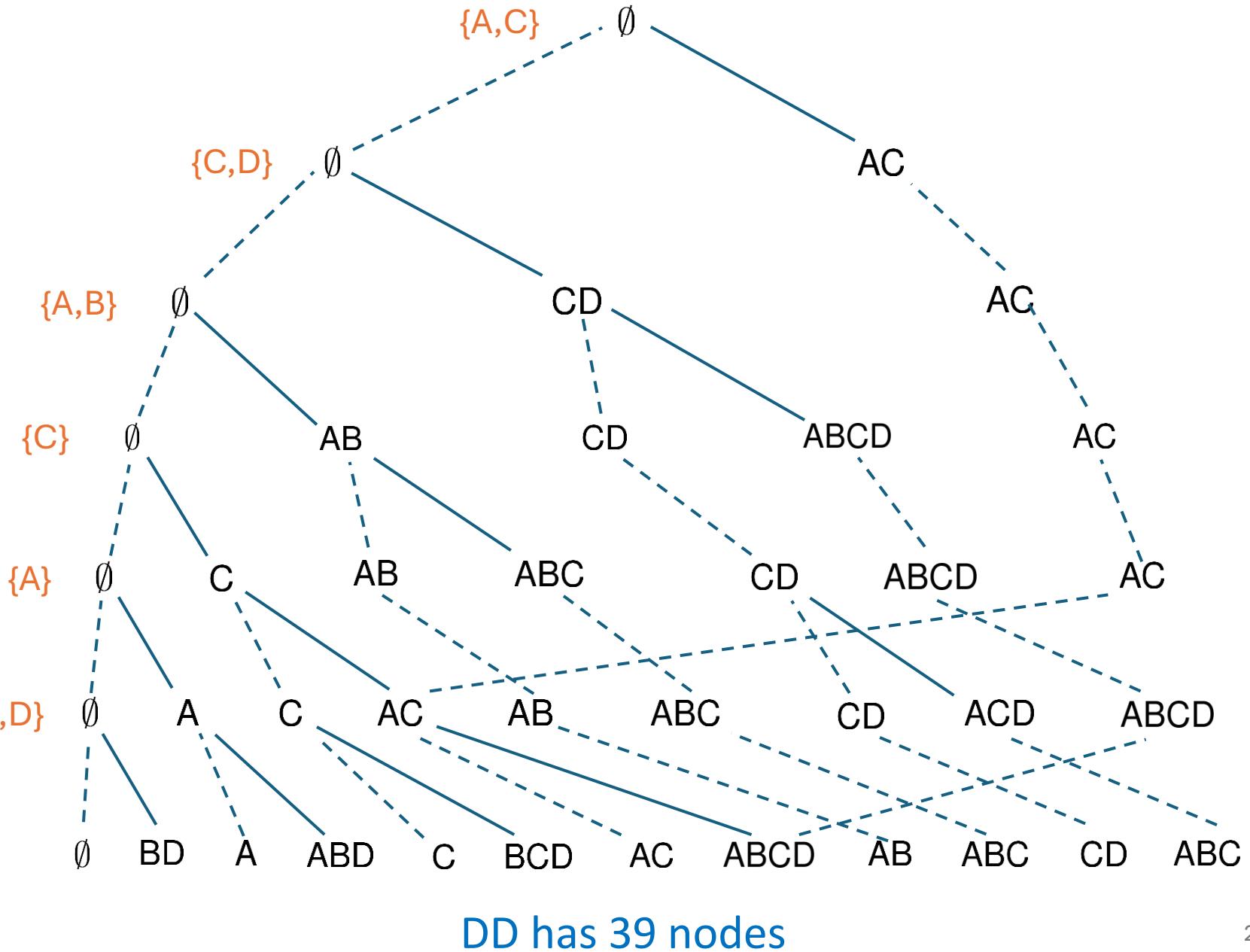


DD is not a tree because branches can terminate in  
the same state. This happens quite often in a DD.

# Serial DD

for a set packing  
problem instance

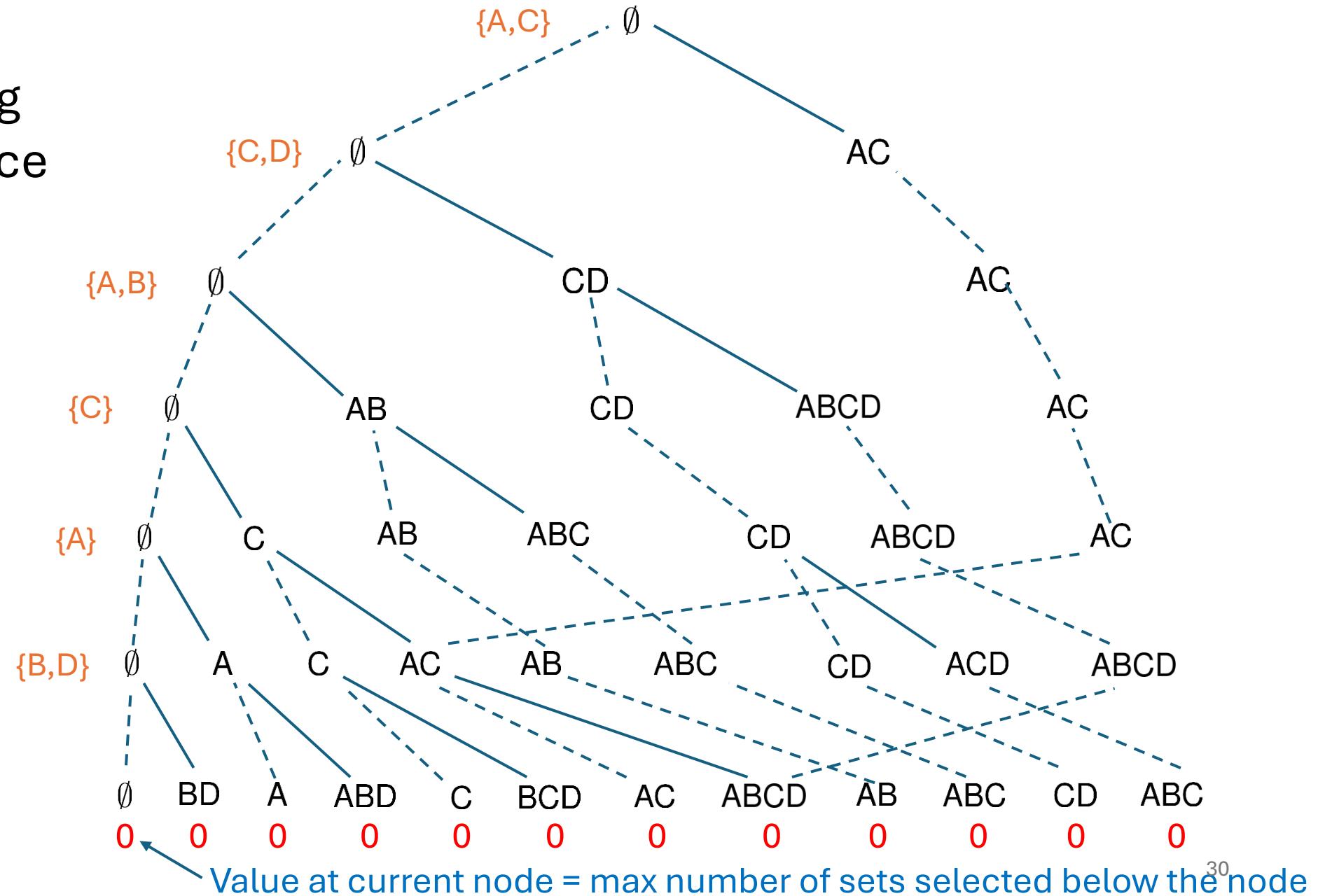
Decide whether  
to select set  $\{B, D\}$



# Serial DD

## for a set packing problem instance

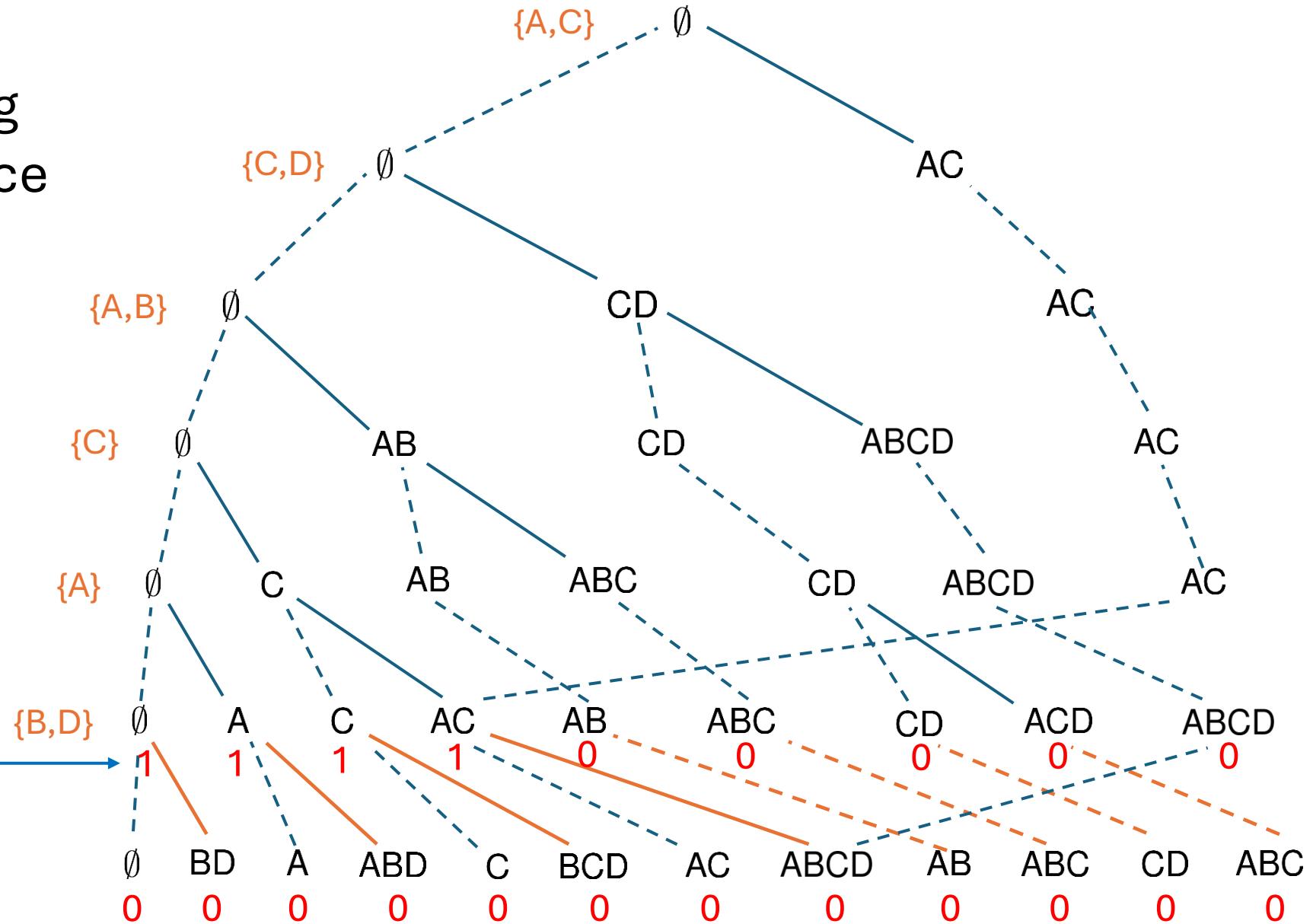
Now find an optimal solution recursively, using a **backward pass**, as in dynamic programming.



# Serial DD

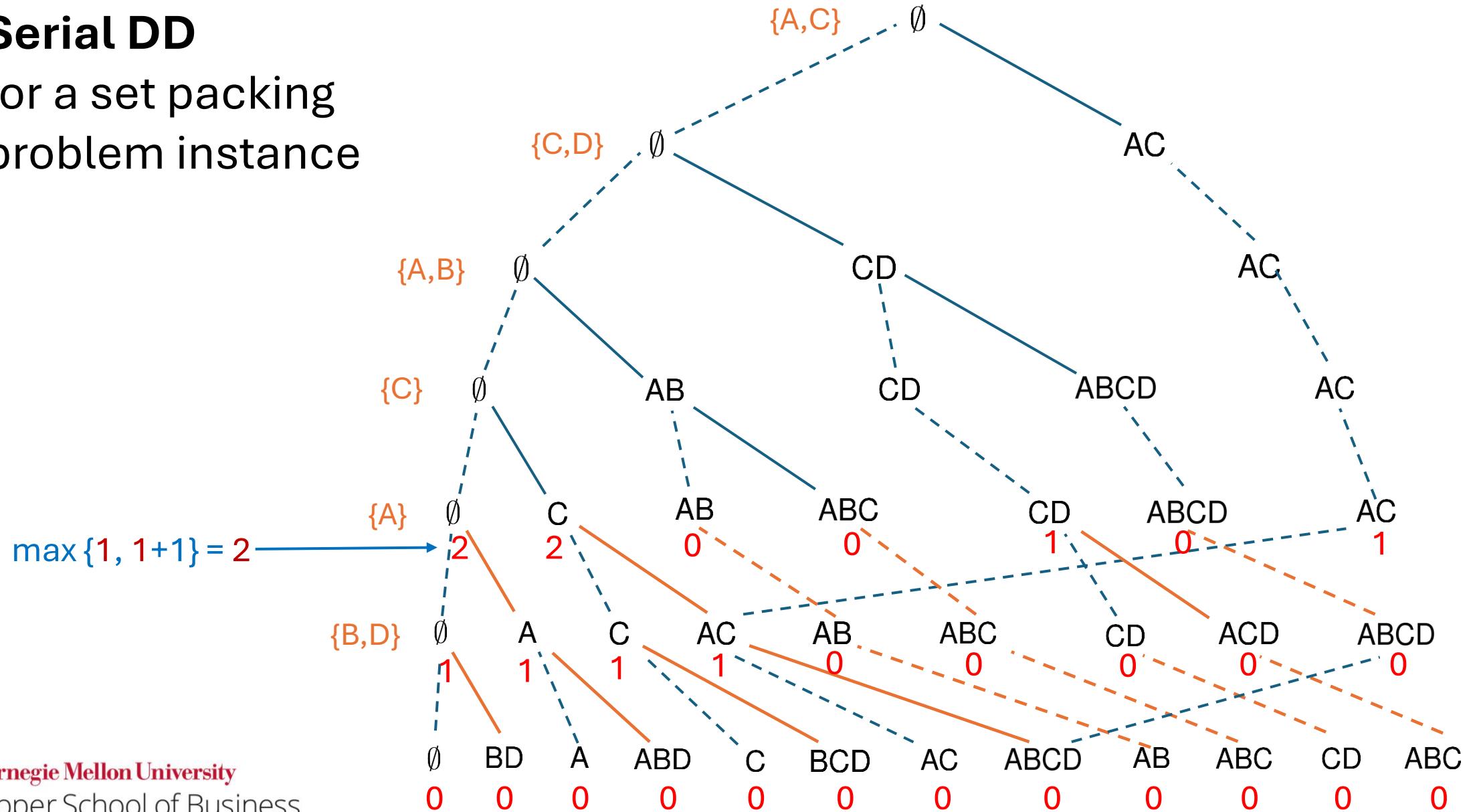
## for a set packing problem instance

$\max \{0, 0+1\} = 1$   
 Mark optimal  
 decision with  
 orange arc



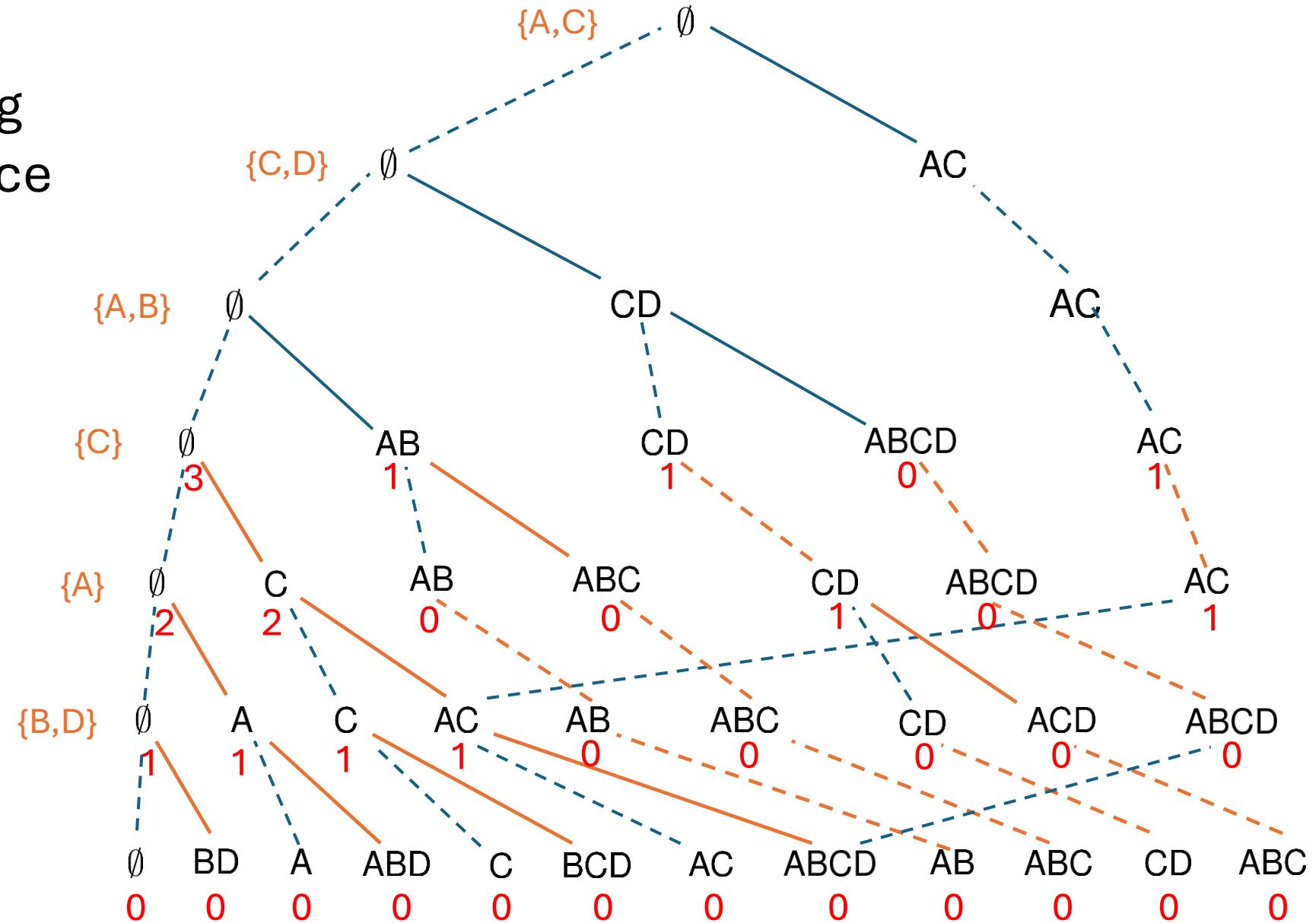
# Serial DD

## for a set packing problem instance



# Serial DD

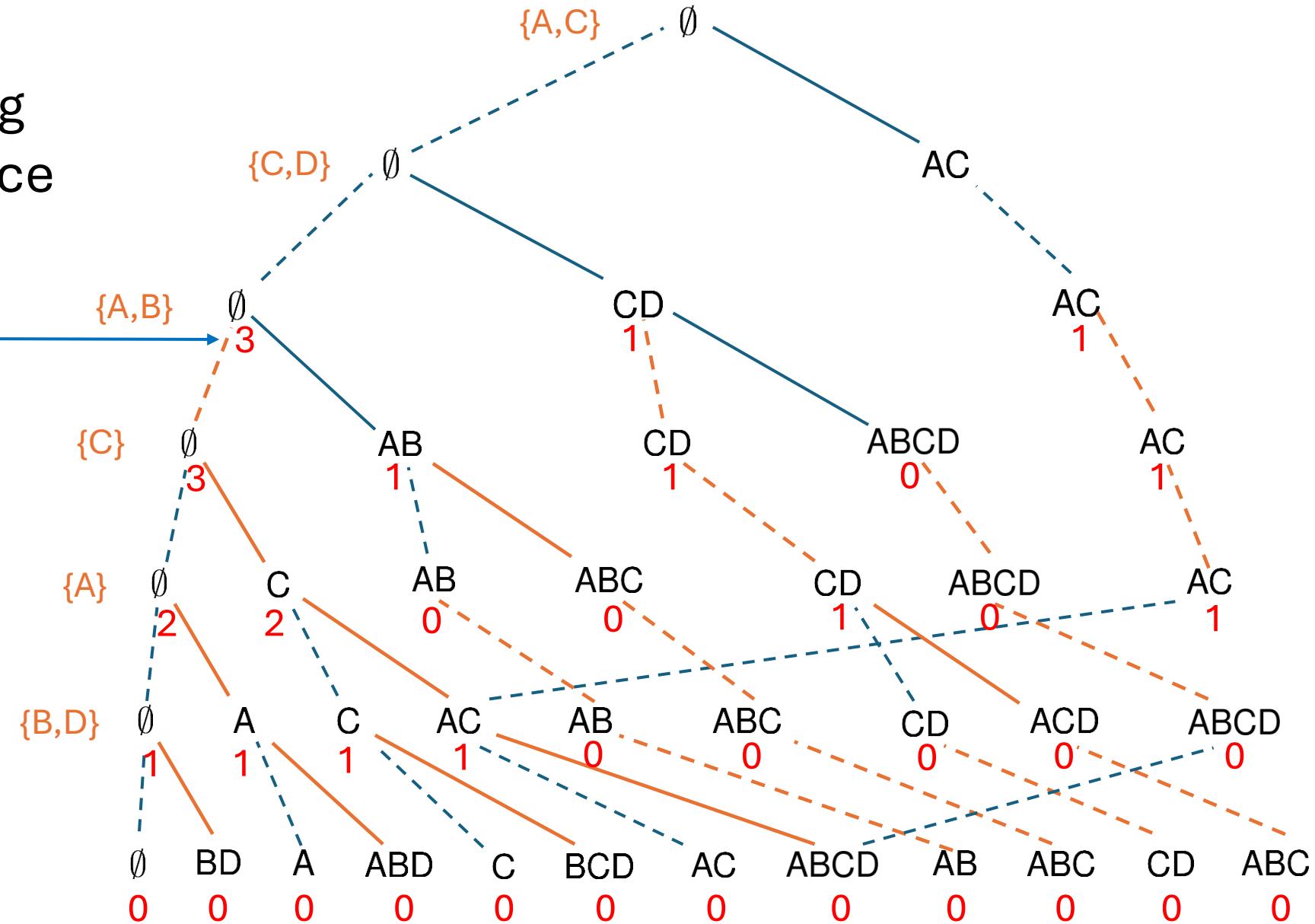
## for a set packing problem instance



# Serial DD

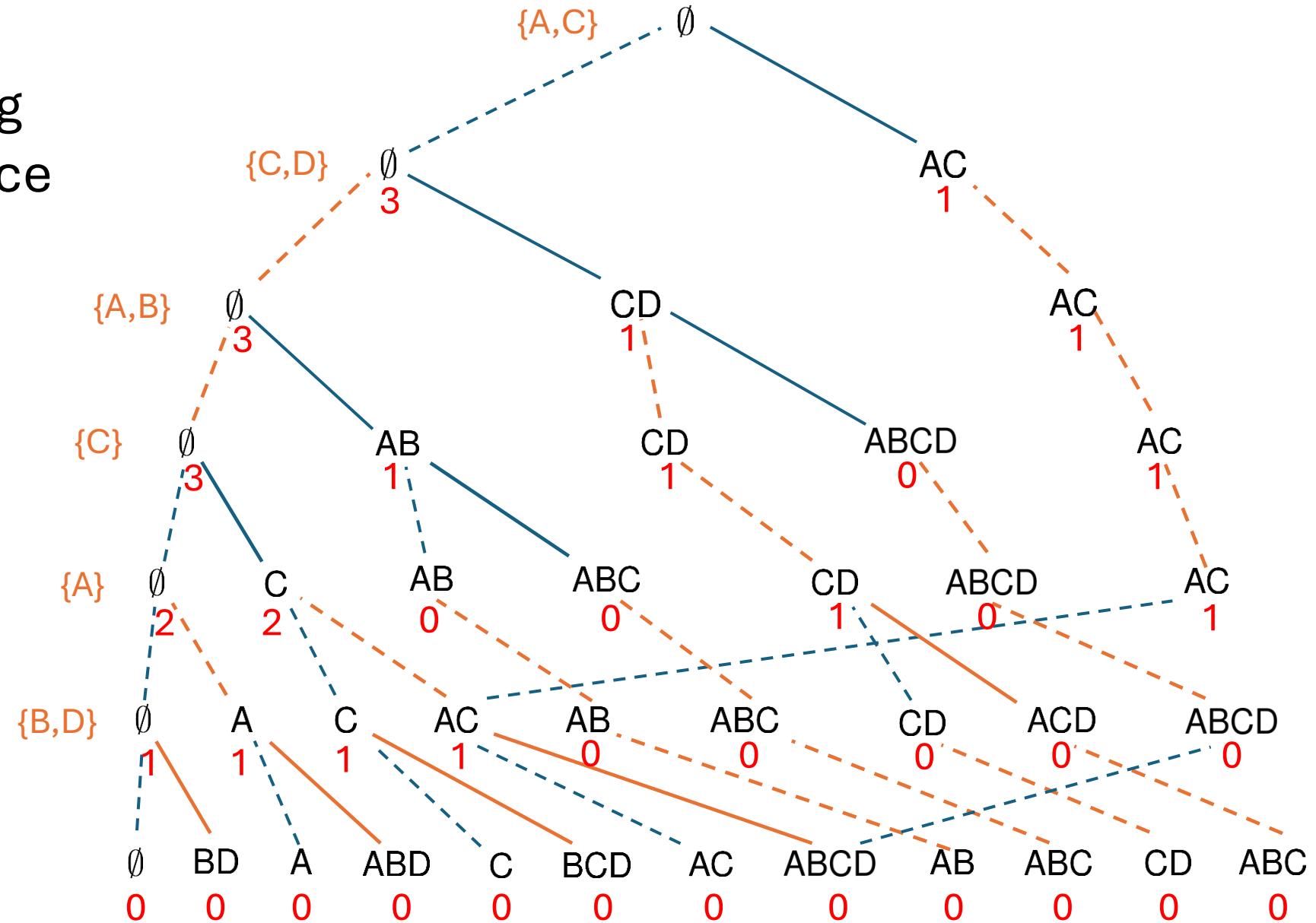
## for a set packing problem instance

$$\max \{3, 1+1\} = 3$$



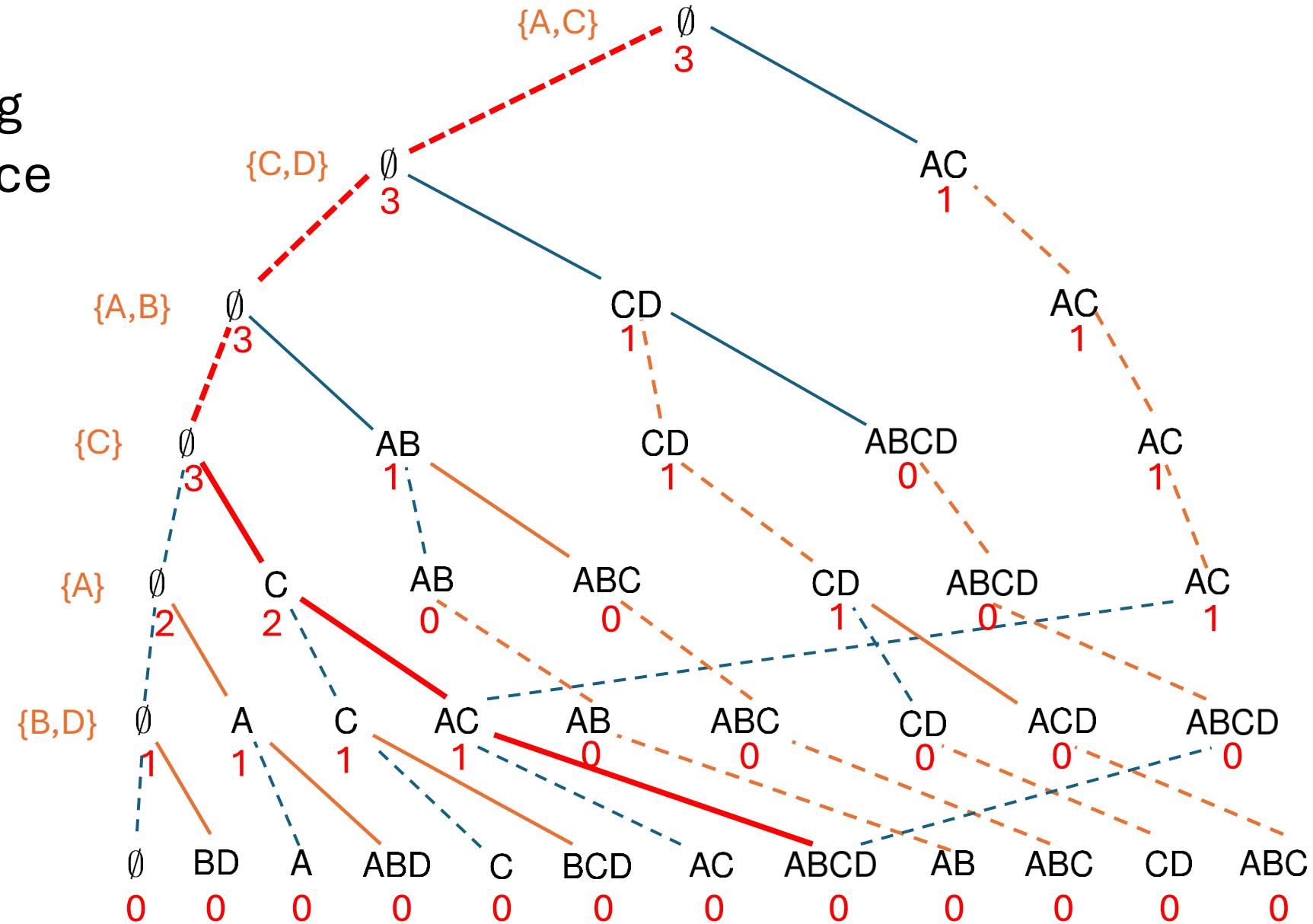
# Serial DD

## for a set packing problem instance



# Serial DD for a set packing problem instance

Trace optimal  
choices top-down  
to find **optimal  
solution**  
(on longest path)  
 $\{C\}, \{A\}, \{B, D\}$



## Reduced DDs

A given Boolean function is represented by a **reduced DD** (minimize size DD) that is **unique** for a given variable ordering.

Bryant (1986)

States become irrelevant after reduction.

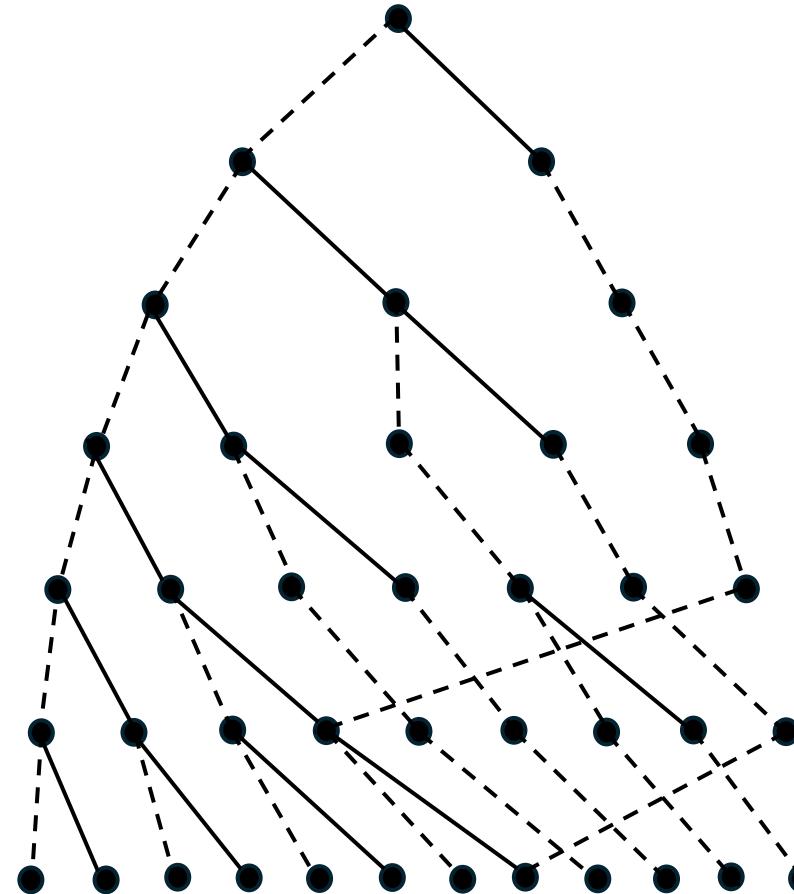
Longest (shortest) path can be computed in the usual fashion.

# Reduced DD

For set packing  
problem instance.

Begin with top-down  
compilation for set packing  
problem.

It can be reduced in  
bottom-up fashion.

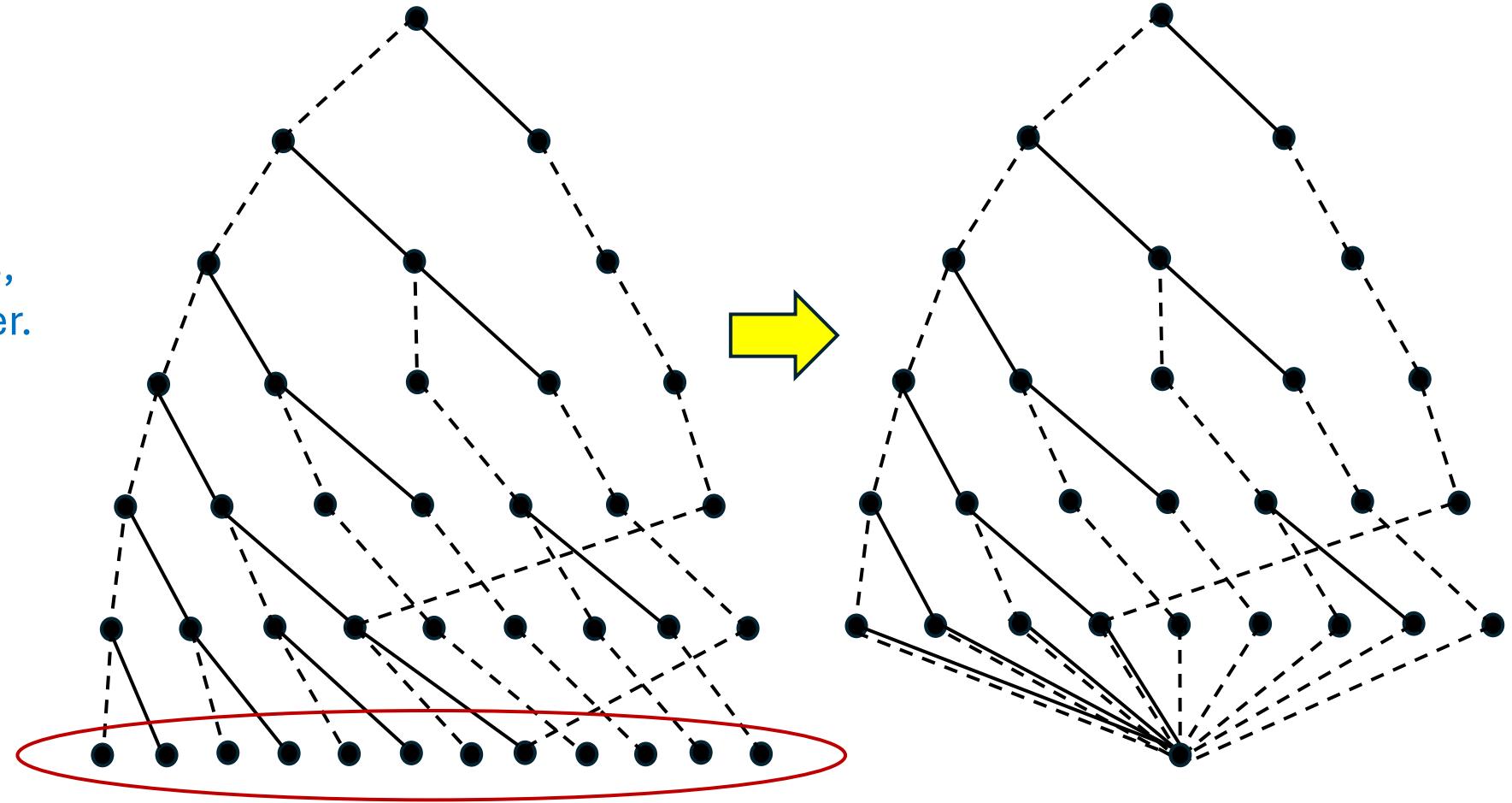


39 nodes

## Reduced DD

For set packing  
problem instance.

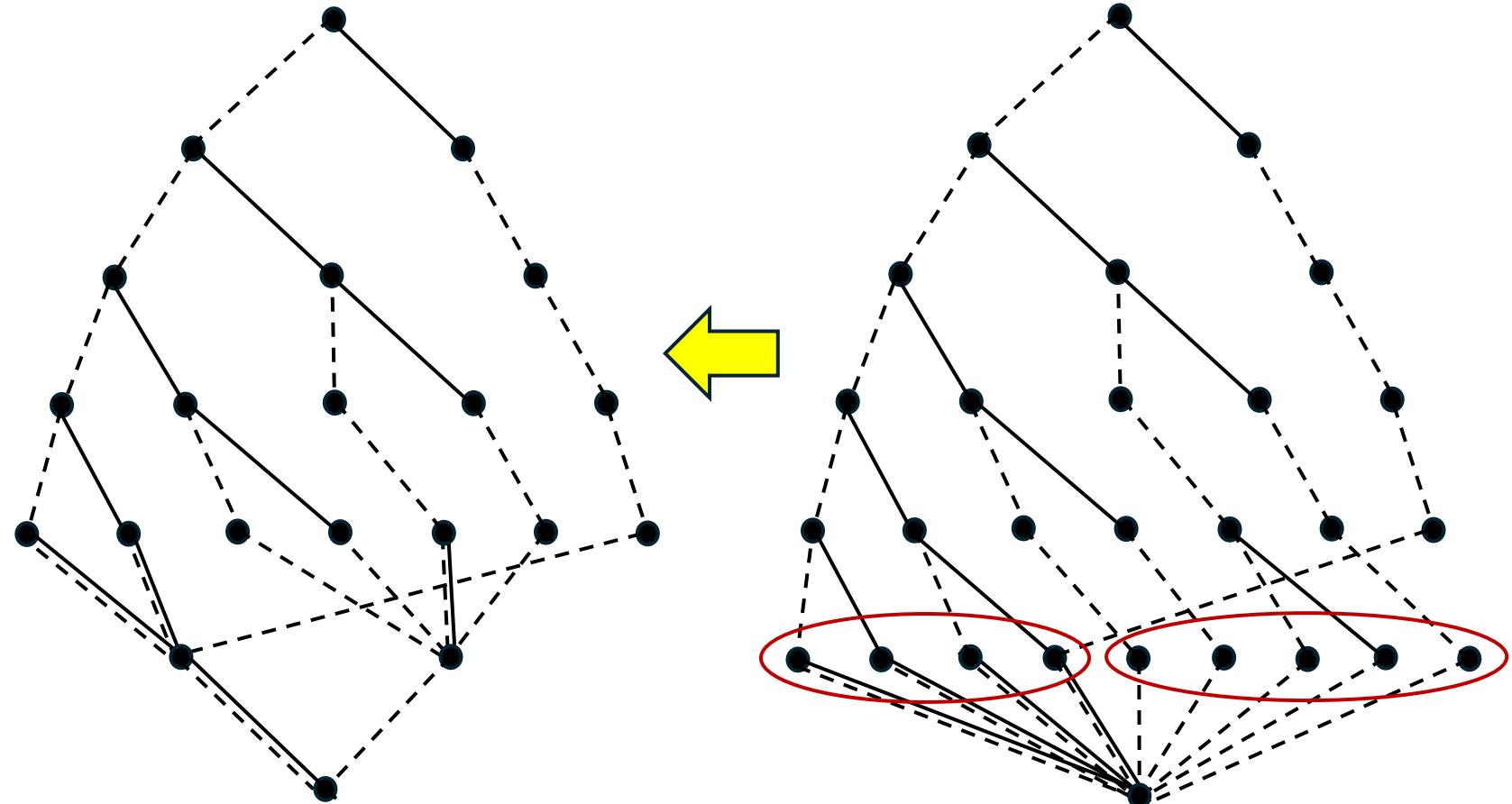
Superimpose nodes that  
are **roots of identical DDs**,  
beginning with bottom layer.



# Reduced DD

For set packing  
problem instance.

Now, next layer.

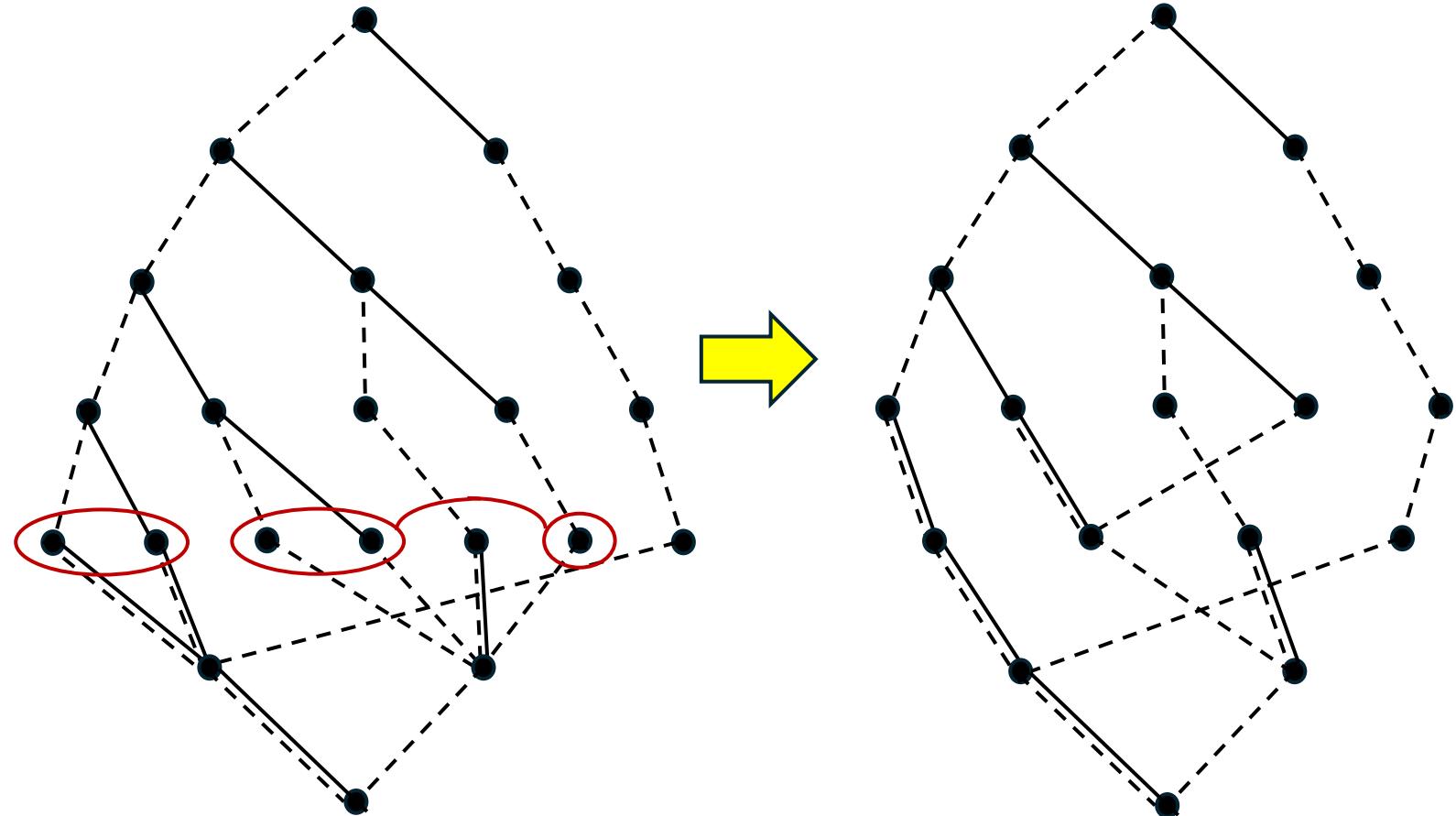


## Reduced DD

For set packing  
problem instance.

Next layer

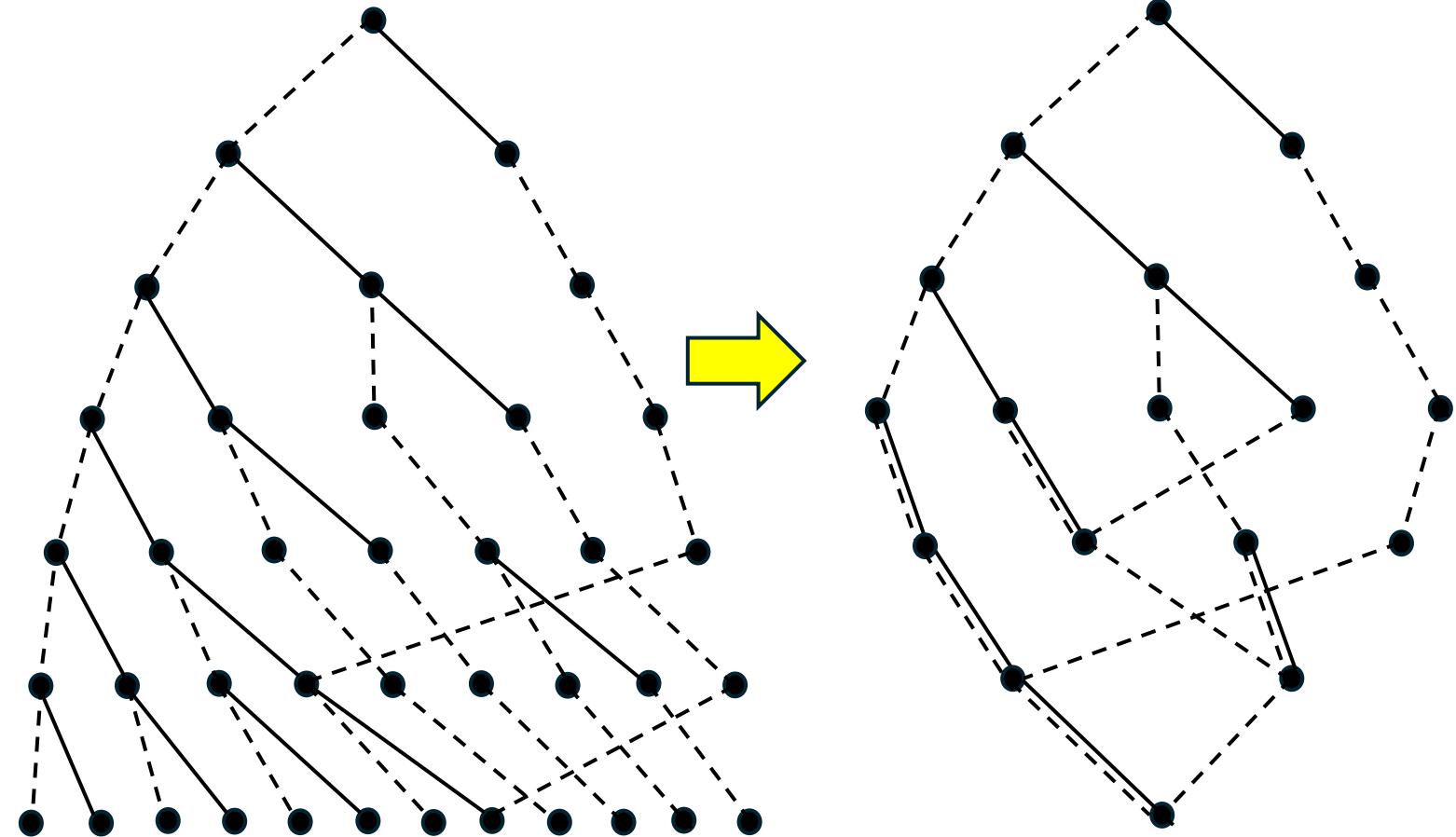
No more reduction possible.



**Reduced DD**  
For set packing  
problem instance.

Substantial size reduction.

Original and reduced serial DDs



## Reduced weighted DDs

A **weighted DD** has **arc costs**, used to find min or min path length.

In previous example, all solid (and all dashed) arcs have the same cost.

Otherwise, one must **consider arc costs** during reduction.

There is a **unique reduced weighted DD**, which can again be found by a bottom-up procedure...

...provided the arc costs are **canonical** (easily achieved).

JH (2013)  
Similar result for AADDs:  
Sanner & McAllister (2005)

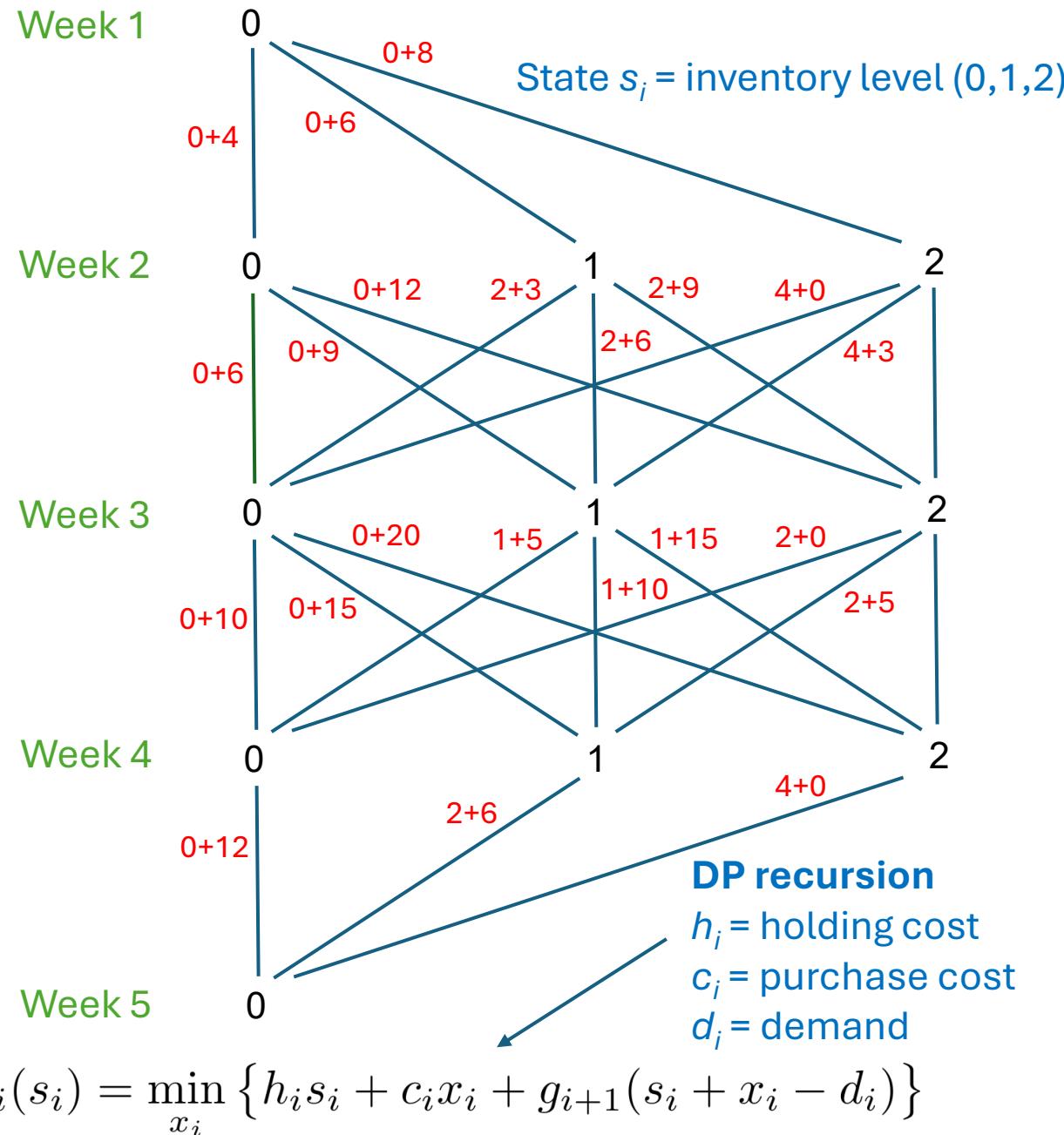
## Generating a reduced DD

Reduction is usually **bottom-up** and requires that **entire DD** be available.

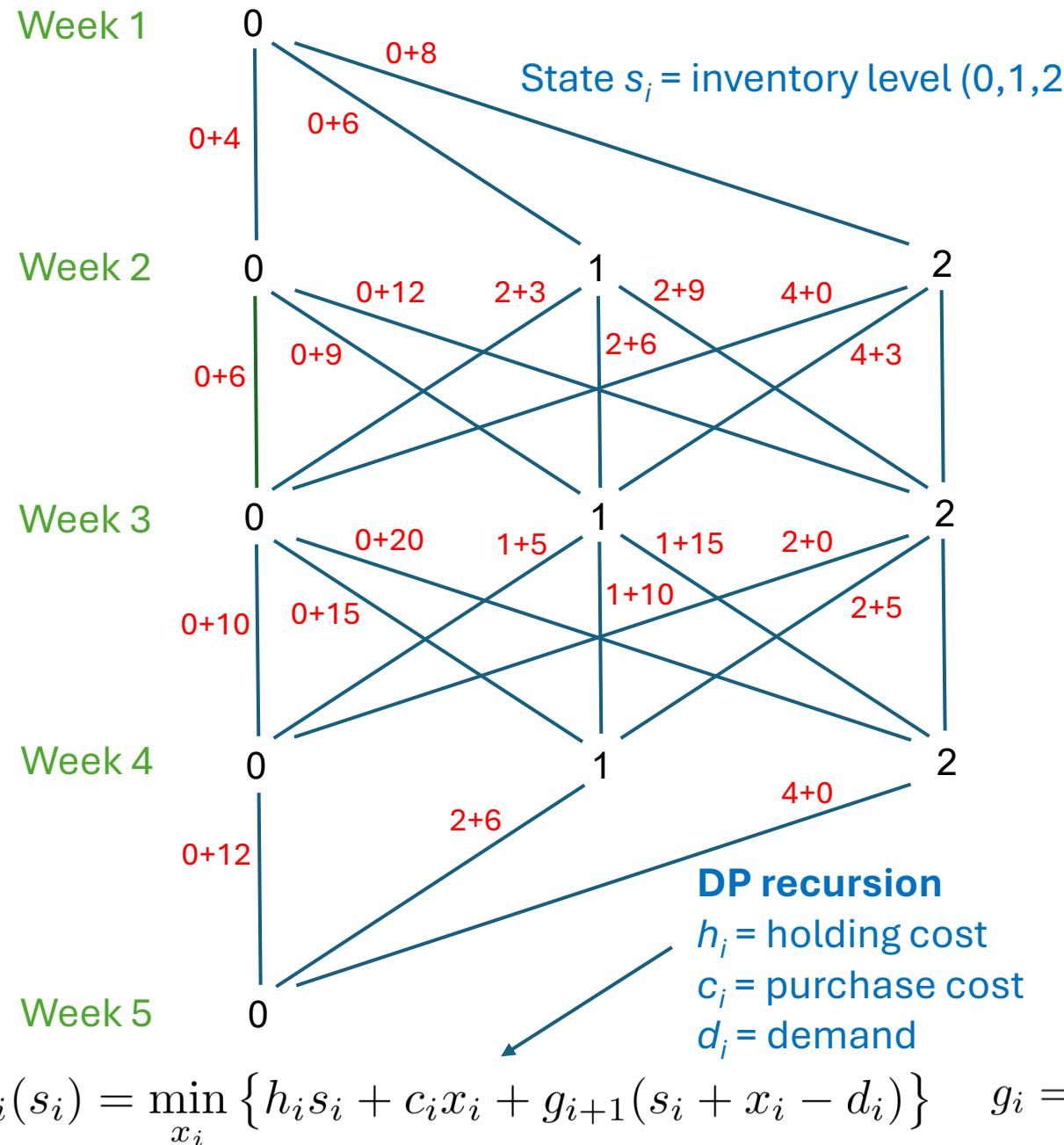
However, reductions can sometimes be identified **analytically** in advance.

**Example:** a class of **inventory management problems**.

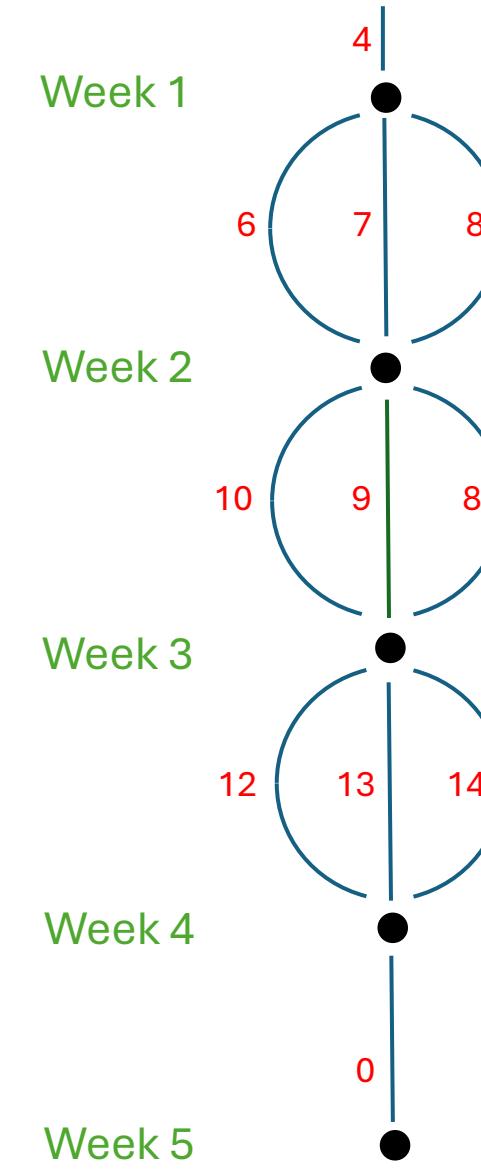
## DP-based weighted DD



## DP-based weighted DD



## Reduced weighted DD



Reformulated DP recursion results in canonical arc costs.

Reduced weighted DD is much smaller, computing shortest path is trivial.

This simplification was apparently never observed over decades of research on inventory models.

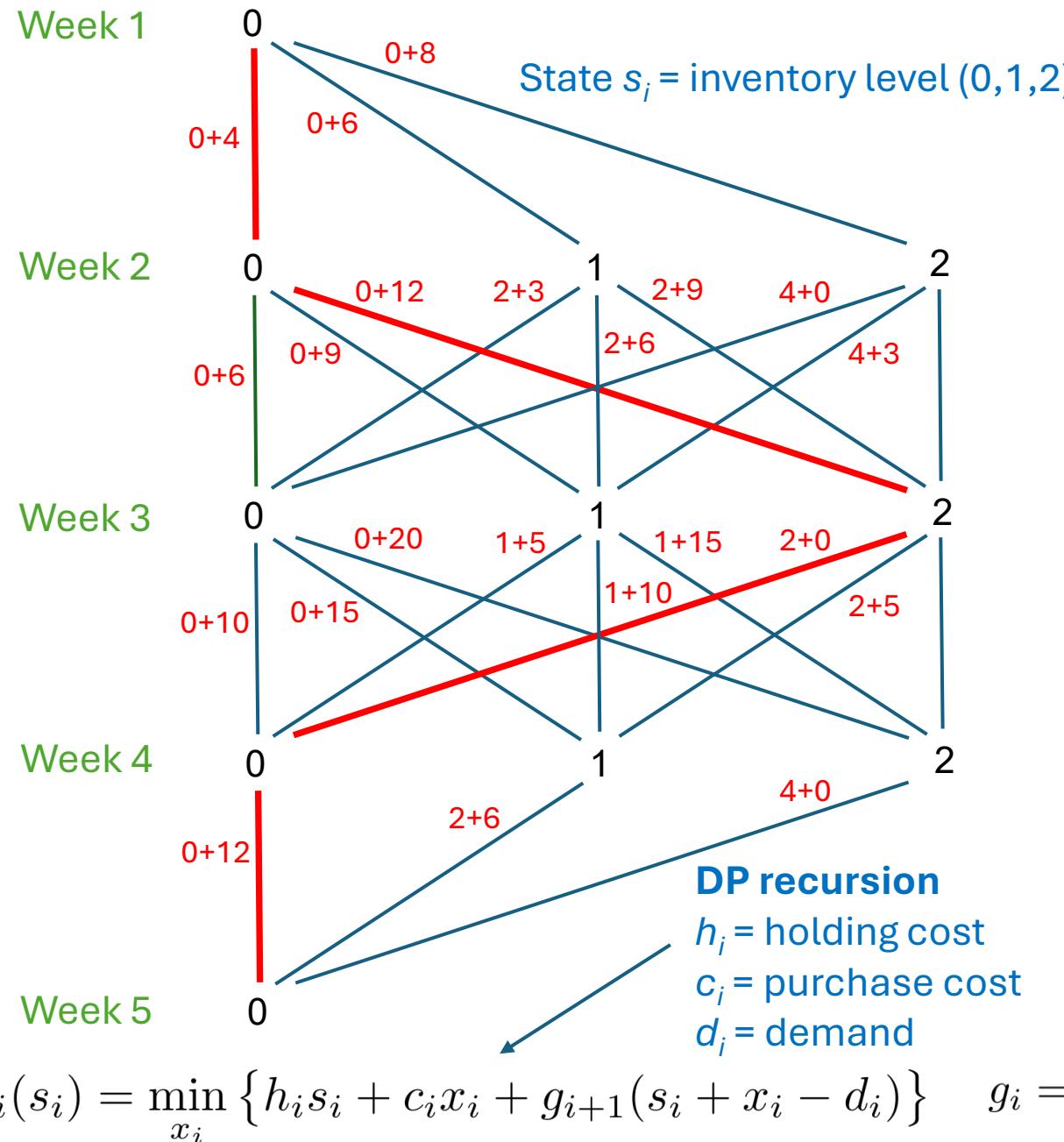
JH (2013)

Reformulated DP recursion

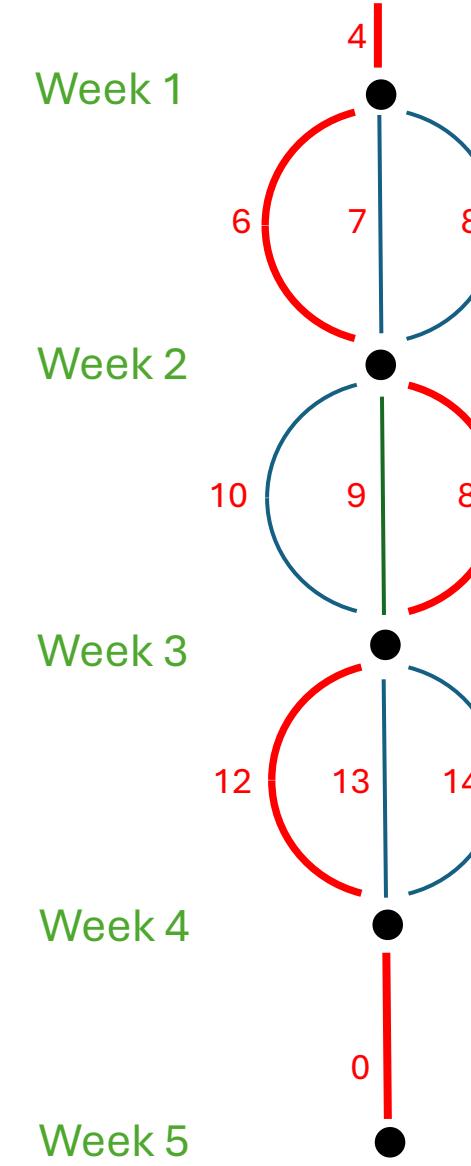
$$g_i(s_i) = \min_{x_i} \{ h_i s_i + c_i x_i + g_{i+1}(s_i + x_i - d_i) \}$$

$$g_i = \min_{x'_i} \{ h_{i+1} x'_i + c_i (x'_i - m + d_i) + c_{i+1}(m - x'_i) + g_{i+1} \}$$

## DP-based weighted DD



## Reduced weighted DD



## Reformulated DP recursion results in canonical arc costs.

Reduced weighted DD  
is much smaller,  
computing shortest  
path is **trivial**.

This simplification was apparently **never observed** over decades of research on inventory models.

JH (2013)

## Reformulated DP recursion

# DD vs state transition graph in DP

How does a **DD** differ from a **dynamic programming state transition graph**?

A state transition graph can be viewed as a DD, but:

- DD nodes need not be associated with **states**.
- The **reduced DD** can be much **smaller** than the state transition graph.
- Much smaller **relaxed DDs** provide **bounds\***
- Much smaller **restricted DDs** provide a **primal heuristic**.

\*DD-based relaxation ≠ “state space relaxation” in DP

## Relaxed DDs

Even **reduced** DDs tend to **grow exponentially** for most problems.

However, **relaxed DDs** of limited width can be obtained by allowing some infeasible paths.

# Relaxed DDs

Even **reduced DDs** tend to **grow exponentially** for most problems.

However, **relaxed DDs** of limited width can be obtained by allowing some infeasible paths.

Two **top-down** compilation methods generate relaxed DDs:

- **Node merger** reduces each layer by heuristically merging nodes and their associated states.
- **Node splitting** heuristically adds nodes on each layer to rule out some infeasible solutions.

Hadžić & JH (2006)  
Andersen, Hadžić, JH, Tiedemann (2007)  
Hadžić, JH, O’Sullivan, Tiedemann (2008)  
Bergman, van Hoeve, JH (2011)

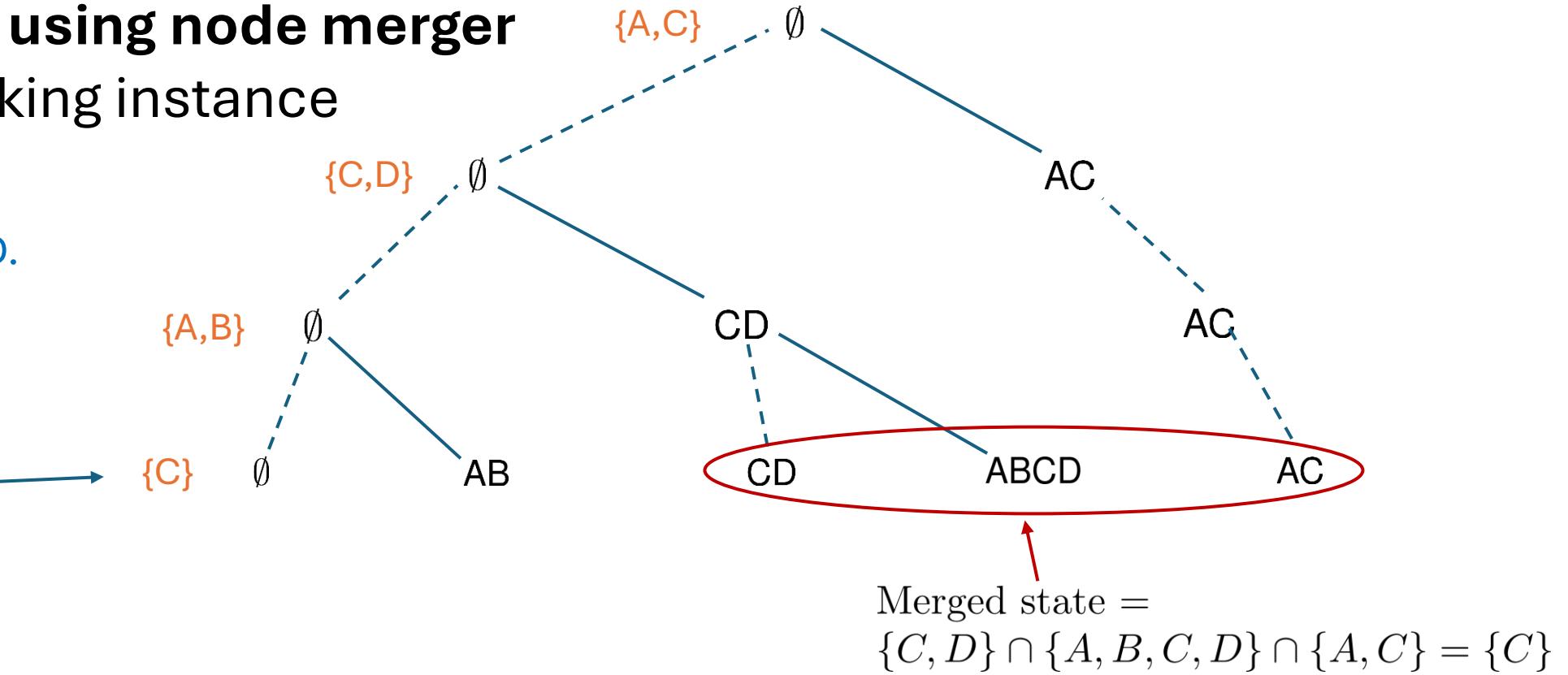
# Relaxed DD using node merger for a set packing instance

Start building DD.

We want a  
**max width of 3**.

**Merge** selected  
states to keep  
width  $\leq 3$ .

Here, resulting  
state is  
**intersection** of  
merged states.

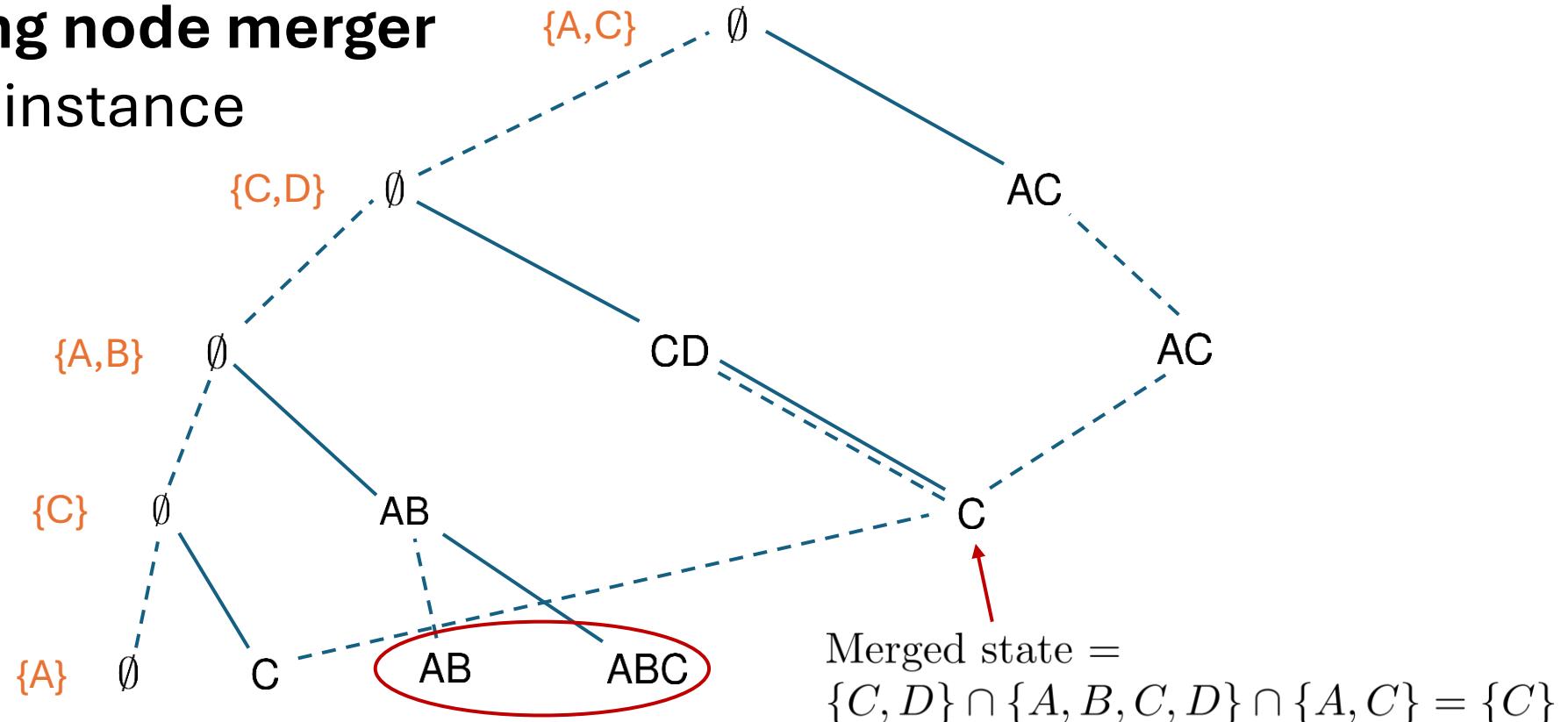


## Relaxed DD using node merger

for a set packing instance

Continue building  
relaxed DD from  
reduced layer,  
using relaxed  
states.

Choice of nodes  
to merge is  
heuristic.

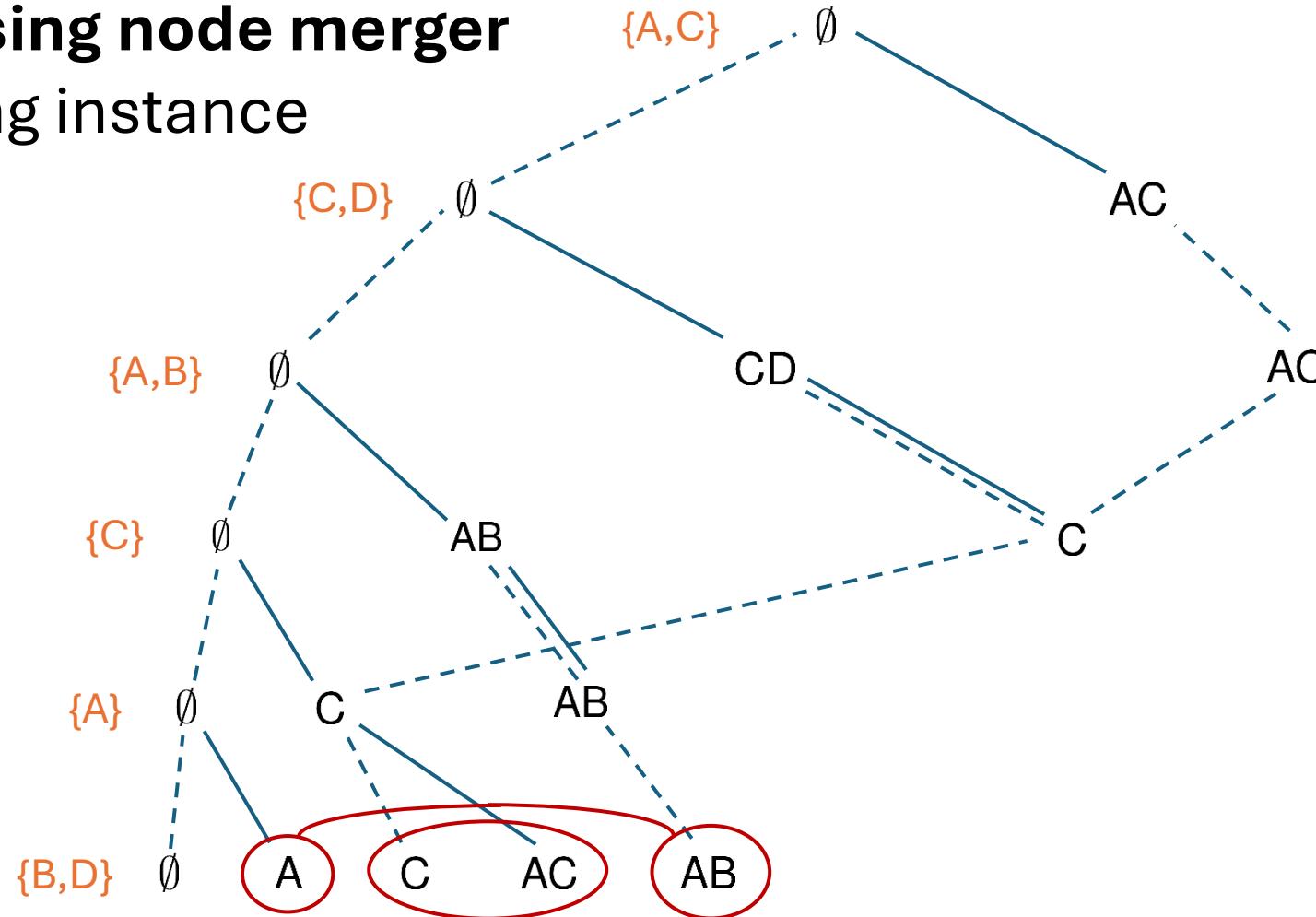


# Relaxed DD using node merger

for a set packing instance

Continue building  
relaxed DD from  
reduced layer,  
using relaxed  
states.

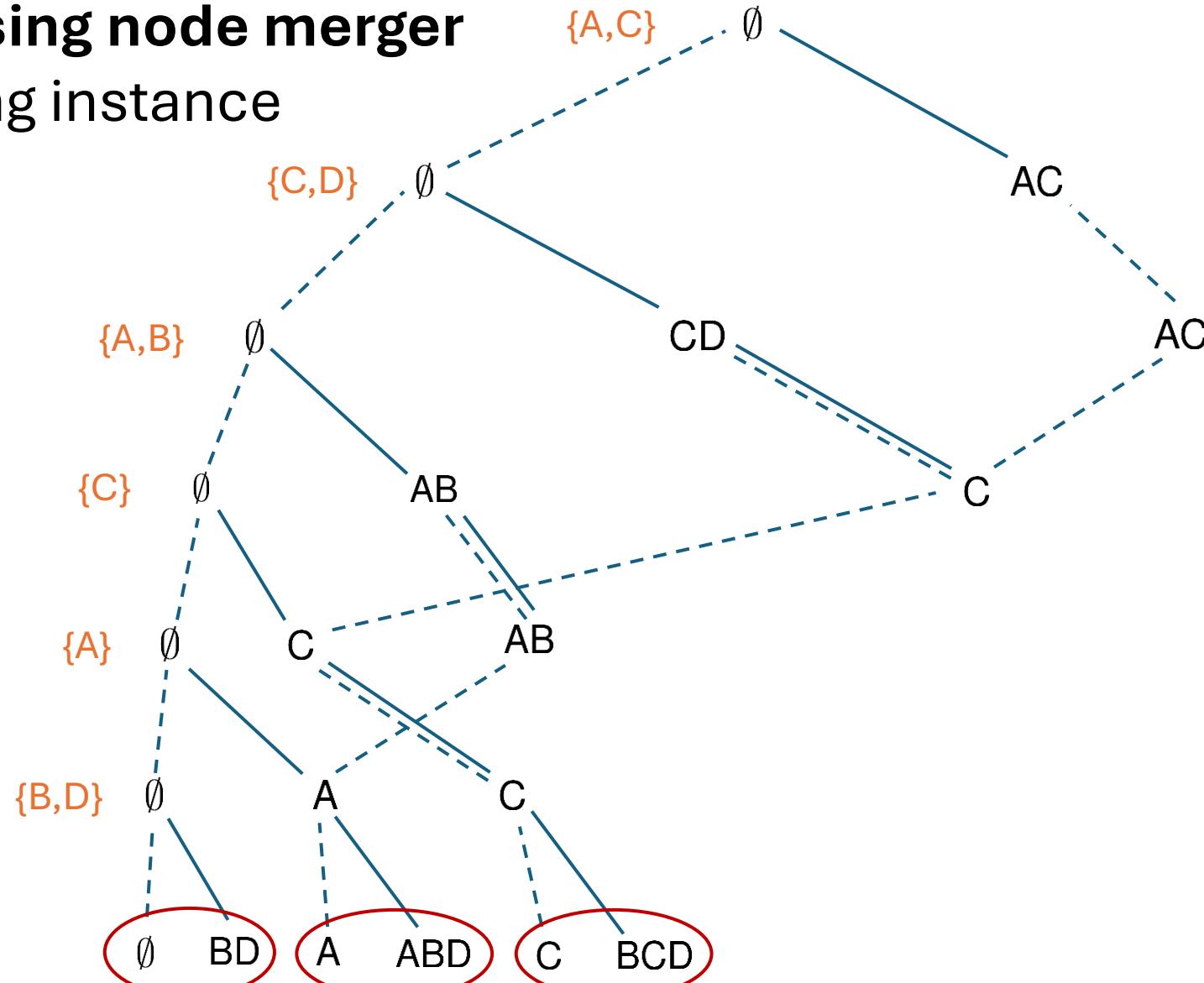
Choice of nodes  
to merge is  
heuristic.



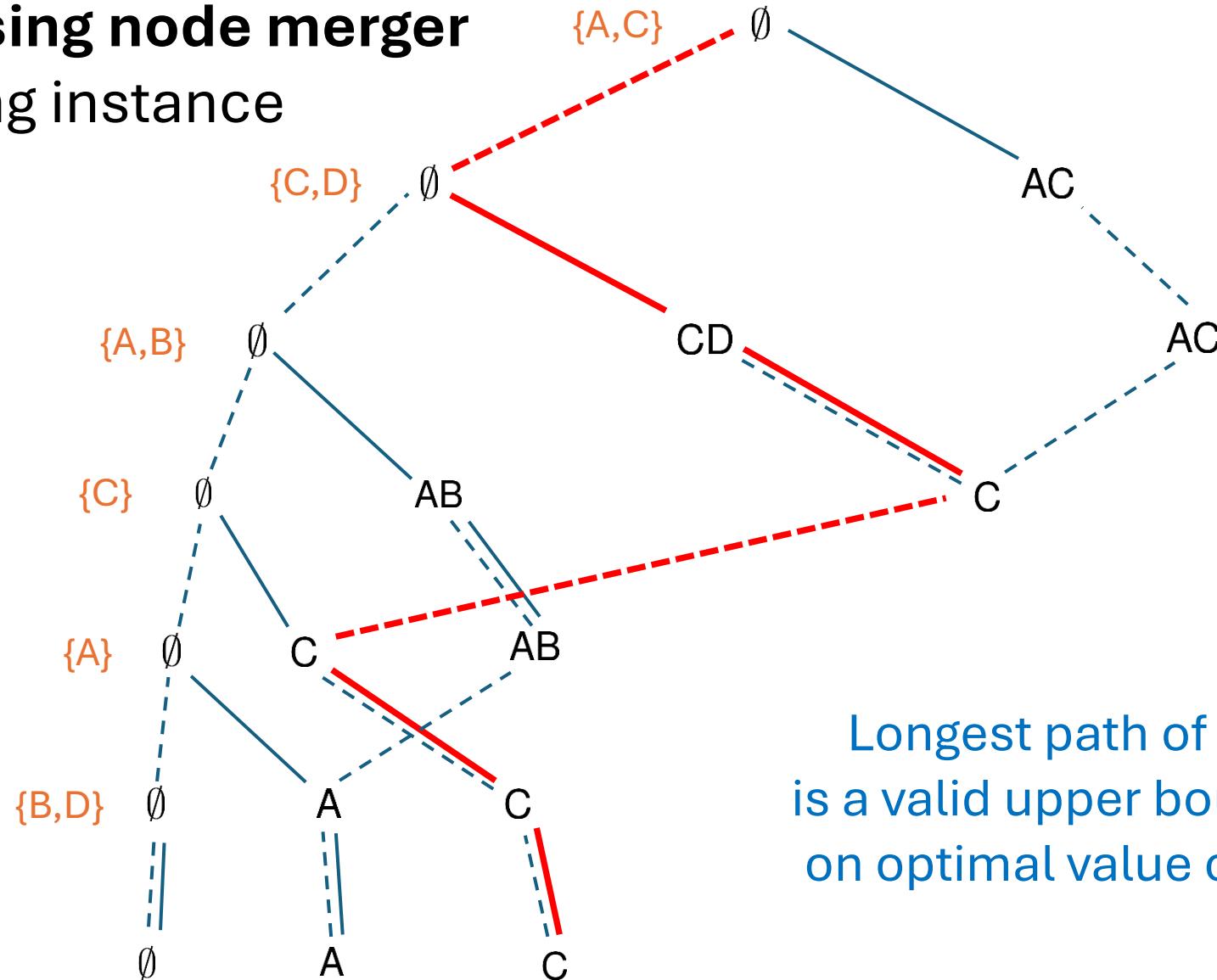
# Relaxed DD using node merger for a set packing instance

Continue building relaxed DD from reduced layer, using relaxed states.

Choice of nodes to merge is heuristic.



## Relaxed DD using node merger for a set packing instance



# Relaxed DDs

## Conditions for node merger

A state  $S'$  **relaxes** state  $S$  if and only if:

- Every control that is feasible in  $S$  is feasible in  $S'$ .
- The arc cost resulting from any feasible control in  $S$  is at least the cost of that control in  $S'$  (when minimizing).

A state merger operation generates a **valid relaxed DD** if

- The merger of two states is a relaxation of the merged states.
- State transition preserves relaxation. That is, If  $S'$  relaxes  $S$ , then  $\phi(S')$  relaxes  $\phi(S)$ , for any given state transition  $\phi$ .

JH (2017)

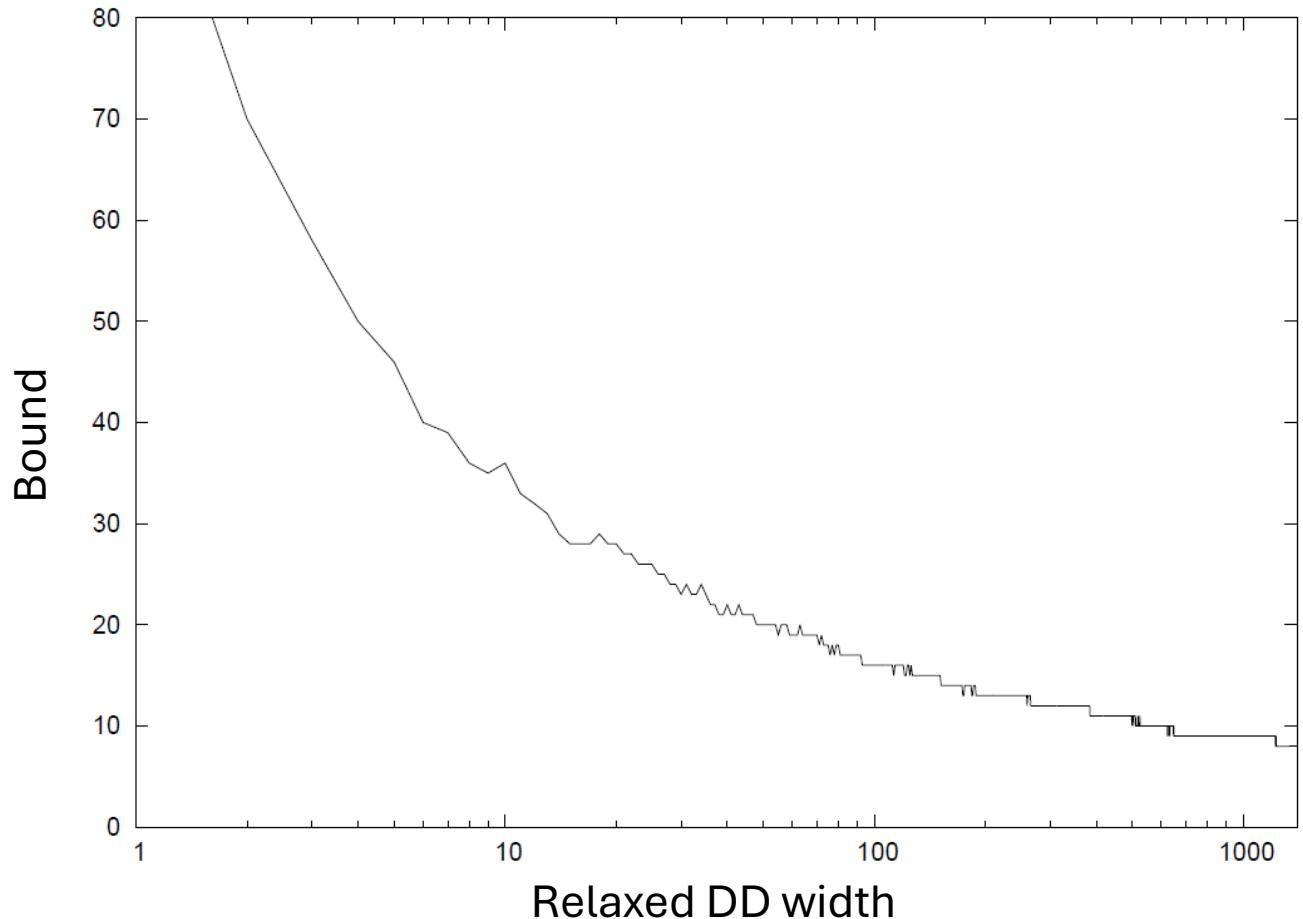
# Relaxed DDs

## Adjustable bound quality

Bound quality vs. relaxed DD width  
for **max stable set problem**.

Greater bound quality can be  
obtained by investing more time  
to generate a larger relaxed DD

Bergman, Ciré,  
van Hoeve, JH (2013)



# Relaxed DDs

## Experimental results for node merger

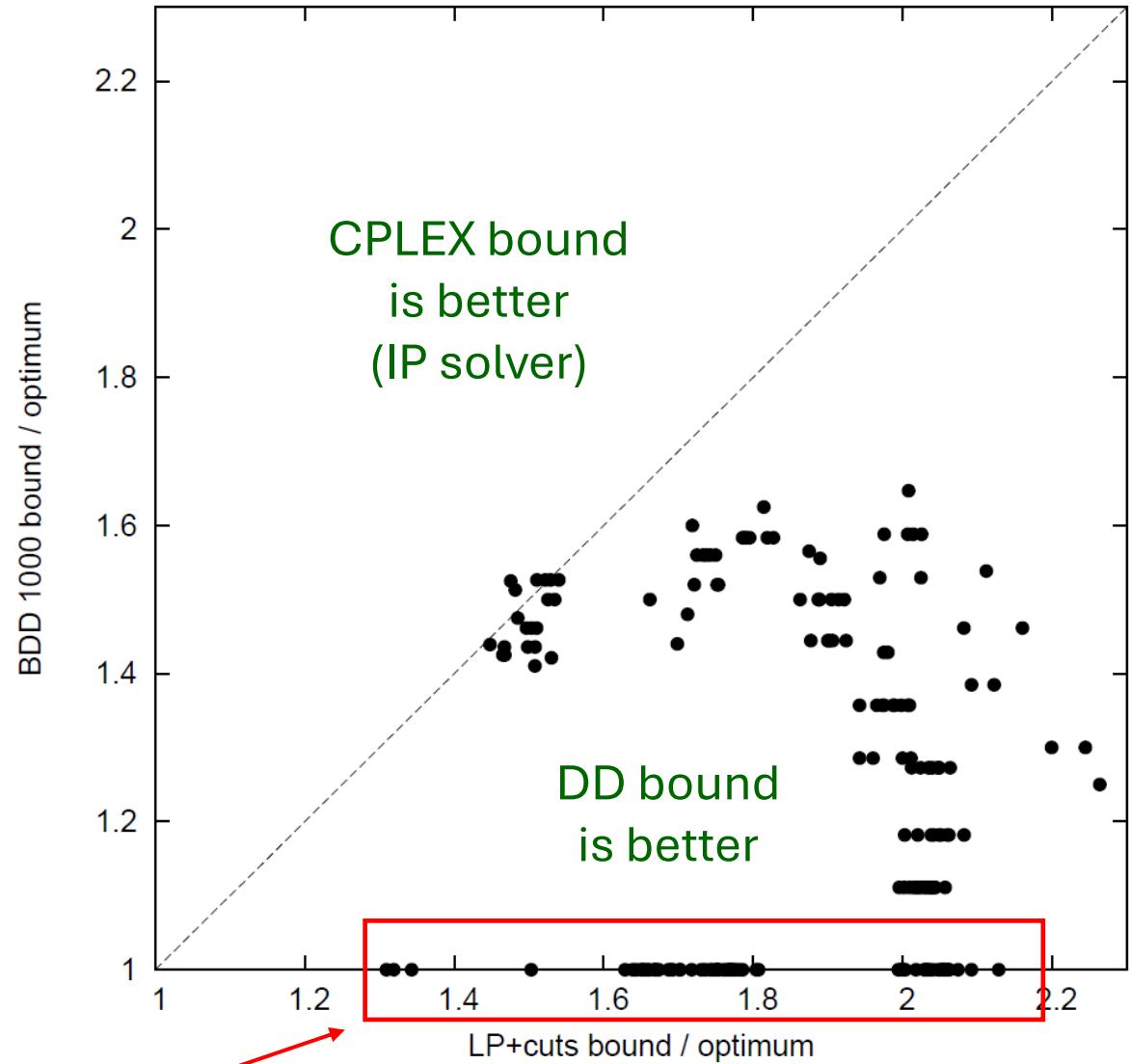
Bound quality, DDs vs IP  
for **max stable set problem**.

Relaxed DD width = 1000.

CPLEX bound based on 50 years  
of cutting plane research.

DDs require about **5% the  
computation time** of CPLEX.

Bergman, Ciré,  
van Hoeve, JH (2013)



## Restricted DDs

A **restricted DD** represents a **proper subset** of feasible solutions.

It can be compiled top-down by heuristically deleting nodes as necessary to limit the DD width.

## Restricted DDs

A **restricted DD** represents a **proper subset** of feasible solutions.

It can be compiled top-down by heuristically deleting nodes as necessary to limit the DD width.

Finding a shortest (longest) path in a restricted DD provides a **primal heuristic** for generating good feasible solutions.

Primal heuristics are responsible for much of the remarkable speedup of **IP solvers**.

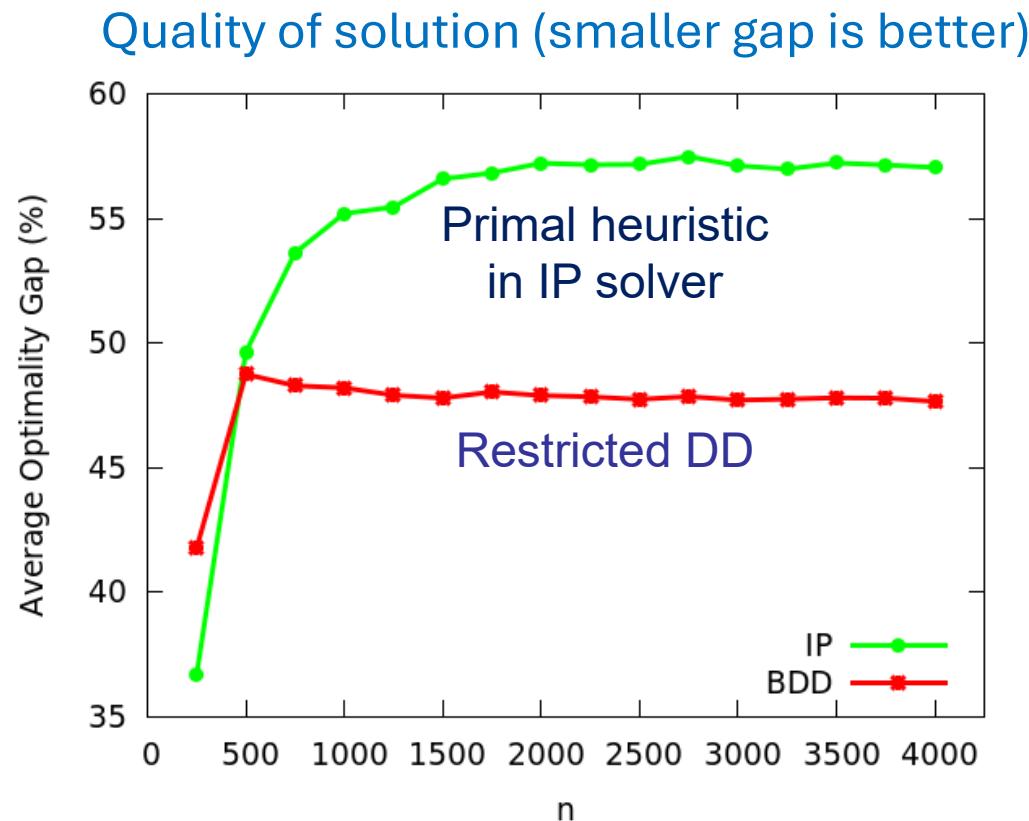
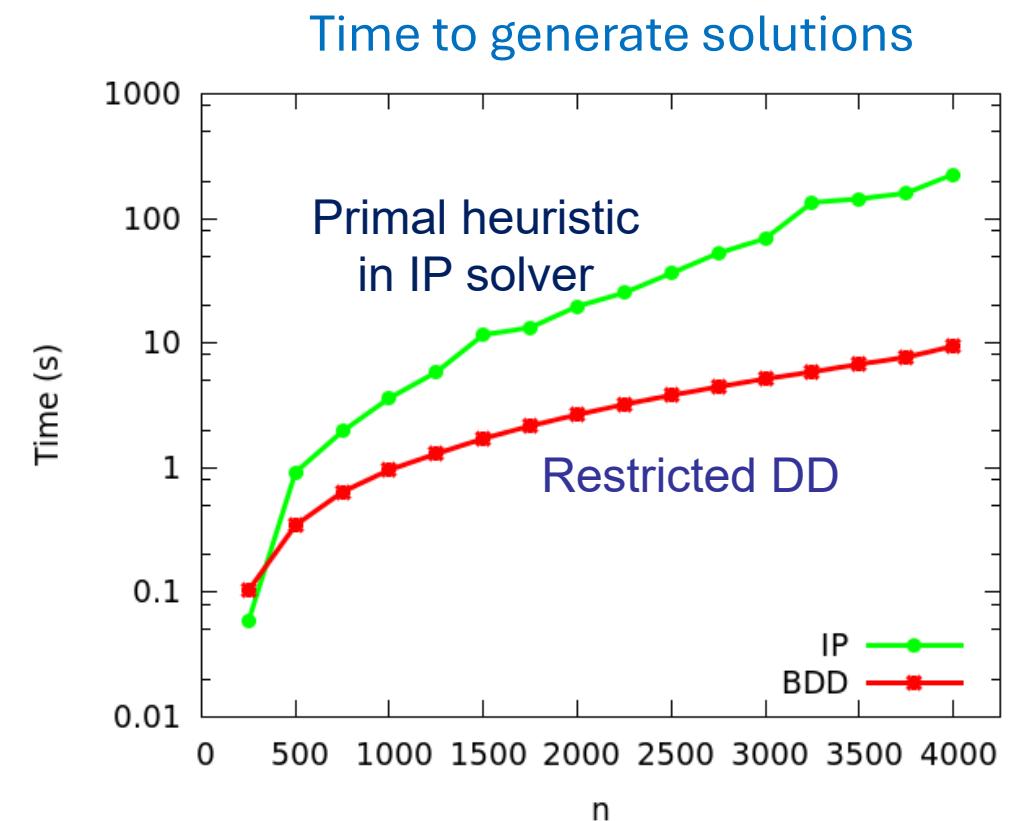
A restricted DD can be **superior** to state-of-the art primal heuristics.

Bergman, Ciré,  
van Hoeve, JH (2016)

# Restricted DDs

## Experimental results

### Primal heuristics for set covering



## DD-based Branch and Bound

Branch-and-Bound methods of **integer programming** prune a branching tree, using bounds on the optimal value from a **linear programming relaxation**.

DD-based Branch and Bound replaces the LP relaxation with a **relaxed DD**.

It **branches within a relaxed DD**, which eliminates many unnecessary branches.

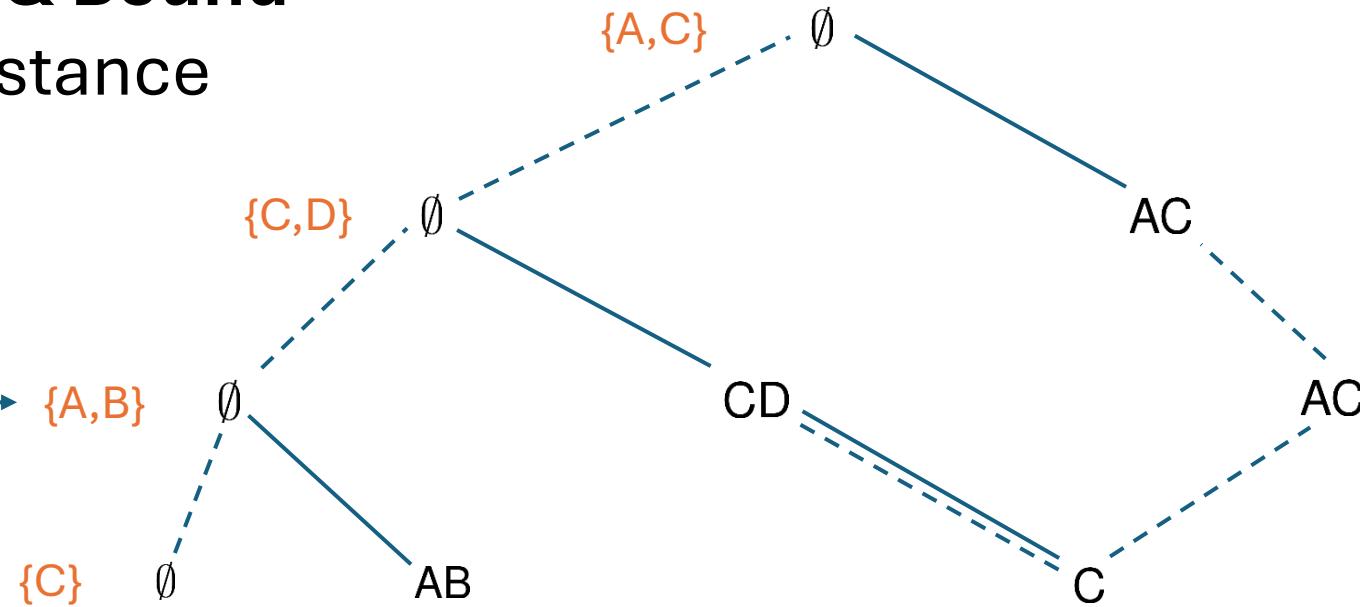
Bergman, Ciré,  
van Hoeve, JH (2016)

# DD-based Branch & Bound

for a set packing instance

Start building a  
relaxed DD.

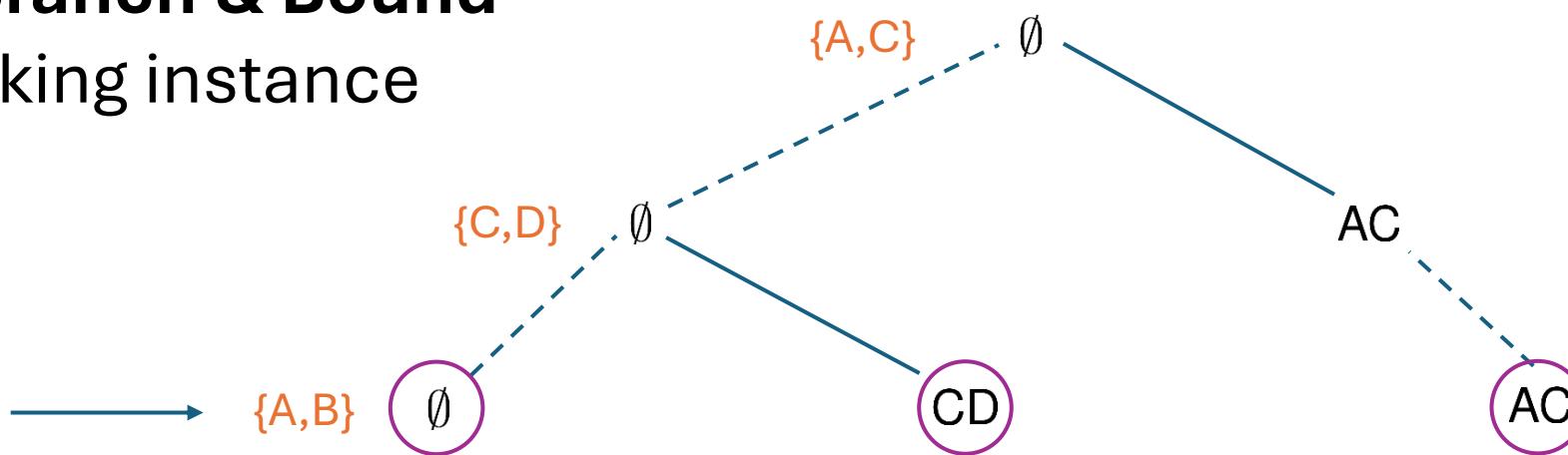
This is the  
**last exact layer**  
(no node mergers)



# DD-based Branch & Bound

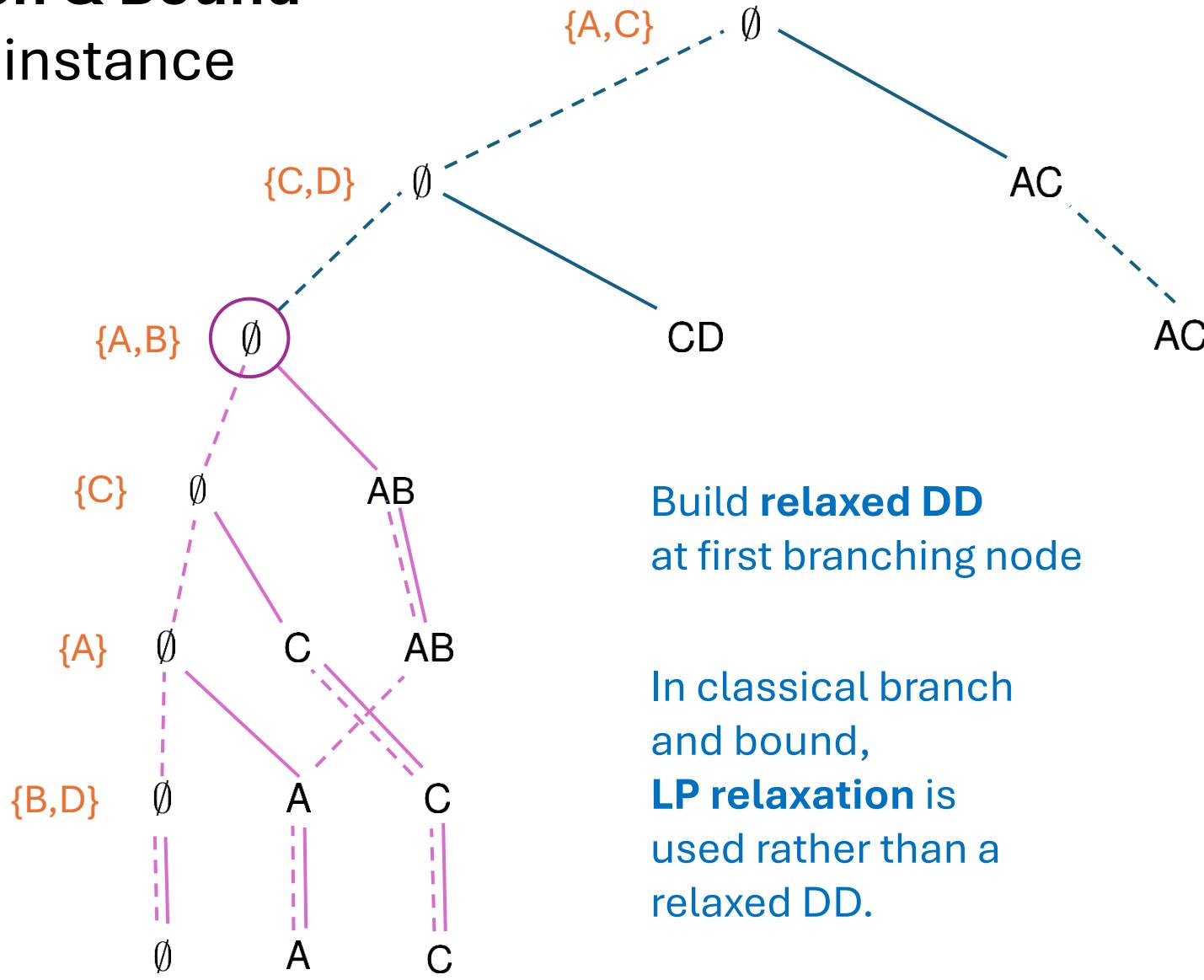
for a set packing instance

So branch on  
this layer



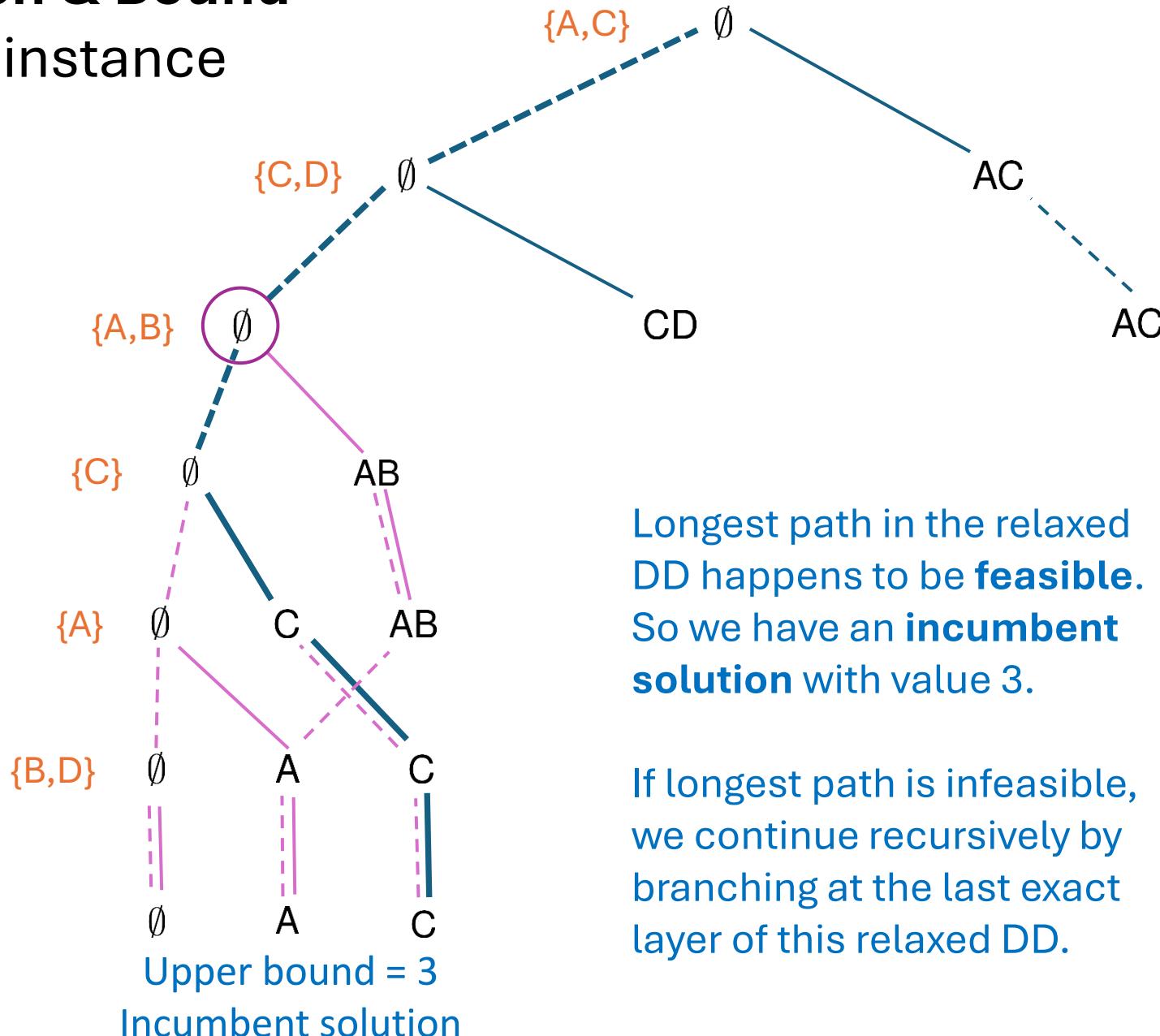
# DD-based Branch & Bound

for a set packing instance



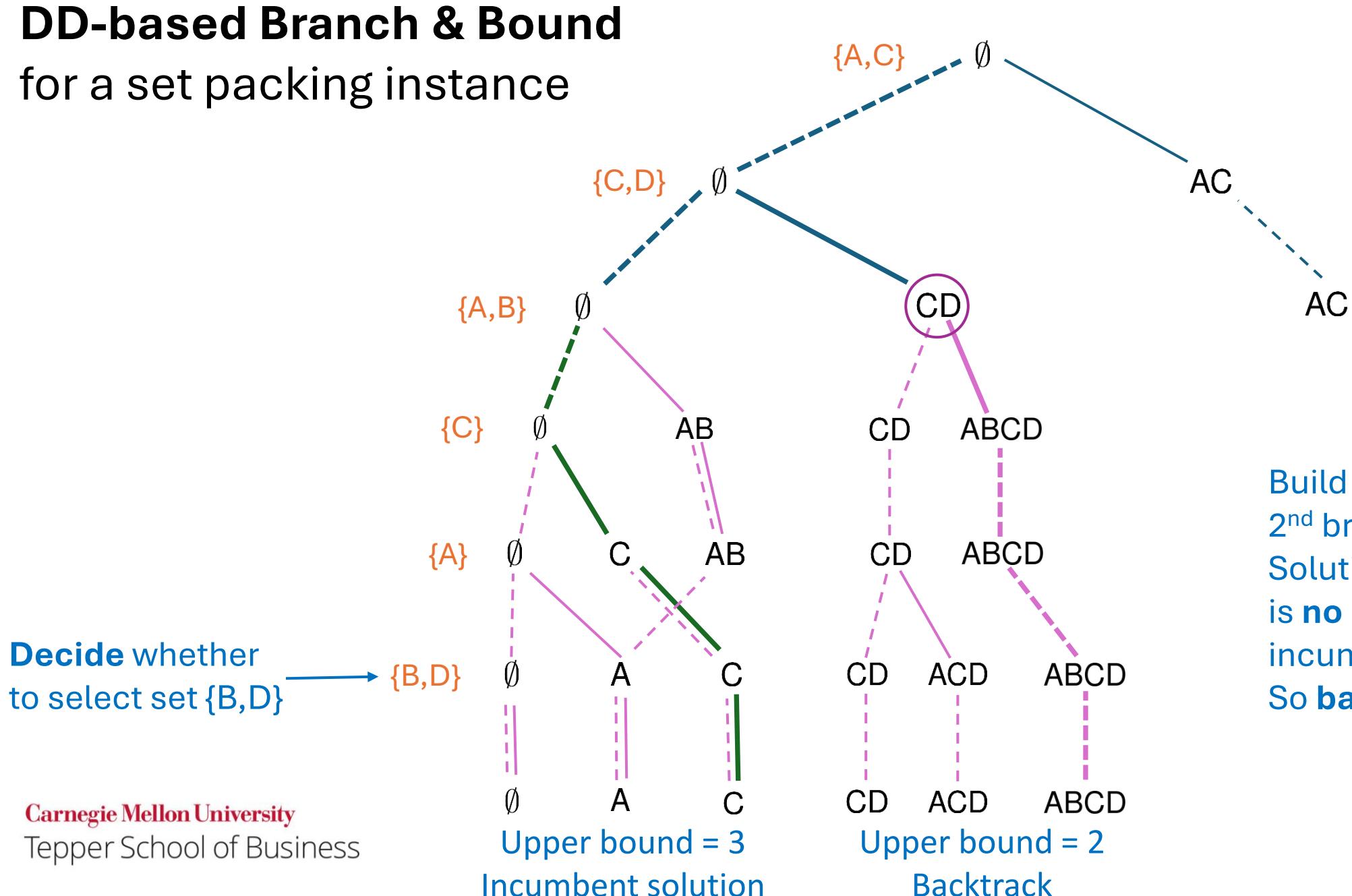
# DD-based Branch & Bound

for a set packing instance



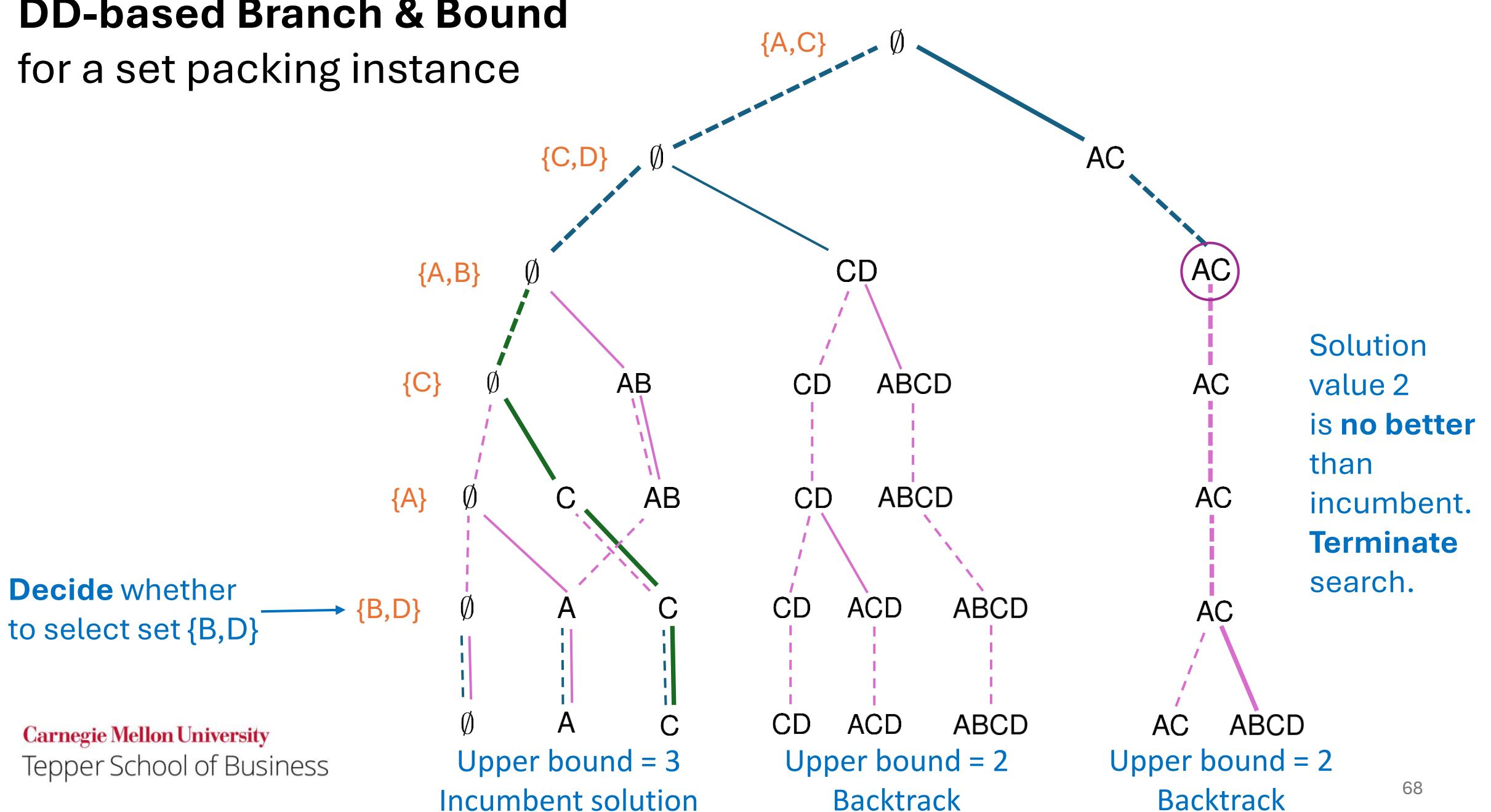
# DD-based Branch & Bound

for a set packing instance



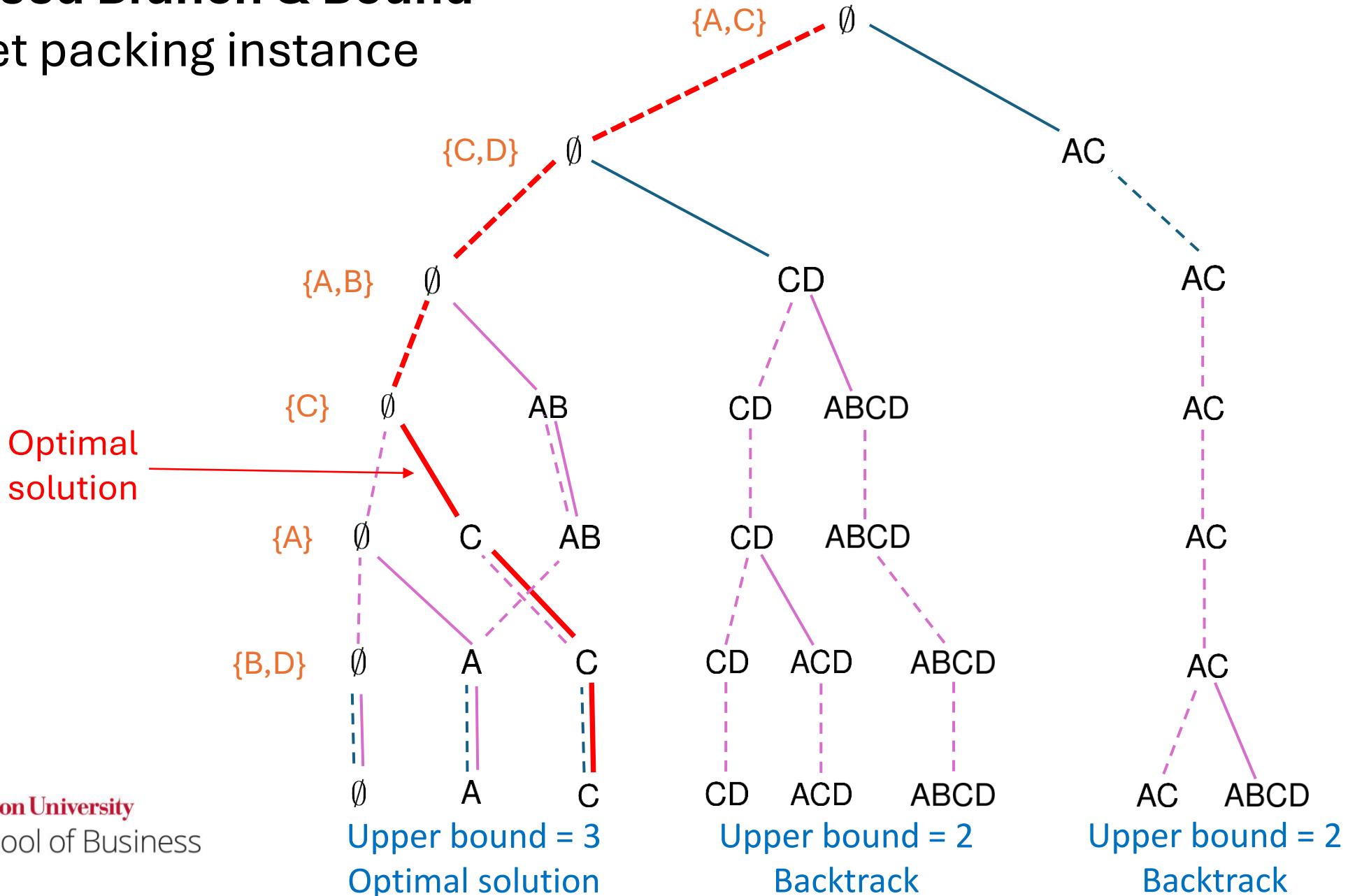
# DD-based Branch & Bound

for a set packing instance



# DD-based Branch & Bound

for a set packing instance

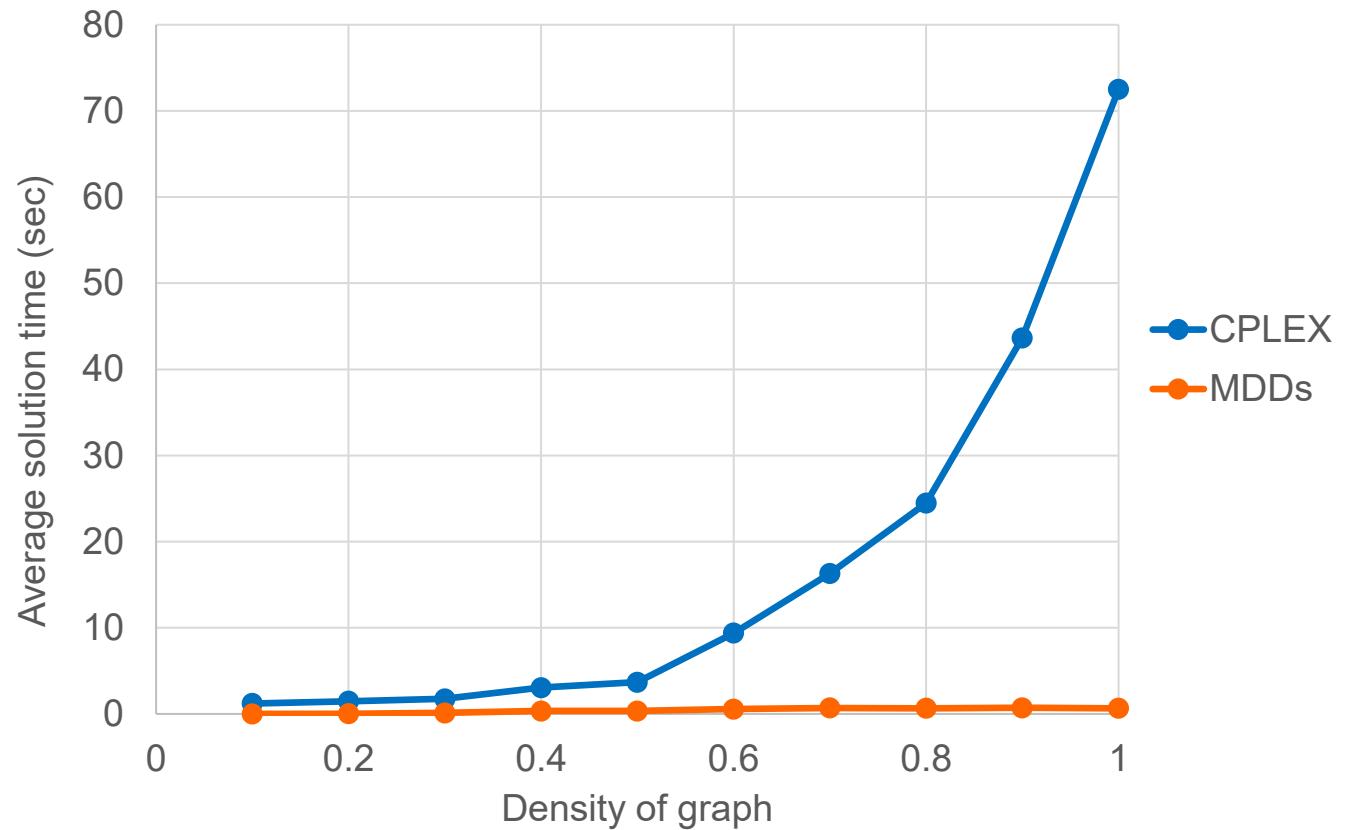


# DD-based Branch & Bound

## Experimental results

Computation time  
for **max cut problem**  
on a graph

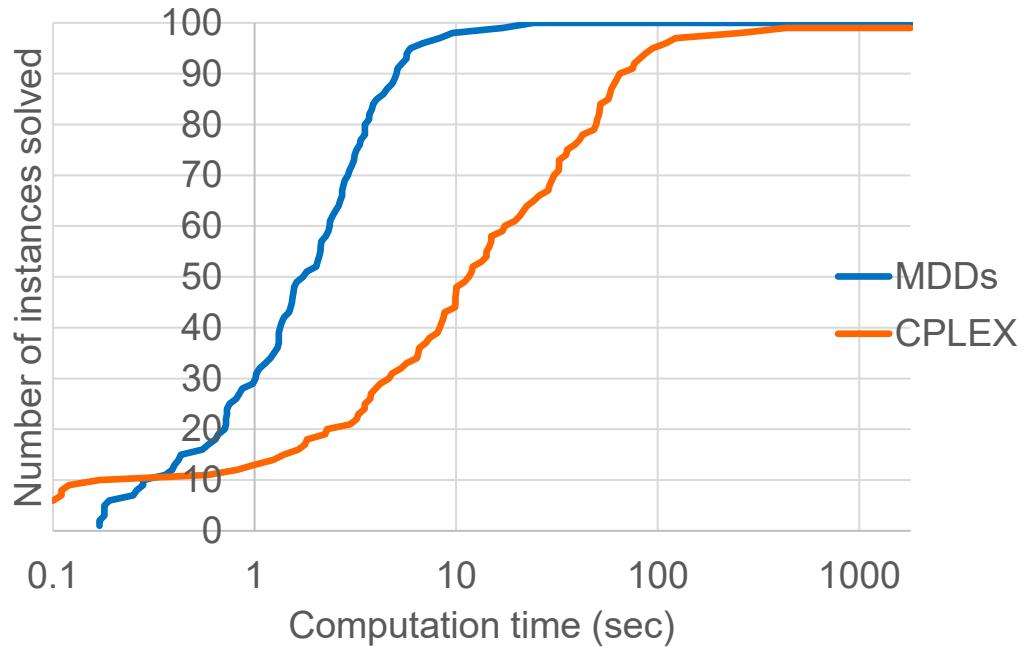
Bergman, Ciré,  
van Hoeve, JH (2016)



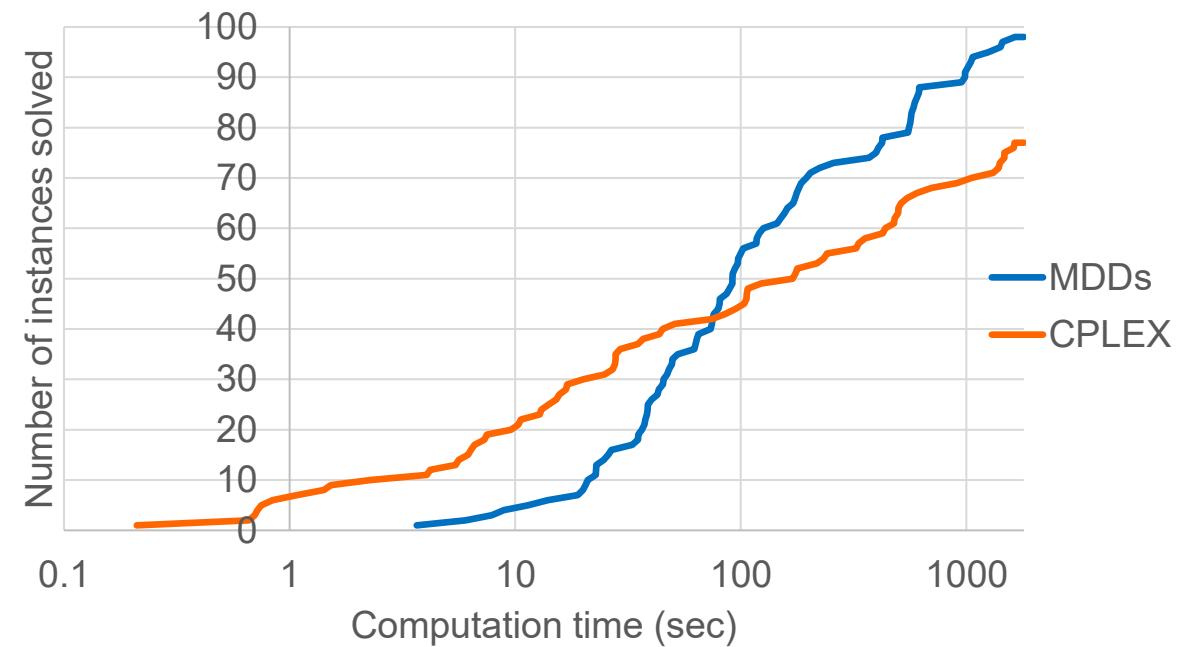
# DD-based Branch & Bound

## Experimental results

Performance profiles for **max 2SAT**



30 variables



40 variables

# DD-based constraint propagation

Domain filtering and propagation are key elements of **constraint programming**.

**Filtering** removes values from variable domains that are inconsistent with a given constraint.

The reduced domains are **propagated** to the next constraint for additional filtering.



# DD-based constraint propagation

Domain filtering and propagation are key elements of **constraint programming**.

**Filtering** removes values from variable domains that are inconsistent with a given constraint.

The reduced domains are **propagated** to the next constraint for additional filtering.

Proposal: maintain a **relaxed DD**, rather than just variable domains, for each constraint.

Andersen, Hadžić, JH,  
Tiedemann (2007)

Propagation of a relaxed DD **conveys more information** than domains.



# DD-based constraint propagation

## Example

### Standard domain propagation

$x_1 + 2x_2 + 3x_3 \leq 10$  ← filters domains to  $x_1, x_2 \in \{1, 2, 3\}$ ,  $x_3 \in \{1, 2\}$

all-different( $x_1, x_2, x_3$ ) ← no more filtering possible for **propagated** domains

$x_1, x_2, x_3 \in \{1, 2, 3\}$

# DD-based constraint propagation

## Example

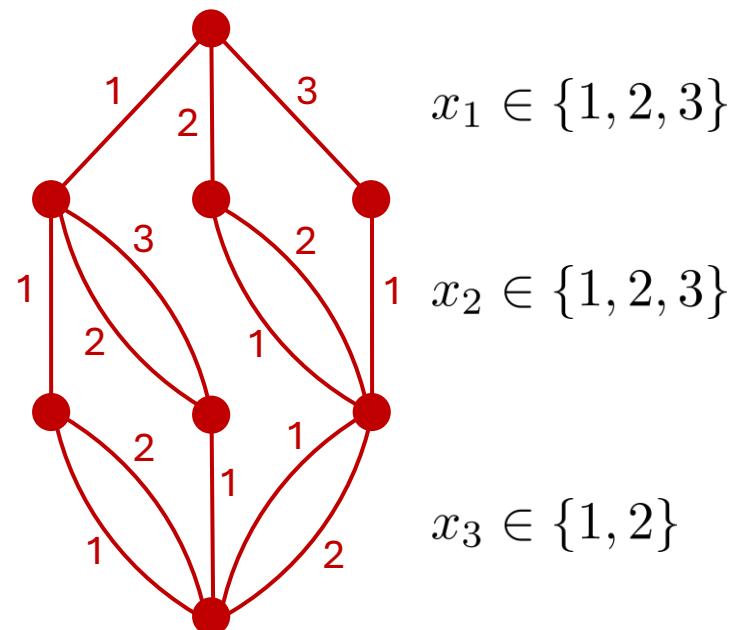
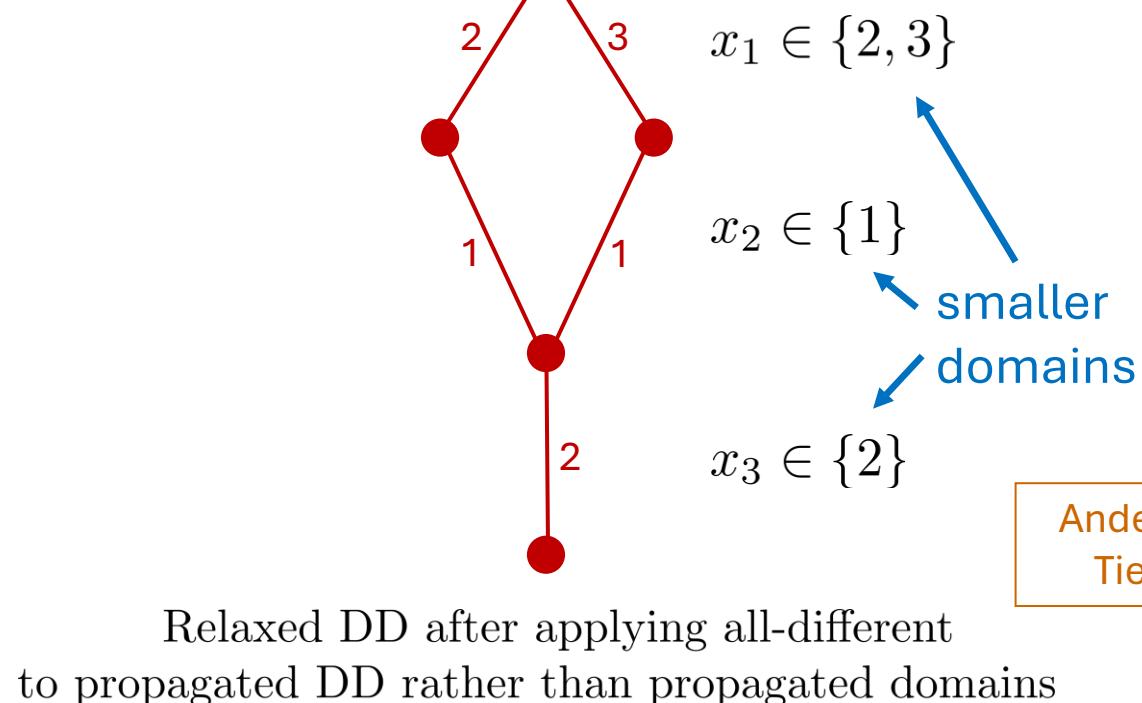
### Standard domain propagation

$x_1 + 2x_2 + 3x_3 \leq 10$  ← filters domains to  $x_1, x_2 \in \{1, 2, 3\}$ ,  $x_3 \in \{1, 2\}$

all-different( $x_1, x_2, x_3$ ) ← no more filtering possible for **propagated** domains

$x_1, x_2, x_3 \in \{1, 2, 3\}$

### Propagation through a **relaxed DD**



Andersen, Hadžić, JH, Tiedemann (2007)

# DD-based constraint propagation

## Experimental results

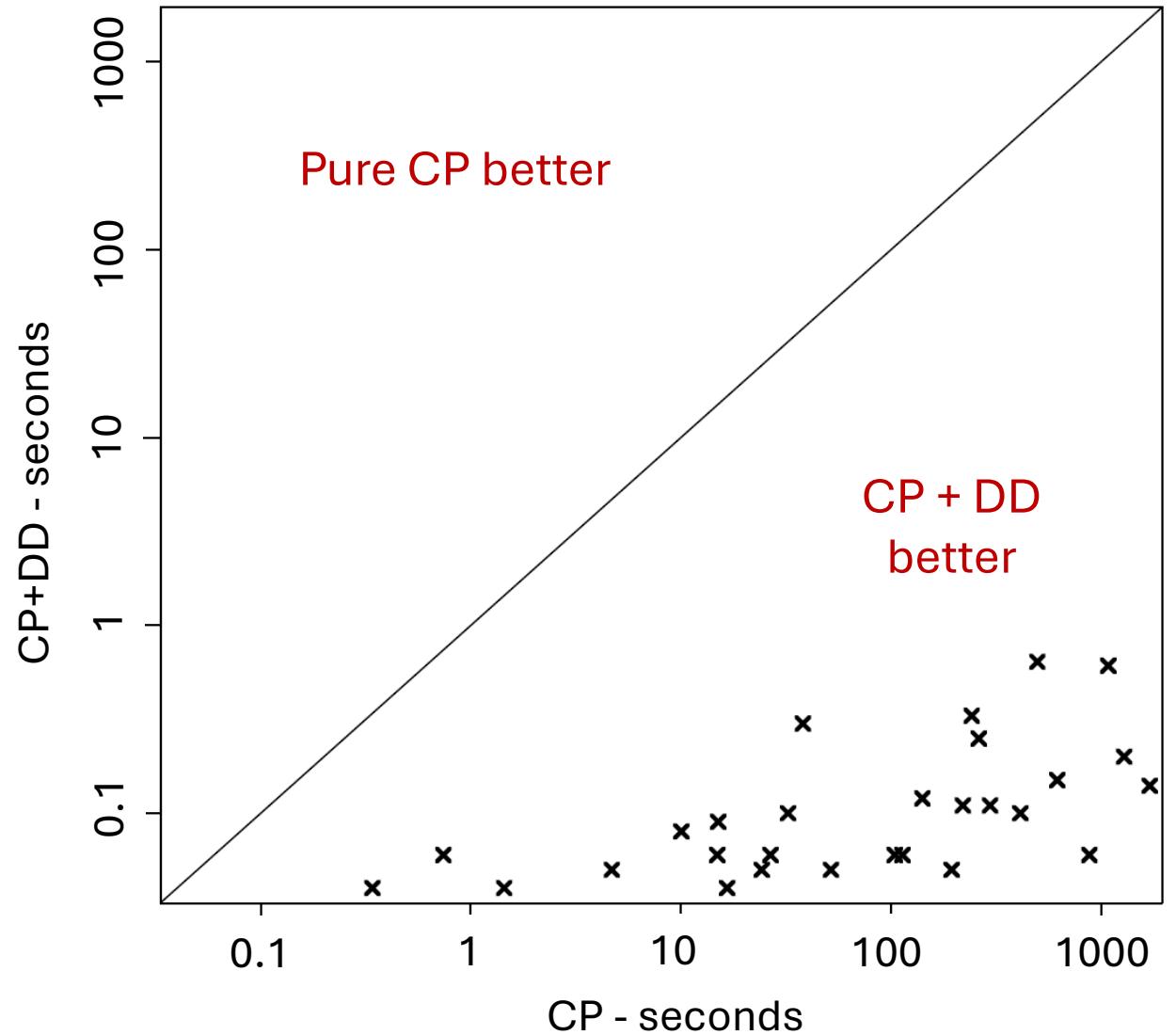
Traveling salesman problem with time windows

Intensely studied problem

Relaxed DD propagator for all-diff added to standard CP solver

Closed 3 long-standing open instances

Ciré & van Hoeve  
(2013)



# DD-based Lagrangian relaxation

Lagrange multipliers can be added to arc costs to obtain **tighter DD-based bounds** on the optimal value.

Bergman, Ciré,  
van Hoeve (2015)

Classical methods can then be used to solve the Lagrangian dual on the DD.

This takes time, but the resulting extremely tight bounds can be used to **assess the quality of heuristic solutions**.

# DD-based Lagrangian relaxation

## Example: Job sequencing

Let  $x_i$  be the  $i$ -th job in the sequence.

A **path** in the DD corresponds to an **assignment of jobs** to positions 1, ...,  $n$ .

Each job must occur **exactly once** in a feasible path.

So for each job  $j$  we must have exactly one  $x_i$  equal to  $j$

$$-1 + \sum_i [x_i = j] = 0 \quad = \begin{cases} 1 & \text{if } x_i = j \\ 0 & \text{otherwise} \end{cases}$$


# DD-based Lagrangian relaxation

## Example: Job sequencing

Let  $x_i$  be the  $i$ -th job in the sequence.

A **path** in the DD corresponds to an **assignment of jobs** to positions  $1, \dots, n$ .

Each job must occur **exactly once** in a feasible path.

So for each job  $j$  we must have exactly one  $x_i$  equal to  $j$

$$-1 + \sum_i [x_i = j] = 0 \quad = \begin{cases} 1 & \text{if } x_i = j \\ 0 & \text{otherwise} \end{cases}$$

The Lagrangian relaxation of the problem is

$$\min \sum_i [c_i x_i] + \sum_j \lambda_j \left( -1 + \sum_i [x_i = j] \right)$$

Original arc cost from layer  $i$

Lagrange multiplier

Should be zero

# DD-based Lagrangian relaxation

## Example: Job sequencing

Let  $x_i$  be the  $i$ -th job in the sequence.

A **path** in the DD corresponds to an **assignment of jobs** to positions 1, ...,  $n$ .

Each job must occur **exactly once** in a feasible path.

So for each job  $j$  we must have  
exactly one      equal to  $j$

$$-1 + \sum_i [x_i = j] = 0 \quad = \begin{cases} 1 & \text{if } x_i = j \\ 0 & \text{otherwise} \end{cases}$$

The Lagrangian relaxation of the problem is

$$\min \sum_i c_i x_i + \sum_j \lambda_j \left( -1 + \sum_i [x_i = j] \right) = \sum_i (c_i x_i + \lambda_j) - \sum_j \lambda_j$$

Rearranging

# DD-based Lagrangian relaxation

## Example: Job sequencing

Let  $x_i$  be the  $i$ -th job in the sequence.

A **path** in the DD corresponds to an **assignment of jobs** to positions 1, ...,  $n$ .

Each job must occur **exactly once** in a feasible path.

So for each job  $j$  we must have  
exactly one      equal to  $j$

$$-1 + \sum_i [x_i = j] = 0 \quad = \begin{cases} 1 & \text{if } x_i = j \\ 0 & \text{otherwise} \end{cases}$$

The Lagrangian relaxation of the problem is

$$\min \sum_i c_i x_i + \sum_j \lambda_j \left( -1 + \sum_i [x_i = j] \right) = \sum_i \left( \boxed{c_i x_i + \lambda_j} \right) - \boxed{\sum_j \lambda_j}$$

This becomes arc cost in relaxed DD

Offset penalty at top of DD

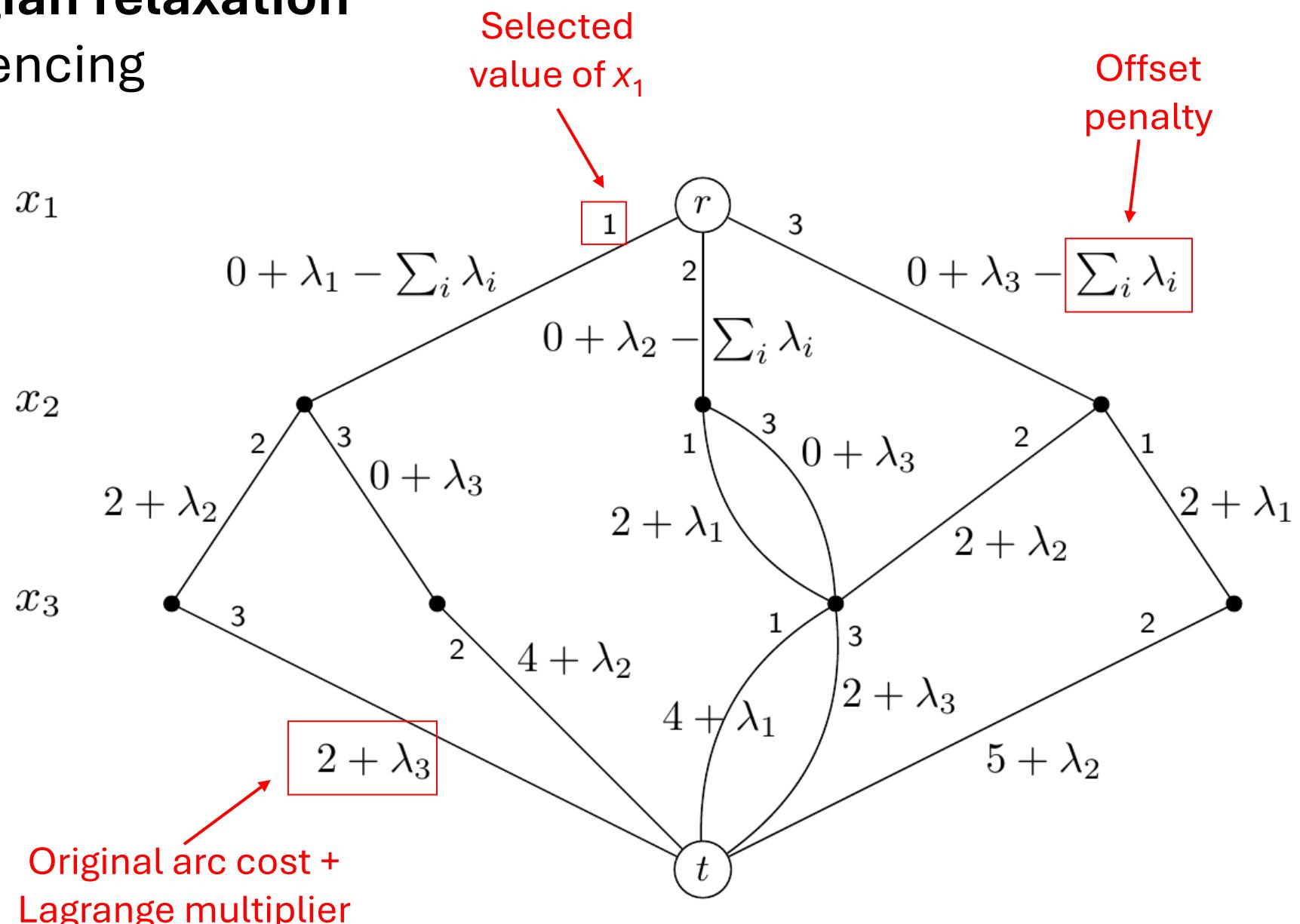
# DD-based Lagrangian relaxation

## Example: Job sequencing

# Relaxed sequencing DD with Lagrange multipliers (3 jobs)

This is a  
**multivalued DD**

Shortest path is  
solution of  
Lagrangian  
relaxation for a  
given set of  $\lambda$ s.



# DD-based Lagrangian relaxation

## Computational experiments

A set of 60 **hard job sequencing instances** have been studied for 25 years.

Biskup & Feldman  
(2001)

As of 2019, **none** had been solved to proven optimality, although heuristic algorithms had been proposed.

DDs + Lagrangian relaxation obtain **extremely tight bounds**, showing that the heuristic solutions are **very close to optimal**.

**6 solutions are proved optimal.**

JH (2019)

# DD-based Lagrangian relaxation

## Computational experiments

### Sampling of results, Biskup-Feldman instances

| Instance       | Target | Bound | Gap | Percent gap |
|----------------|--------|-------|-----|-------------|
| <b>50 jobs</b> |        |       |     |             |
| 1              | 39250  | 39250 | 0   | 0%          |
| 2              | 29043  | 29043 | 0   | 0%          |
| 3              | 33180  | 33180 | 0   | 0%          |
| 4              | 25856  | 25847 | 9   | 0.03%       |
| 5              | 31456  | 31439 | 17  | 0.05%       |
| 6              | 33452  | 33444 | 8   | 0.02%       |
| 7              | 42234  | 42228 | 6   | 0.01%       |
| 8              | 42218  | 42203 | 15  | 0.04%       |
| 9              | 33222  | 33218 | 4   | 0.01%       |
| 10             | 31492  | 31481 | 11  | 0.03%       |

Time: ~8 min  
per instance

| Instance        | Target | Bound  | Gap | Percent gap |
|-----------------|--------|--------|-----|-------------|
| <b>100 jobs</b> |        |        |     |             |
| 1               | 139573 | 139556 | 17  | 0.01%       |
| 2               | 120484 | 120465 | 19  | 0.02%       |
| 3               | 124325 | 124289 | 36  | 0.03%       |
| 4               | 122901 | 122876 | 25  | 0.02%       |
| 5               | 119115 | 119101 | 14  | 0.01%       |
| 6               | 133545 | 133536 | 9   | 0.007%      |
| 7               | 129849 | 129830 | 19  | 0.01%       |
| 8               | 153965 | 153958 | 7   | 0.005%      |
| 9               | 111474 | 111466 | 8   | 0.007%      |
| 10              | 112799 | 112792 | 7   | 0.006%      |

Time: ~65 min  
per instance

# Other developments

- **Network flow model of DD**
  - Allows DD to be integrated into linear or integer programming model.
- **Cutting planes** from DD network flow models
  - Focus on separation algorithms
- **Multiple network flow DDs with linked variables**
  - LP/MILP model provides linking constraints.
- **Flow-based DDs for nonlinear problems**

Becker et al. (2005)  
Behle (2007)  
Bergman & Lozano (2021)

Becker et al. (2005)  
Behle (2007)  
Tjandraatmadja & van Hoeve (2019)  
Davarnia & van Hoeve (2021)

Bergman & Ciré (2016)  
Bergman, Cardonha, Mehrani (2019)  
Lozano, Bergman, Smith (2020)  
Nadaraja & Ciré (2020)  
Castro, Cire, Beck (2022)

Bergman & Ciré (2018)  
Lozano, Bergman, Smith (2020)  
Bergman & Lozano (2021)

# Other developments

- DDs for **probabilistic constraints**
  - Uses sentential DDs, maps problem into MILP.
- Solving **2-stage stochastic** programs with DDs
  - Also maps to MILP.
- **Stochastic** exact and relaxed DDs
  - Can solve stochastic DP problems by branch and bound.
- DD for **continuous** variables

Latour et al. (2017)

Latour, Babaki, Nijssen (2019)

Haus, Michini, Laumanns (2017)

Guo, Bodur, Alema, Urbach (2021)

Lozano & Smith (2022)

JH (2022)

Davarnia (2021)

Salemi & Davarnia (2021)

# Other developments

- **DDs in Benders decomposition**
  - DD can represent either master problem or subproblem.
- **Feasibility checking** in constraint programming.
  - Nogood generation.
- **Parallel computation** with DD-based branch and bound.
  - Much more effective than parallelization of IP solvers.
- **Postoptimality analysis** for IP
  - Much more comprehensive than traditional methods.

Bergman & Lozano (2021)  
Lozano & Smith (2019)  
Salemi & Davarnia (2021)

Subbarayan (2008)  
Gange, Stuckey, Szymanek (2013)  
Jung and Régin (2021)

Bergman et al. (2014)

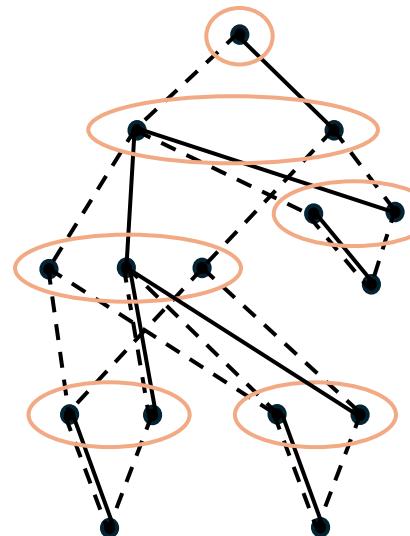
Hadžić & JH (2006)  
Serra & JH (2020)

# Other developments

- **General DD-based solver** for combinatorial optimization
  - **CODD**, based on DD compilation software **Ddo** and **HADDOCK**
  - Uses dynamic programming problem formulations

Gillard, Schaus, Coppé (2020)  
Gentzel, Michel, van Hoeve (2020)  
**Michel & van Hoeve (2024)**

## Part II. Nonserial Decision Diagrams



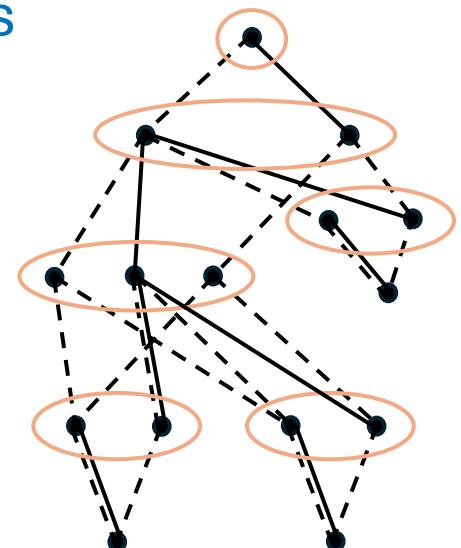
## Nonserial DDs

They exploit structure of problem instances with **small treewidth**.

**Treewidth** (with respect to an ordering) = **max in-degree** of nodes in the **induced** dependency graph.

**Complexity** of a problem **instance** is at worst exponential in its minimum **treewidth** over all orderings.

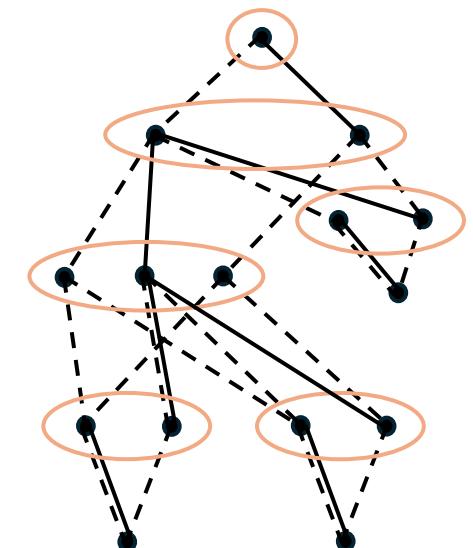
Instances with **small treewidth** generate **much smaller nonserial DDs** and are **much easier to solve**.



# Nonserial DDs

## Why nonserial DDs?

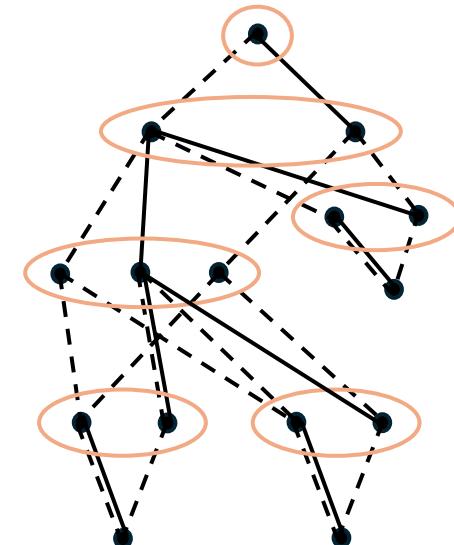
- They exploit structure of problem instances whose variables **partially decouple**.
- They combine **nonserial dynamic programming** ideas with **DD solution technology** – reduction, relaxation, restriction, flow models, etc.
- They can be **dramatically smaller** than serial DDs.
- Reduction in **compilation time** is **even greater**.



# Nonserial DDs

When exact DDs are **smaller**....

- **Relaxed DDs** of a given size provide **tighter bounds**.
- **Restricted DDs** of a given size are more likely to yield **feasible solutions**.
- **Flow models** are more likely to be **tractable**.

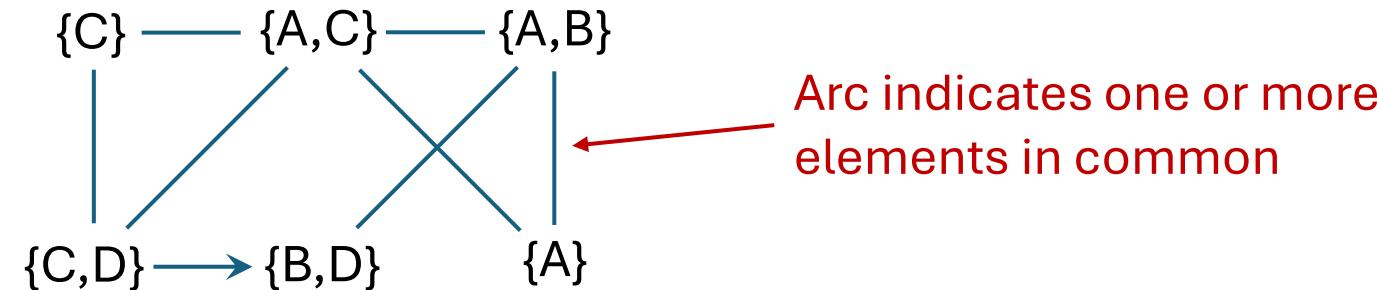


# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

First, build **dependency graph** that shows variable coupling.  
Here, 0-1 variables indicate whether each set is included in packing.

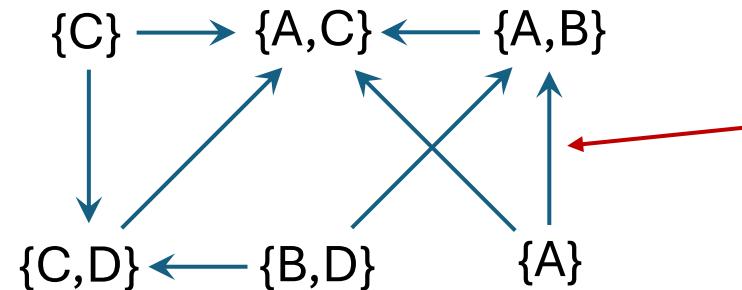


# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

First, build **dependency graph** that shows variable coupling.  
Here, 0-1 variables indicate whether each set is included in packing.



Arc indicates one or more elements in common

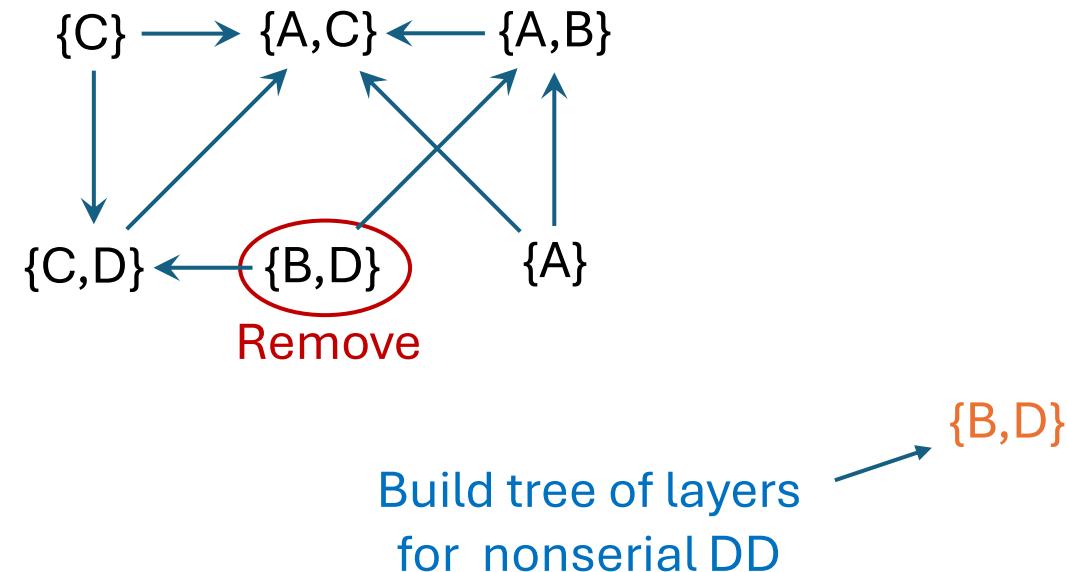
We generally don't know the min-treewidth ordering.  
As a heuristic, we use a **min-degree ordering**.

# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.

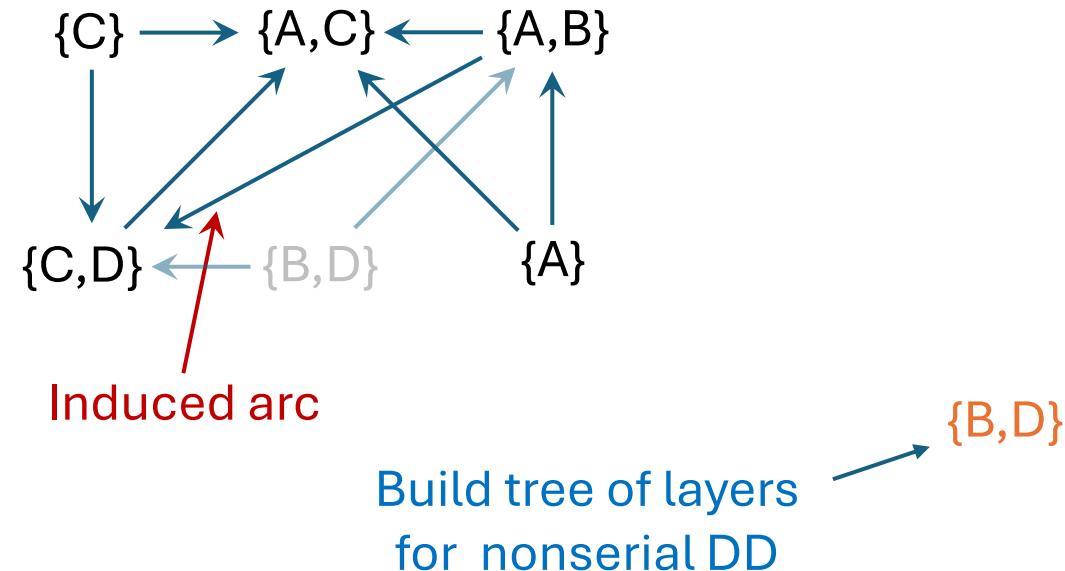


# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.

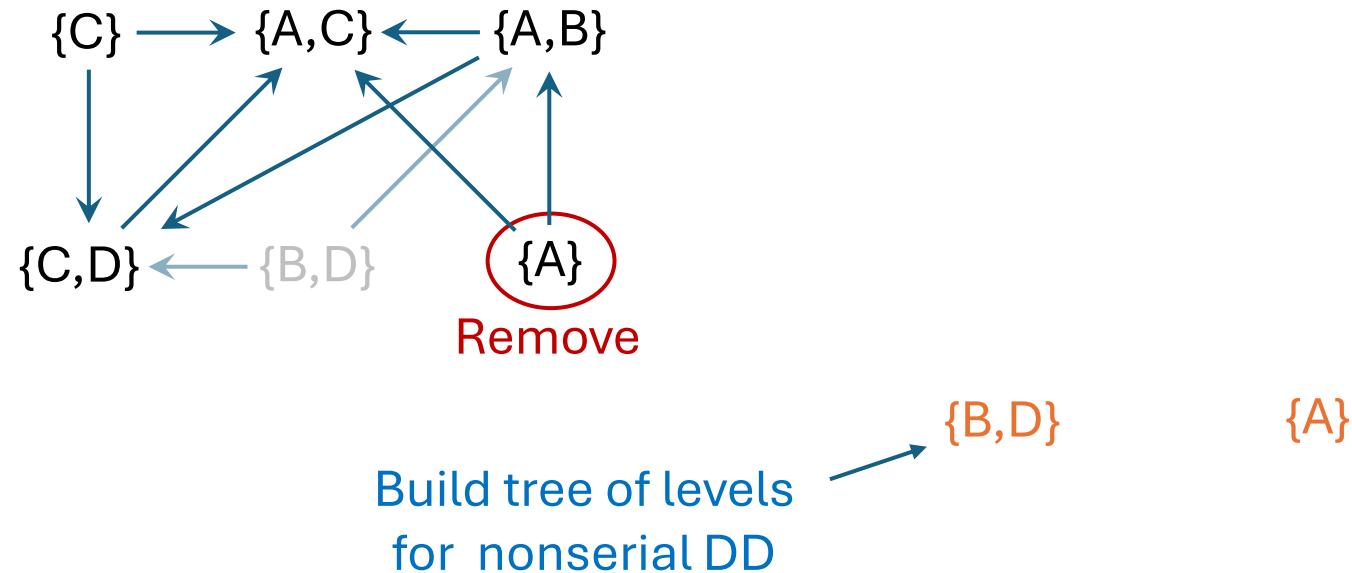


# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.

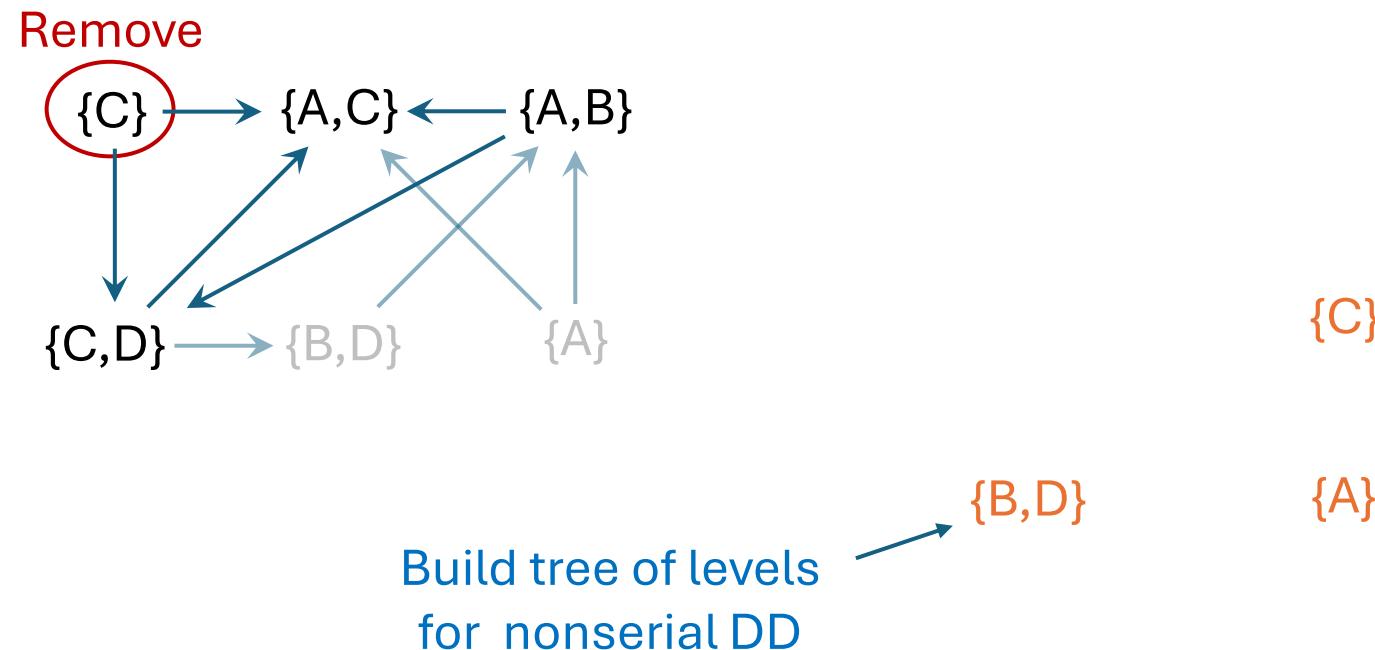


# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.

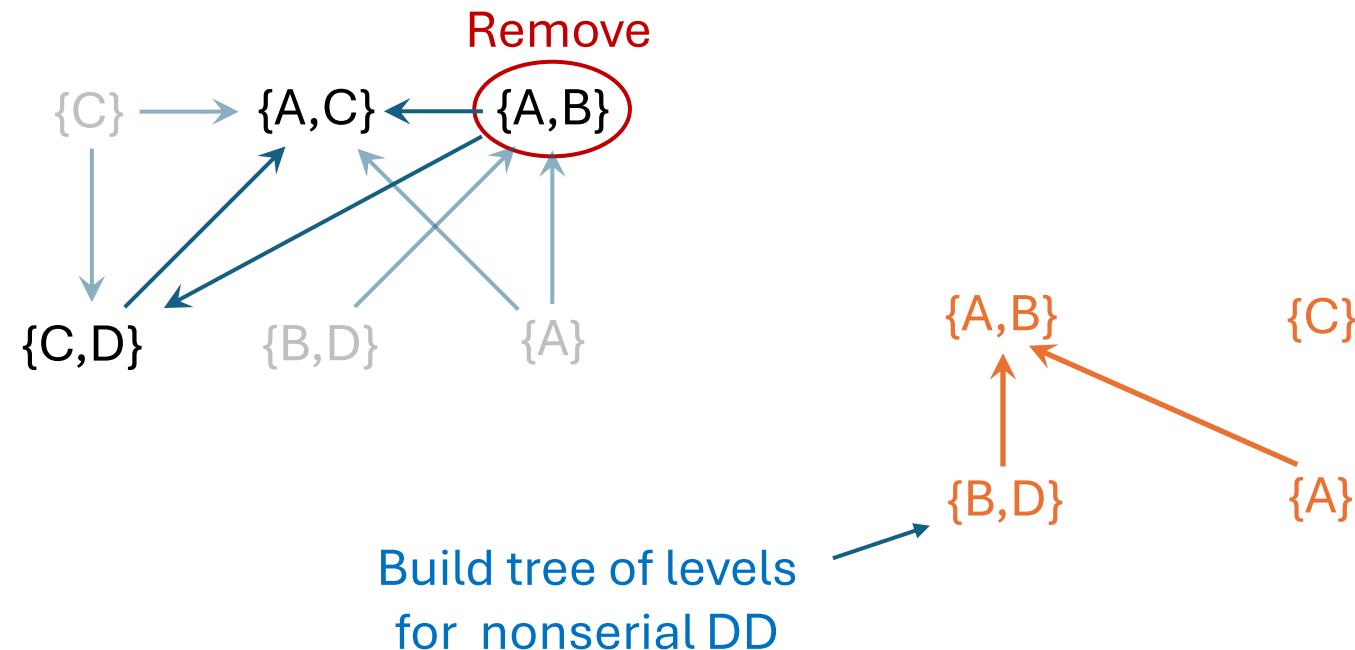


# Dependency graph

## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.

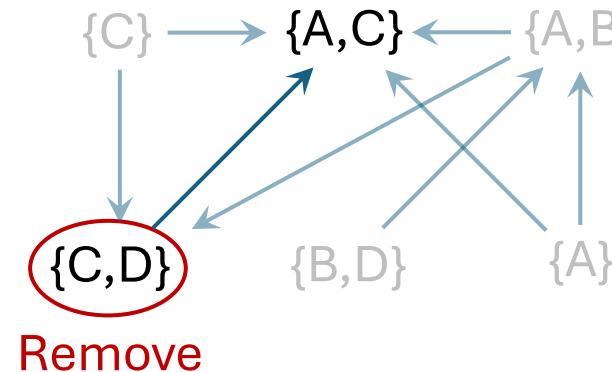


# Dependency graph

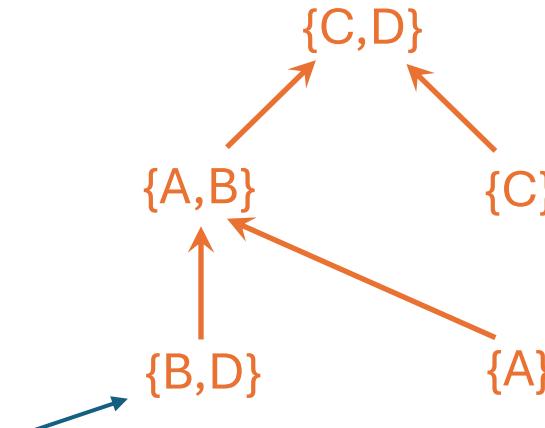
## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.



Build tree of levels  
for nonserial DD

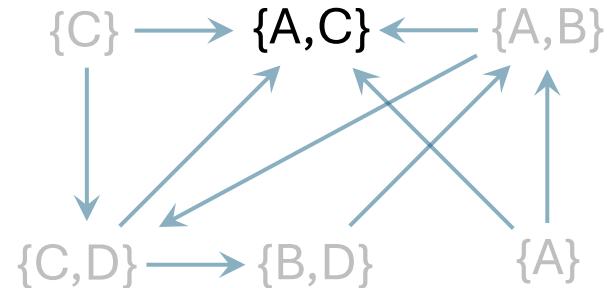


# Dependency graph

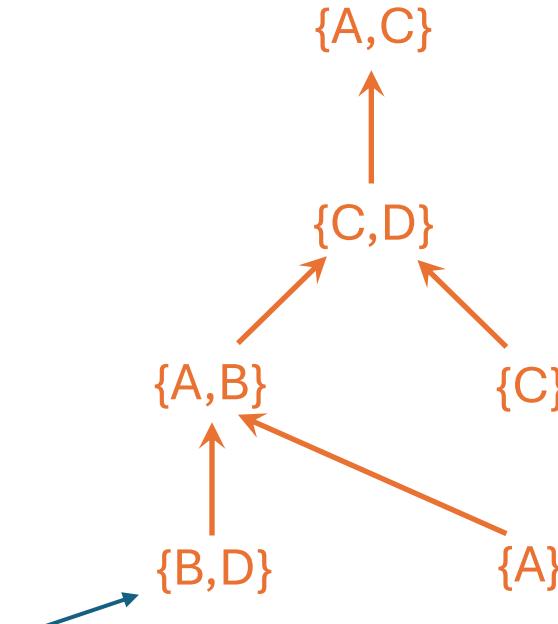
## For set packing example

$\{A, C\}$   
 $\{C, D\}$   
 $\{A, B\}$   
 $\{C\}$   
 $\{A\}$   
 $\{B, D\}$

Now, build **induced** dependency graph by removing nodes in min degree order, adding arcs to connect all neighbors.



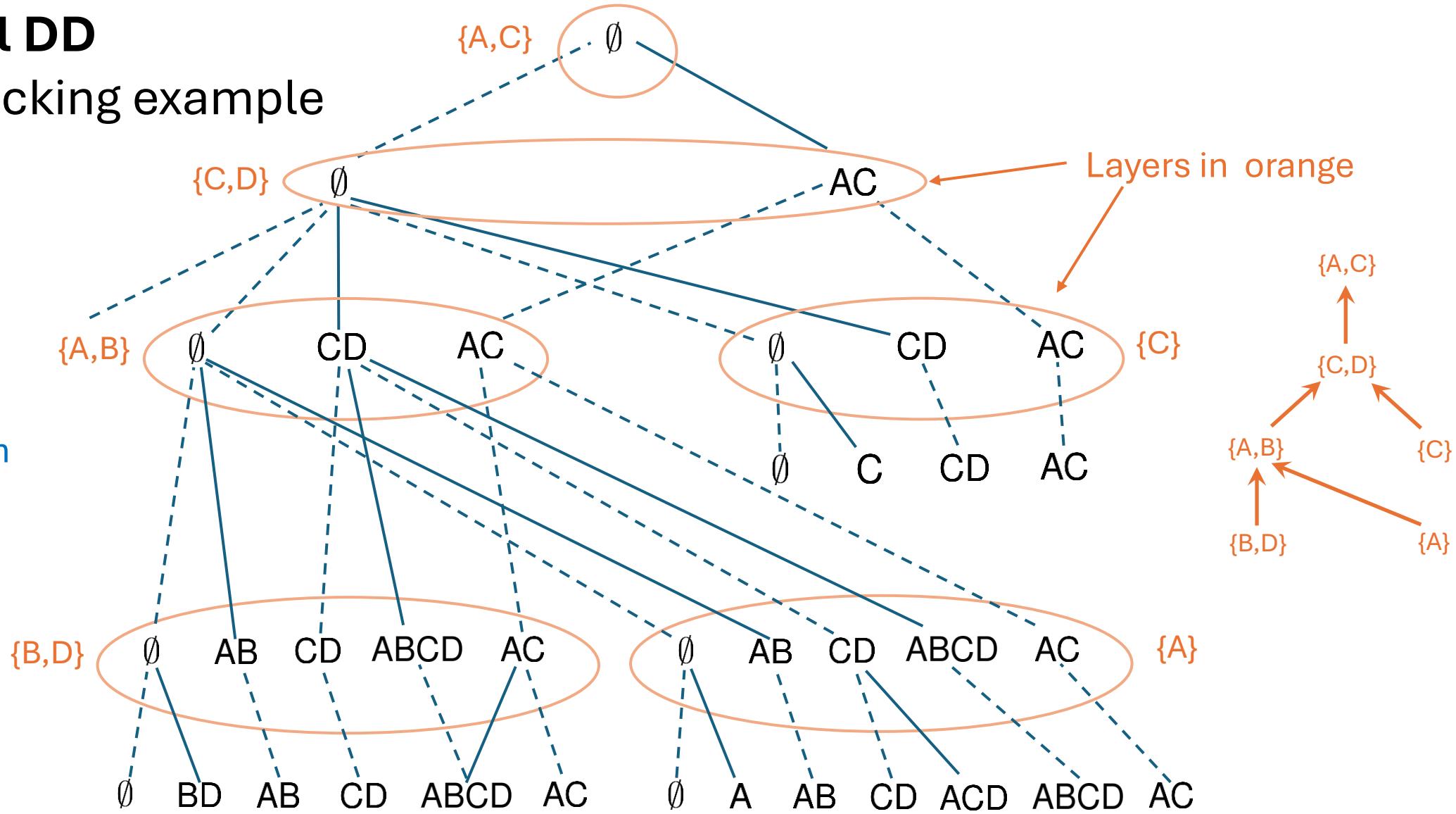
**Treewidth =**  
max in-degree = 2



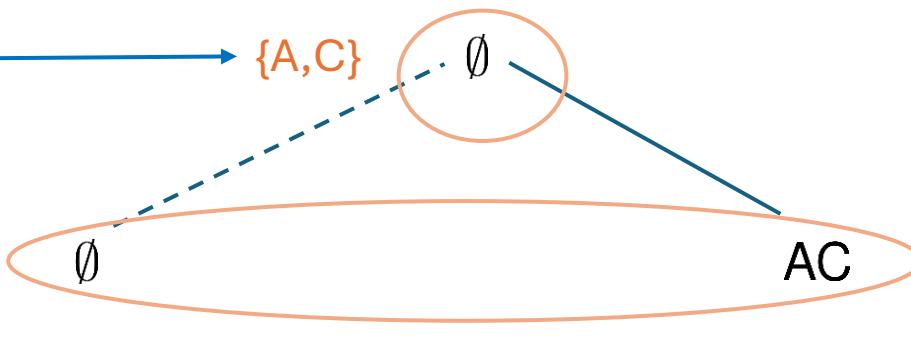
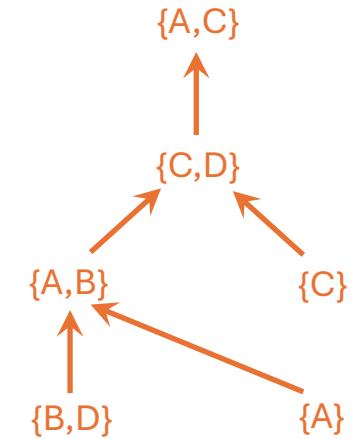
# Nonserial DD

For set packing example

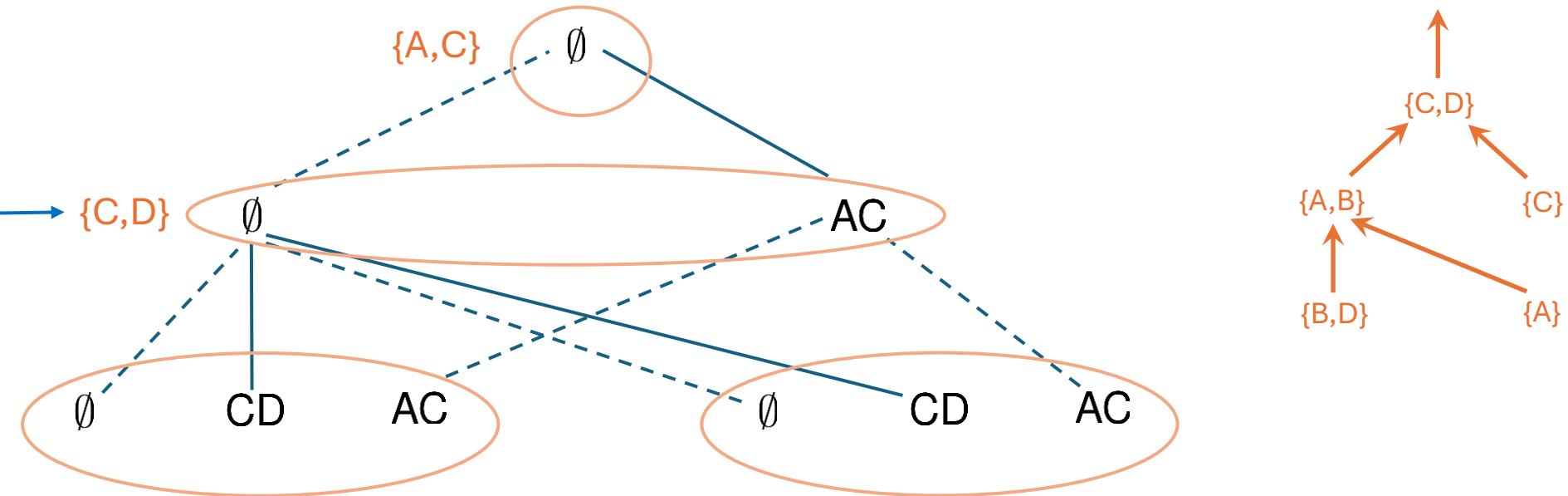
Layers form a **tree** rather than an ordered sequence



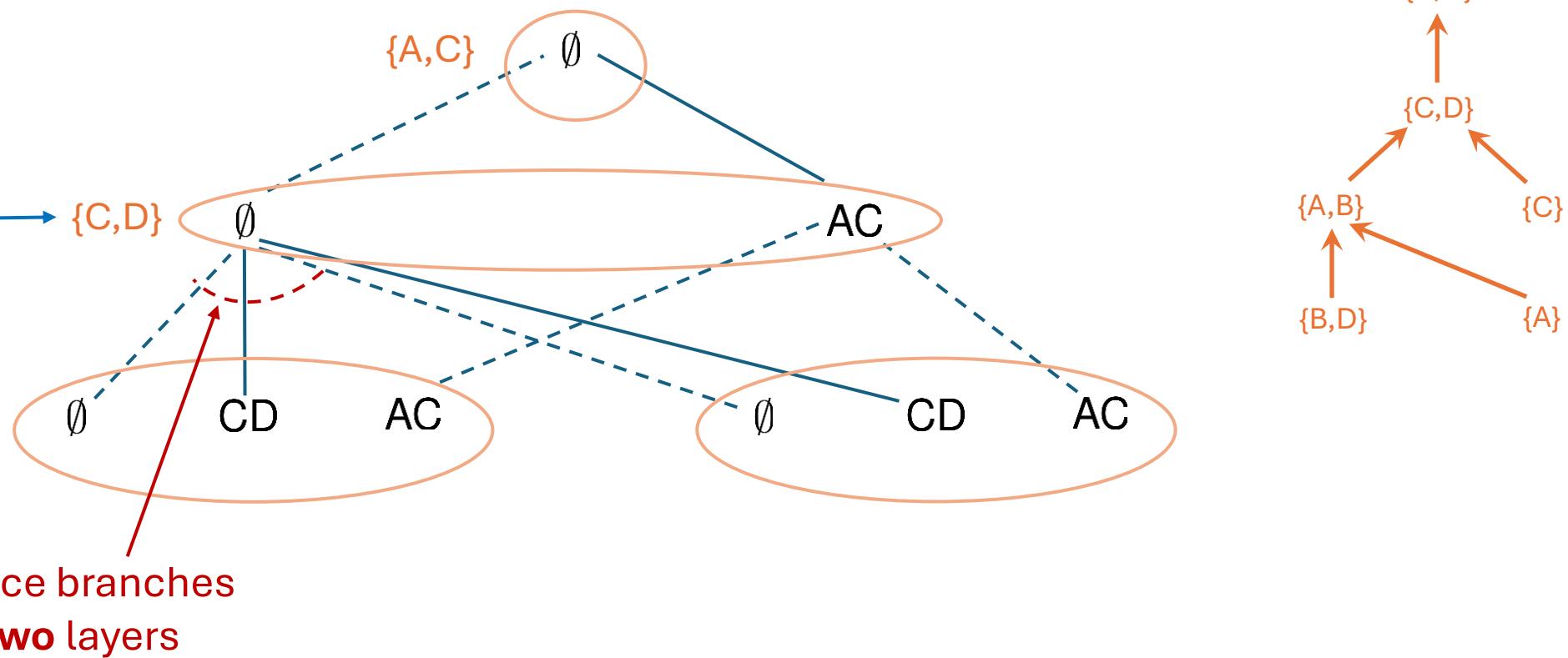
**Decide** whether  
to select set  $\{A, C\}$

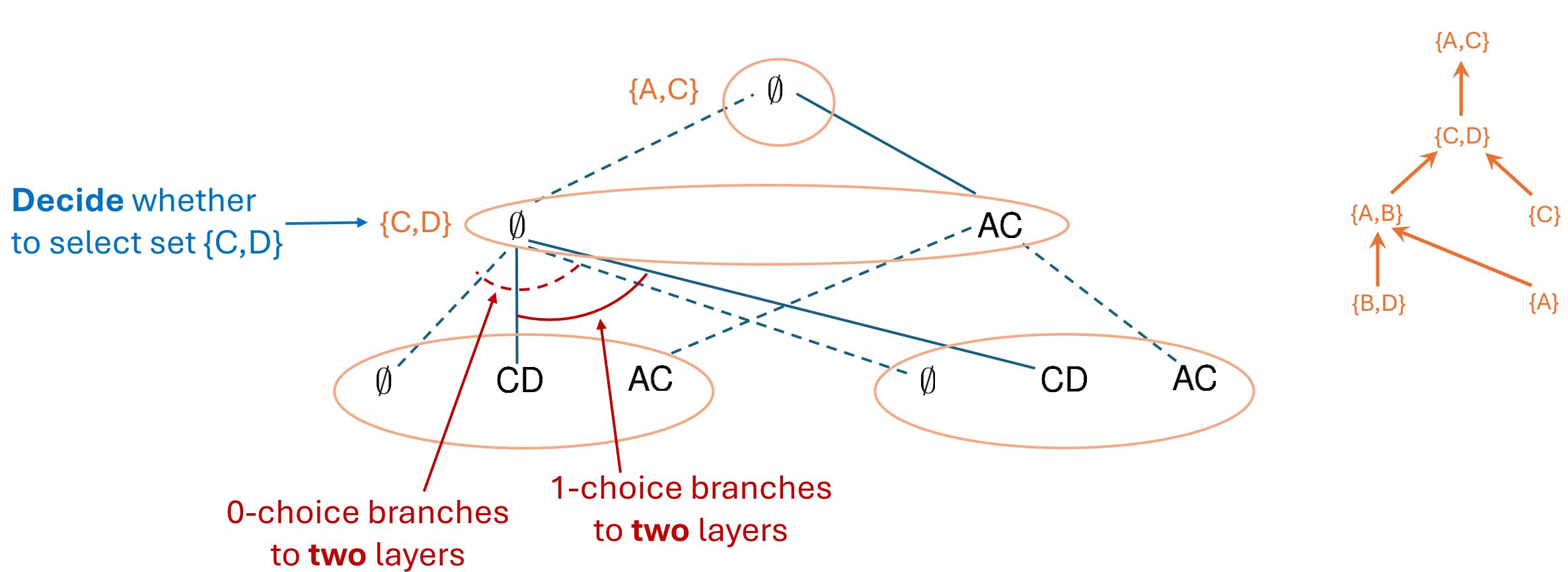


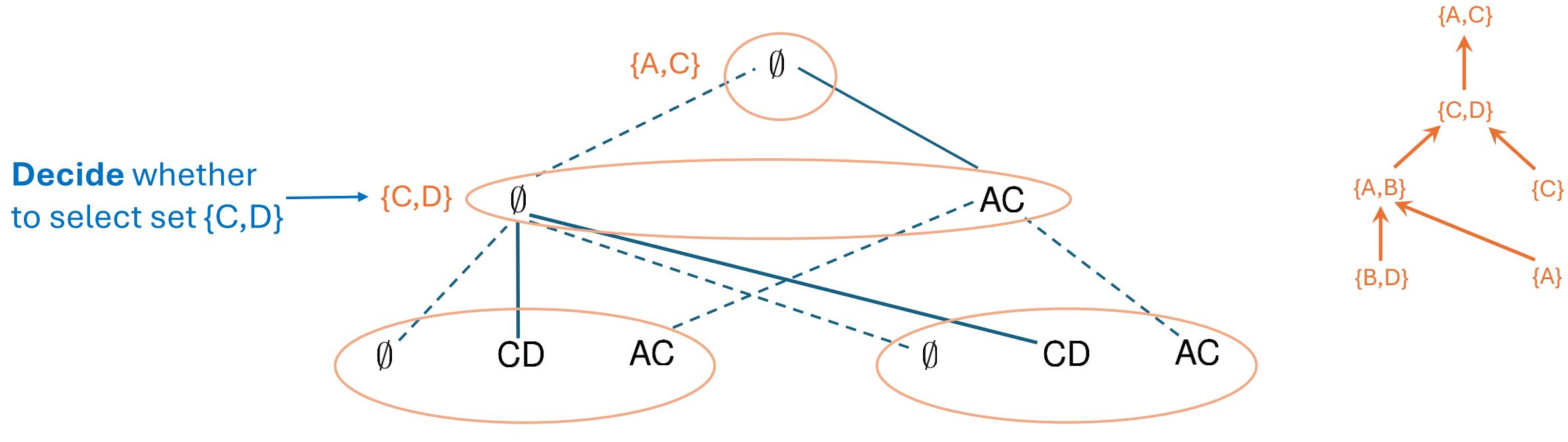
Decide whether  
to select set  $\{C, D\}$



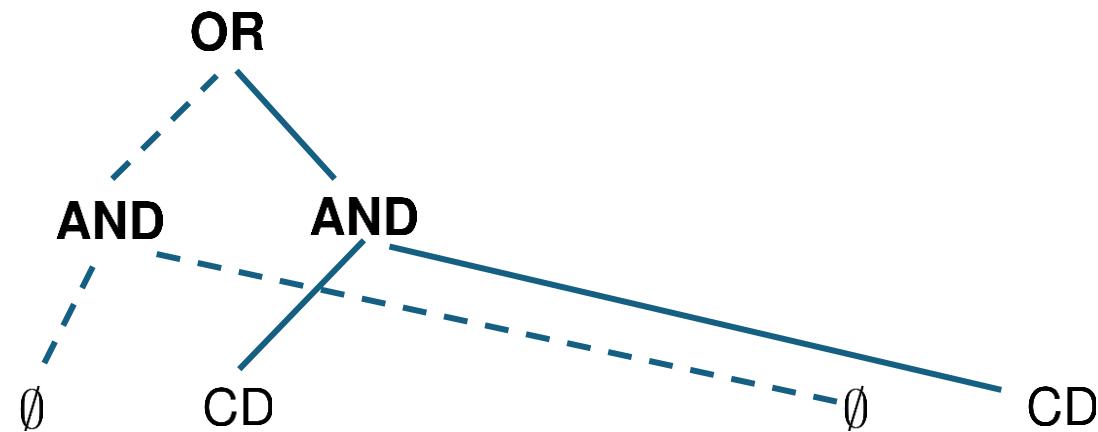
**Decide** whether  
to select set  $\{C, D\}$



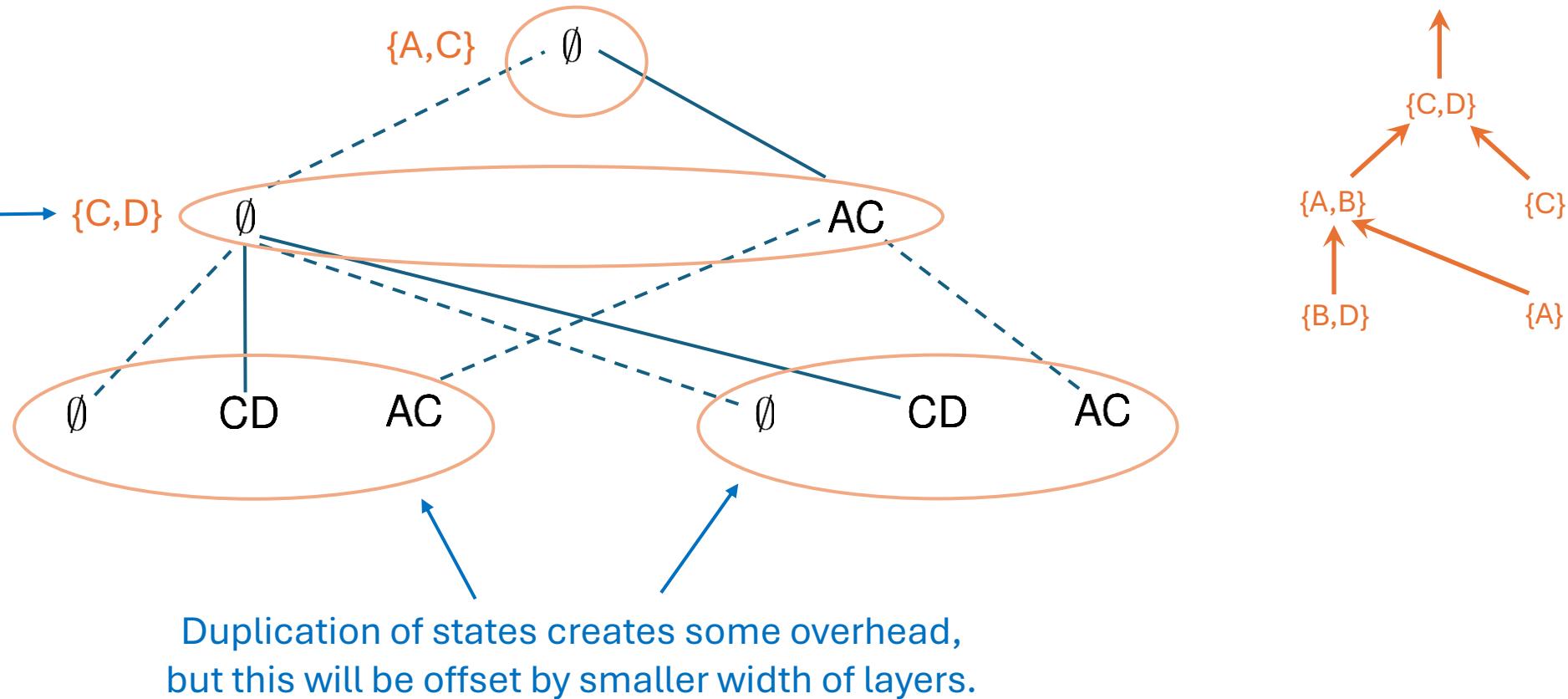




Can be viewed as **and-or** DD



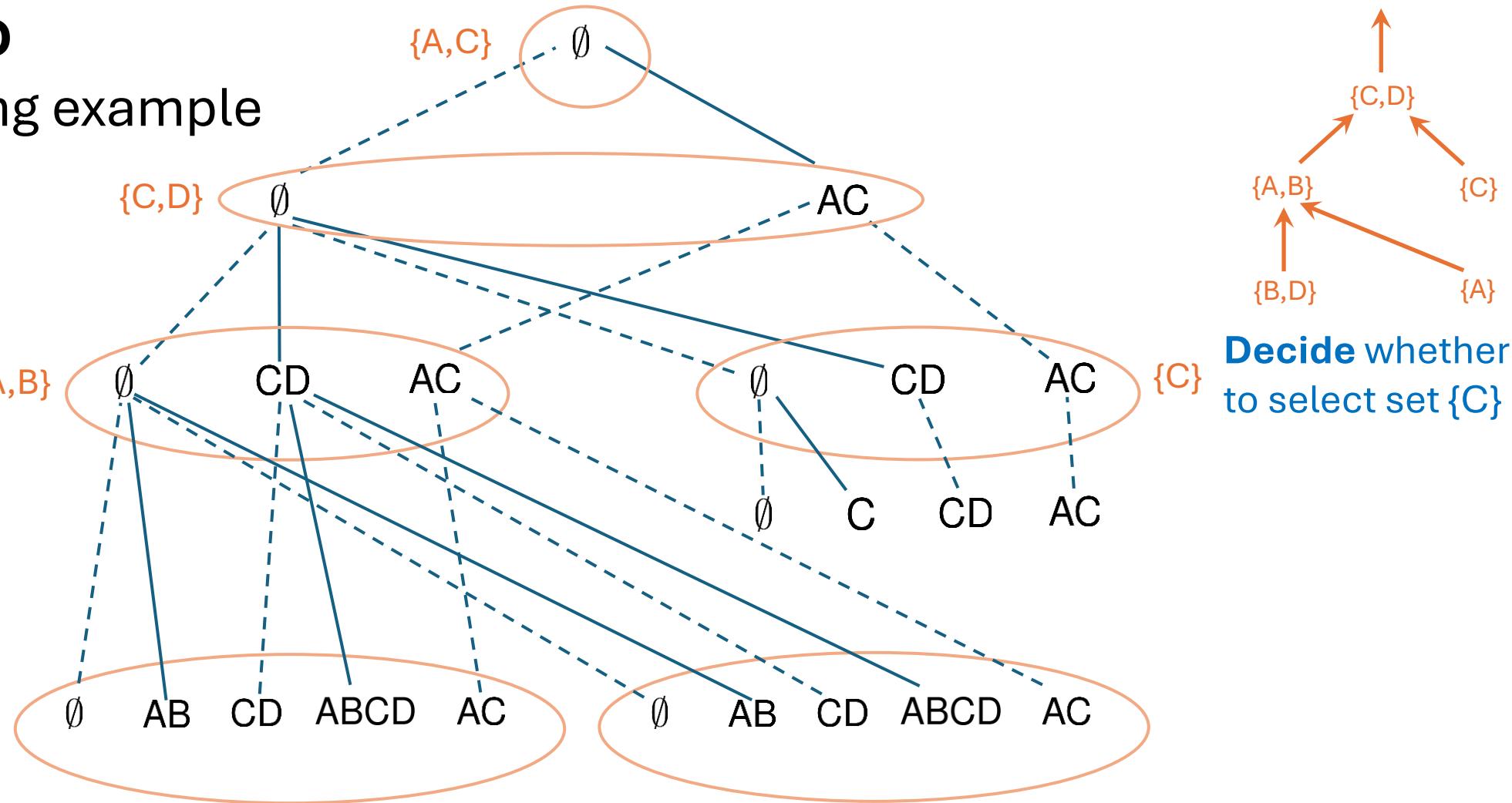
Decide whether to select set  $\{C, D\}$



## Nonserial DD

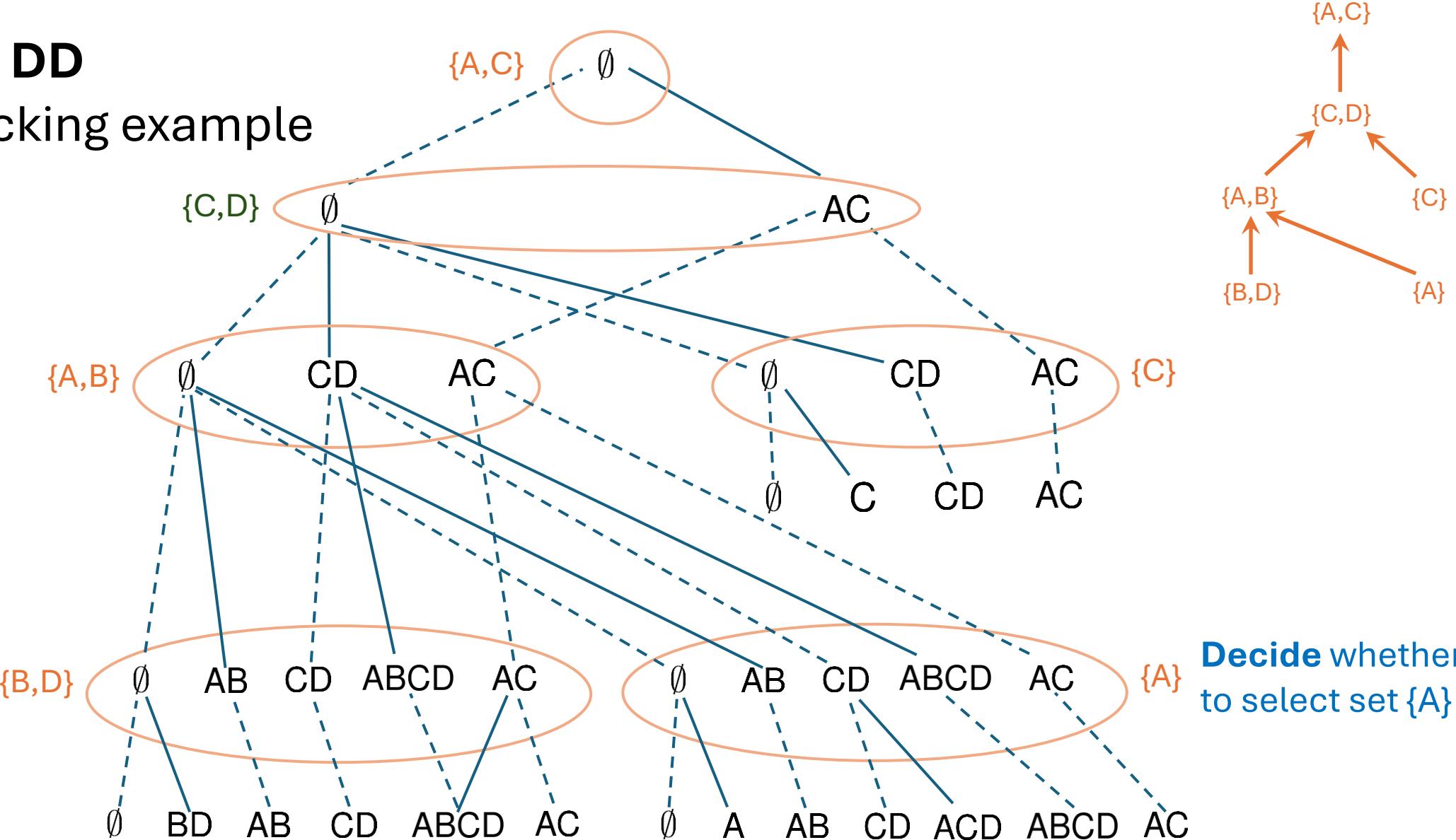
For set packing example

Decide whether  
to select set  $\{A, B\}$



## Nonserial DD

## For set packing example



Carnegie Mellon University

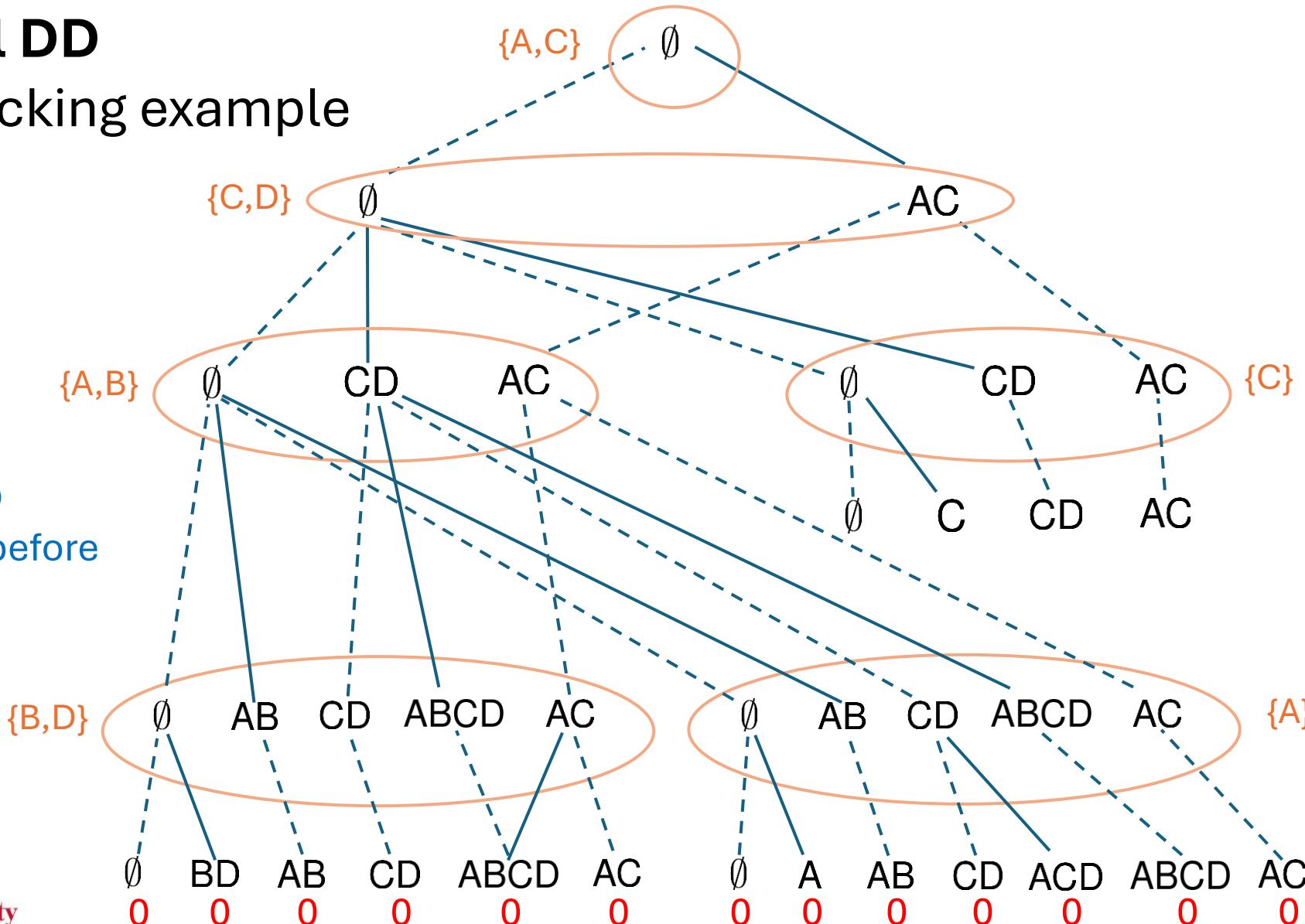
Tepper School of Business

DD has 36 nodes

## Nonserial DD

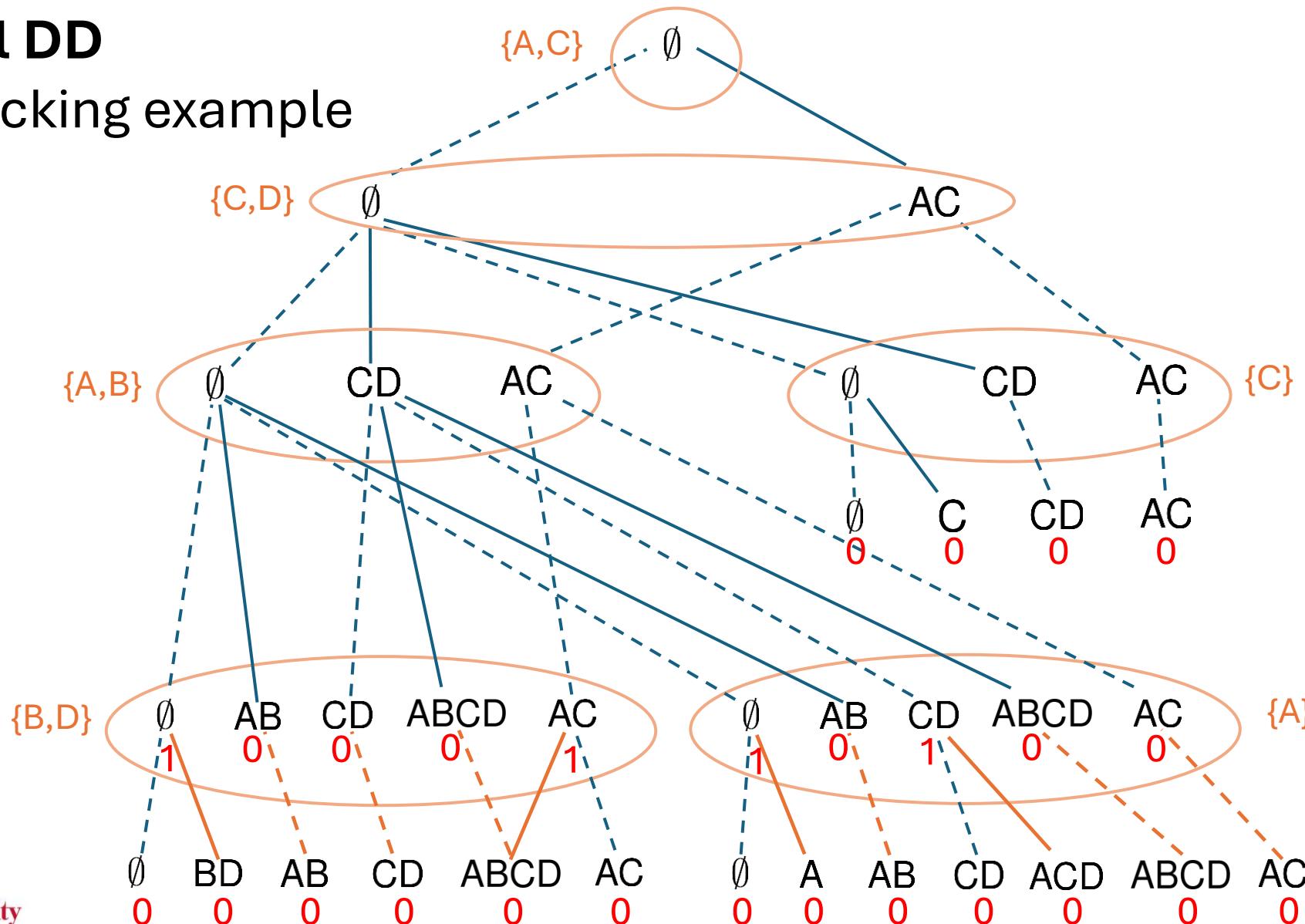
For set packing example

Evaluate the DD  
bottom-up as before



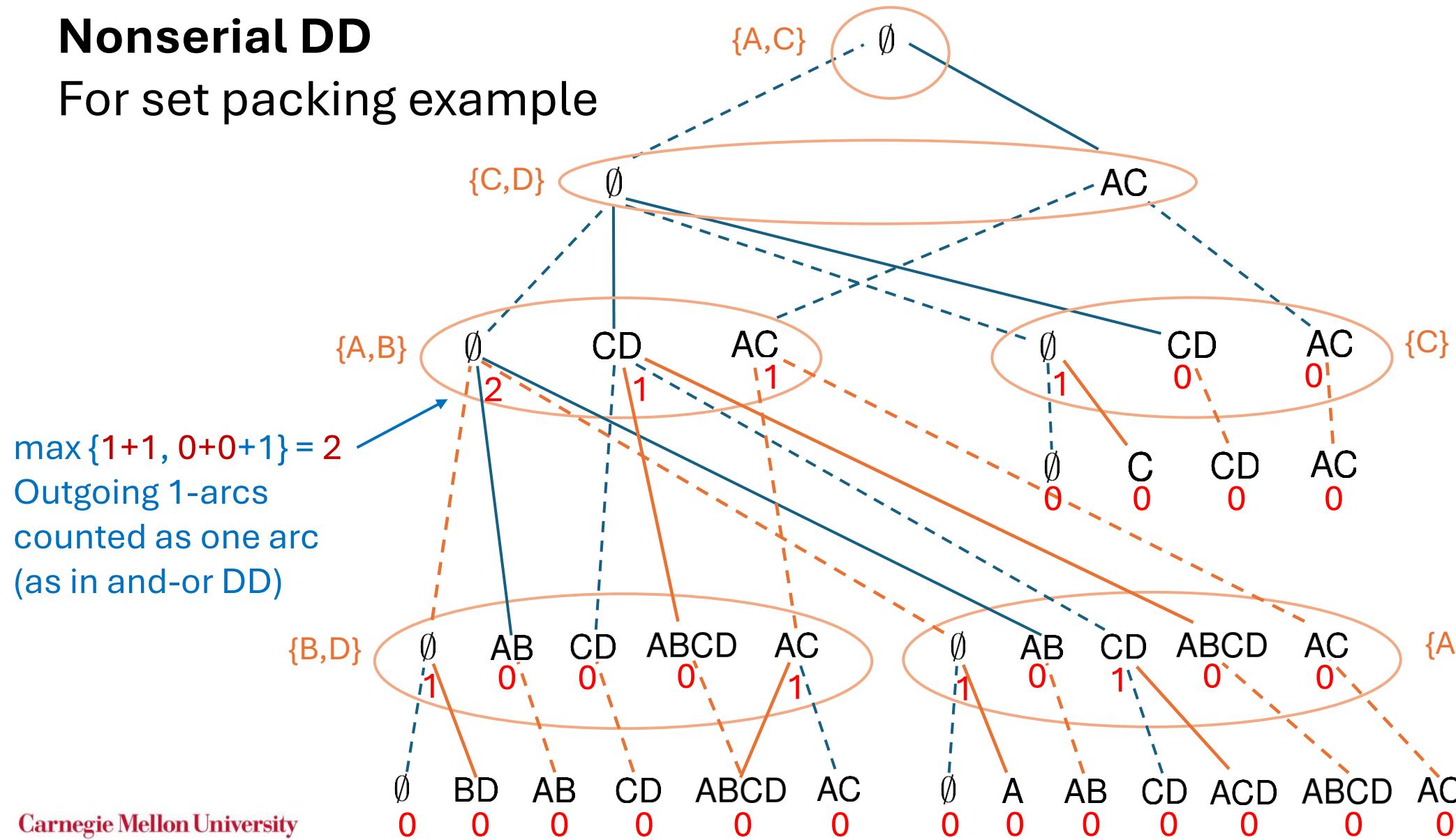
# Nonserial DD

## For set packing example



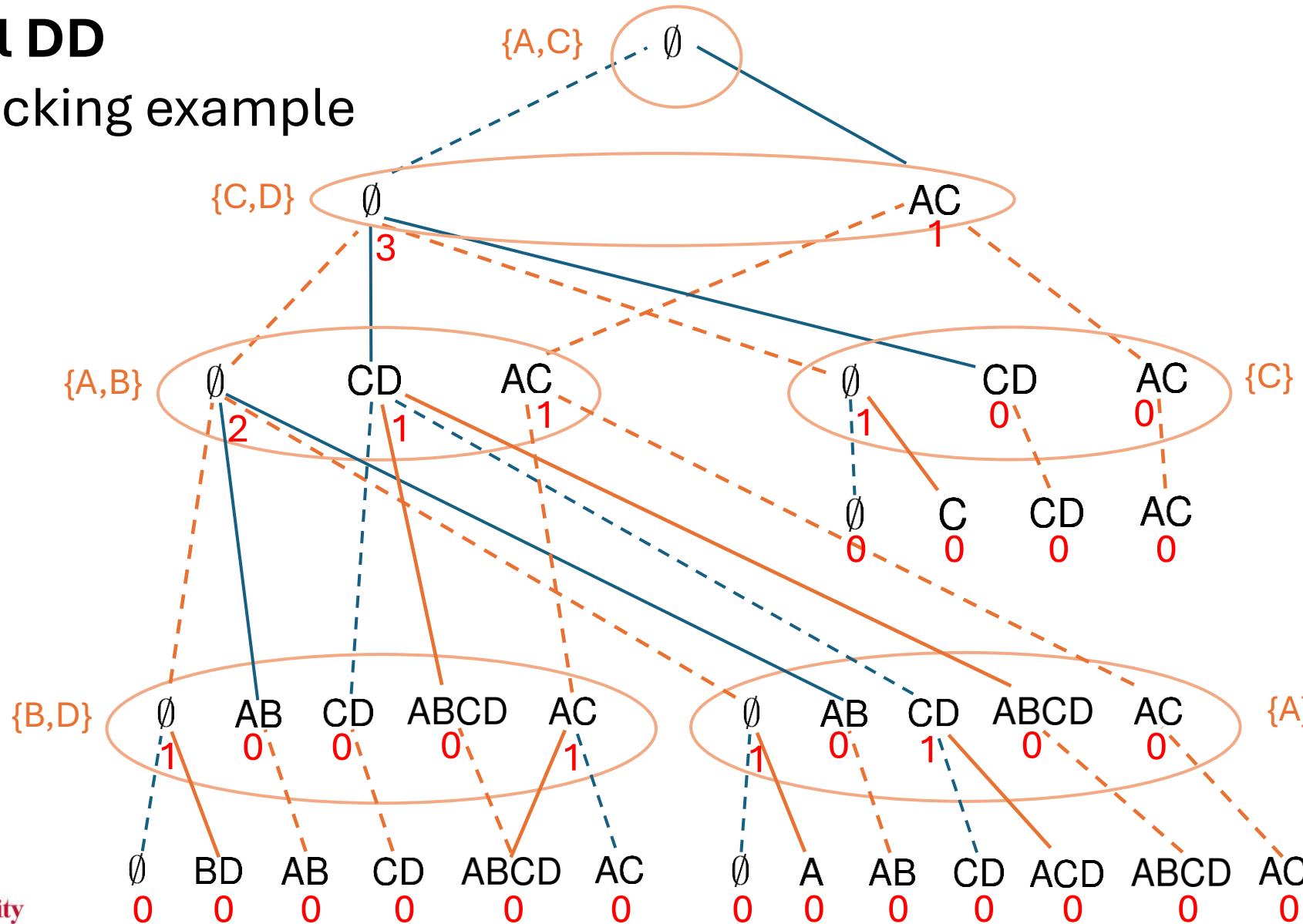
# Nonserial DD

## For set packing example



# Nonserial DD

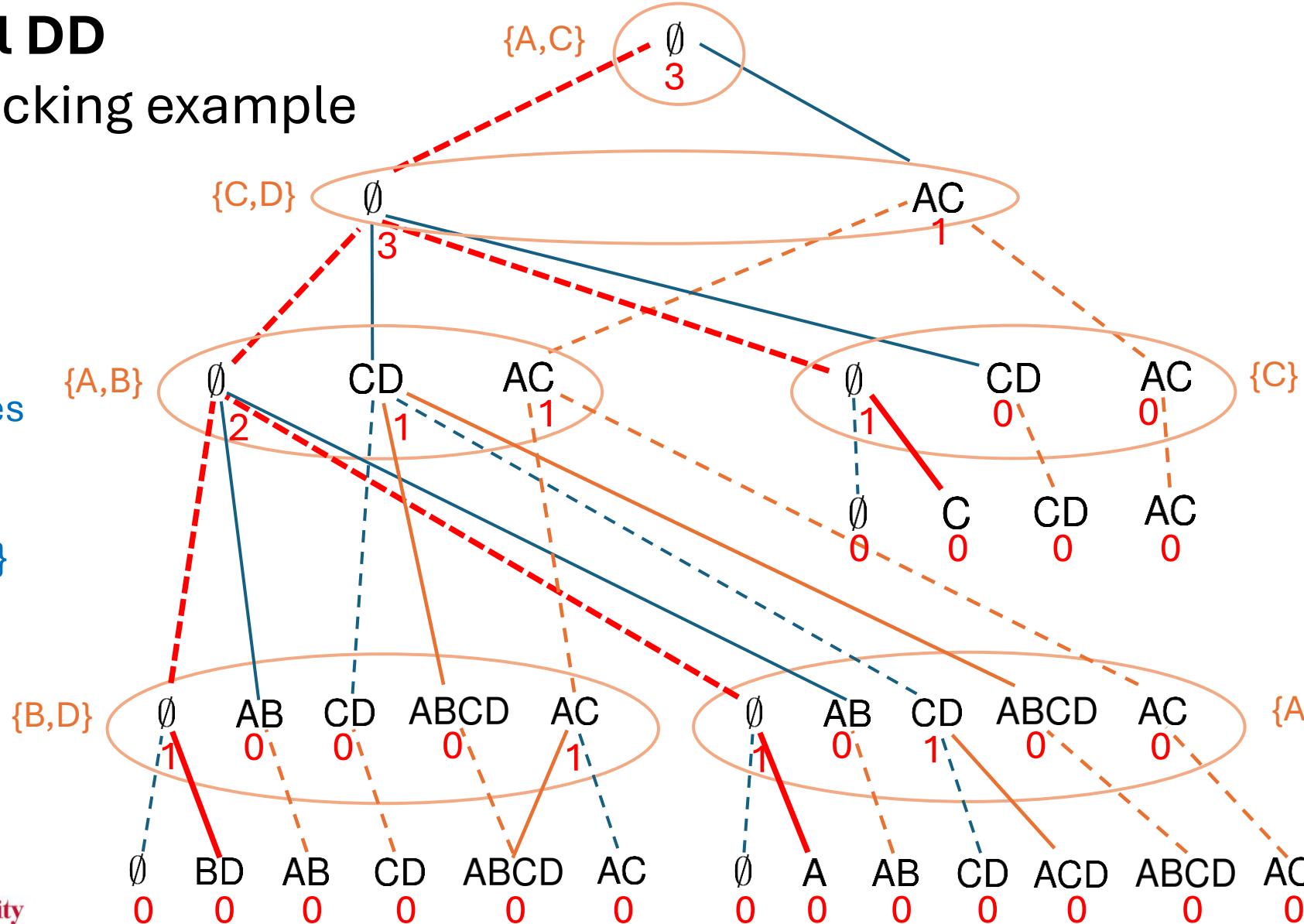
For set packing example



# Nonserial DD

For set packing example

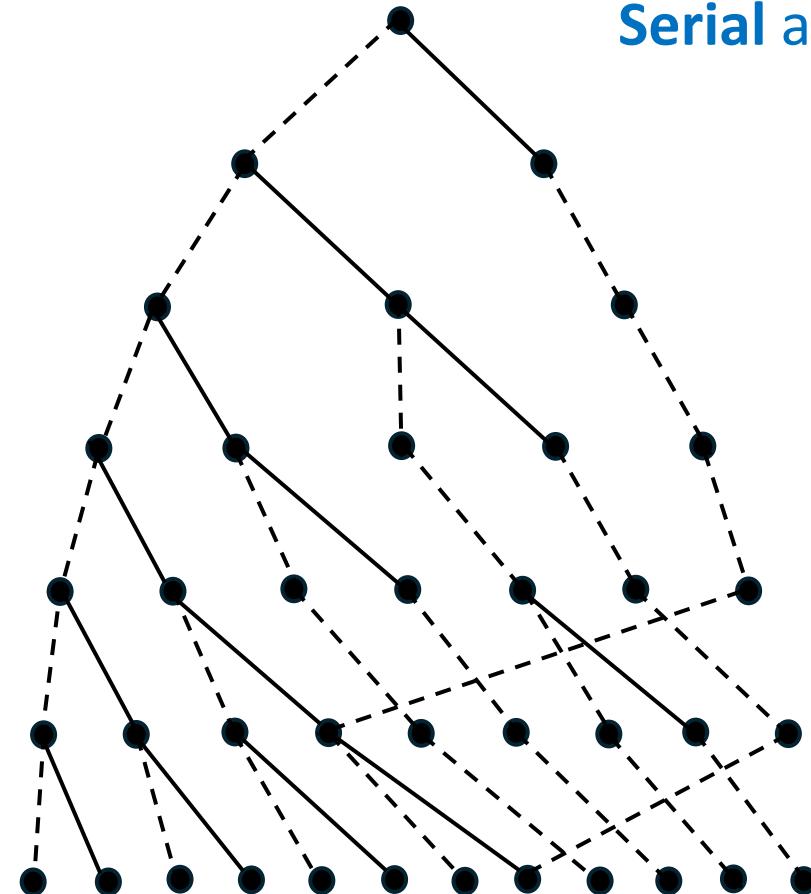
Trace tree of  
optimal choices  
to find optimal  
solution  
 $\{C\} + \{A\} + \{B, D\}$



## Nonserial DD

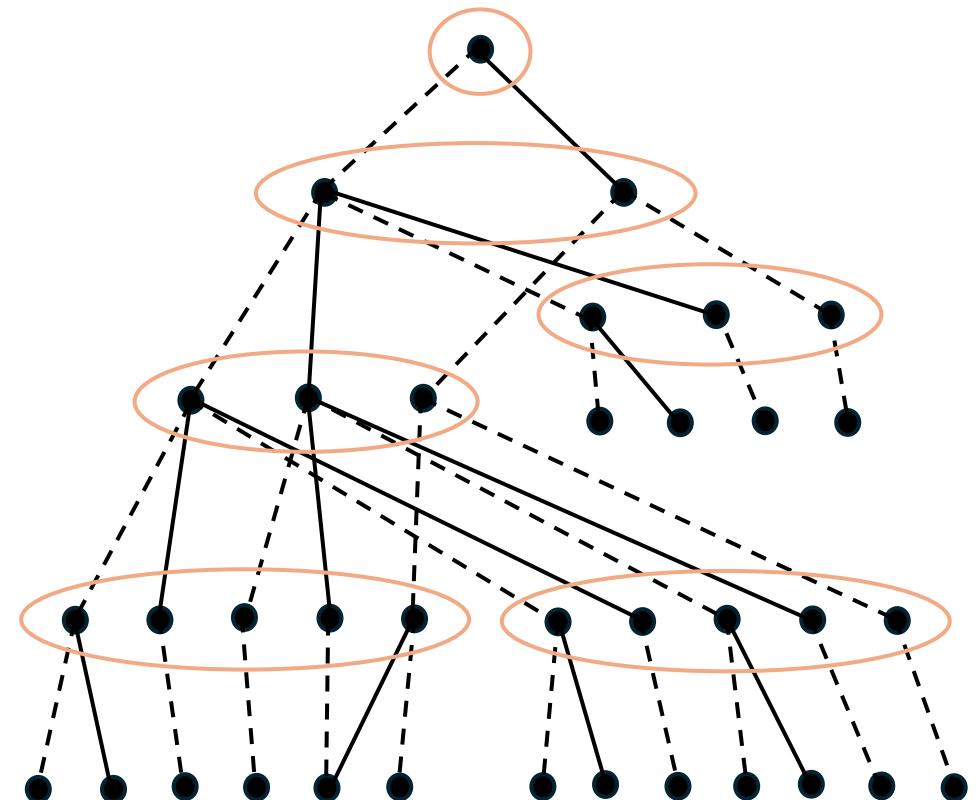
For set packing example

Difference can be  
much greater in  
larger instances.



39 nodes

Serial and nonserial DDs

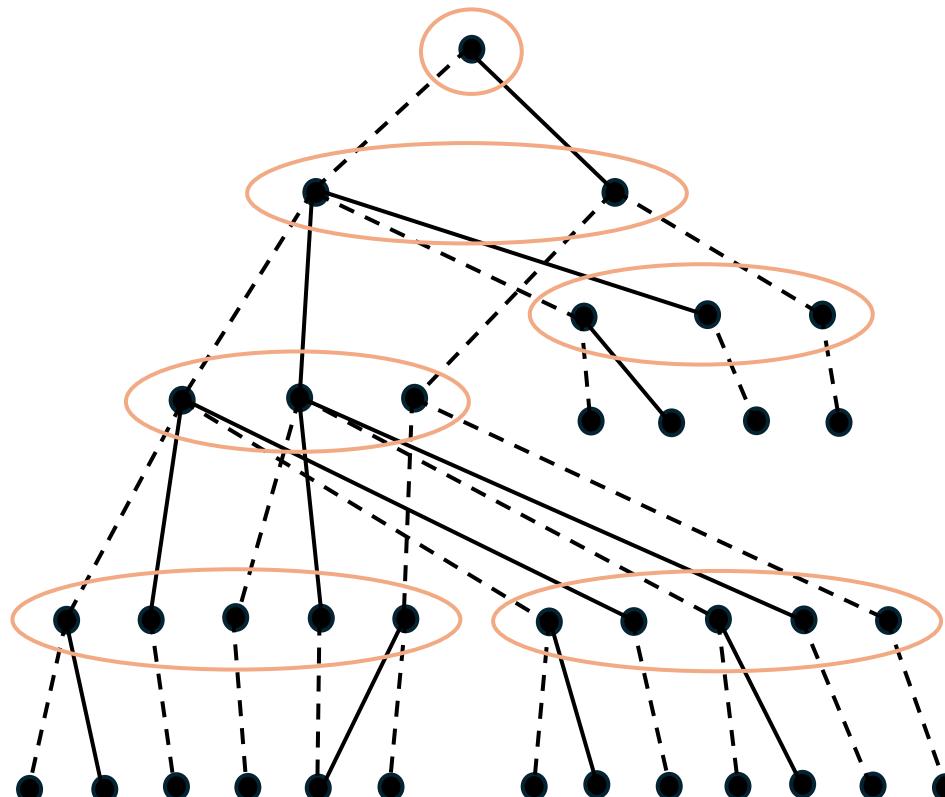


36 nodes

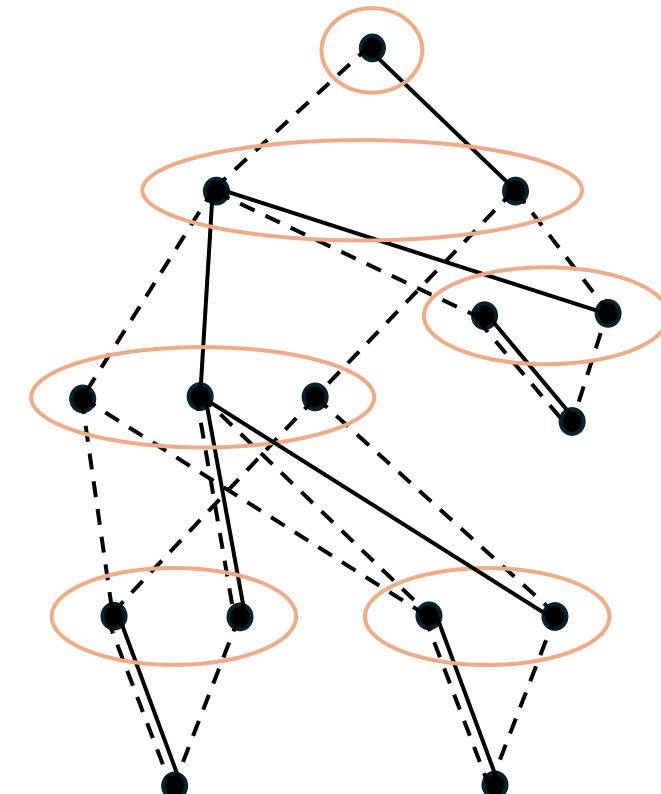
# Nonserial DD

For set packing example

Original and reduced nonserial DDs



36 nodes



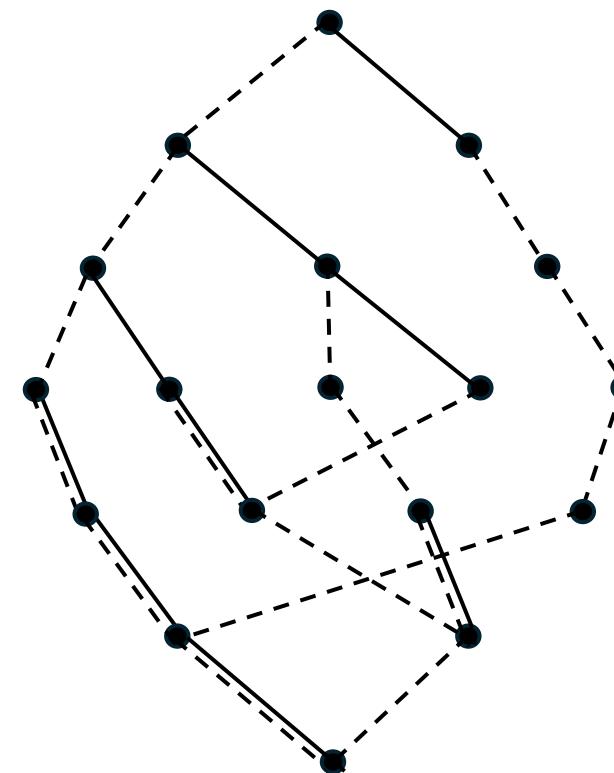
15 nodes

# Nonserial DD

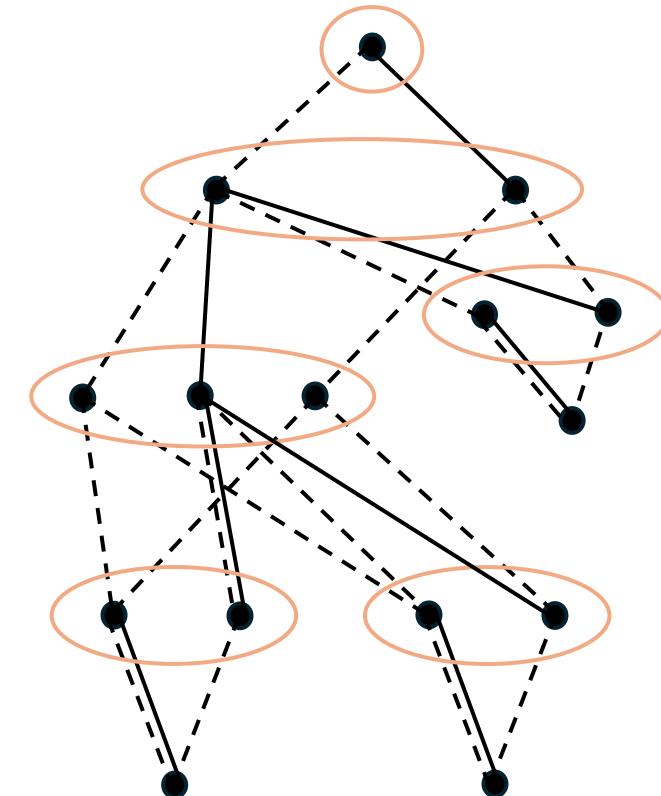
For set packing example

Reduced serial and nonserial DDs

Difference can be  
**much greater** in  
larger instances.



18 nodes



15 nodes

# Nonserial DDs

## Computational experiments

Compare size of non-reduced **serial** and **nonserial DDs** for randomly generated **set packing** instances of various treewidths.

Use **min-degree ordering** for serial and nonserial DDs, as it benefits both.

Let each element occur in a given set with **probability  $p$** .

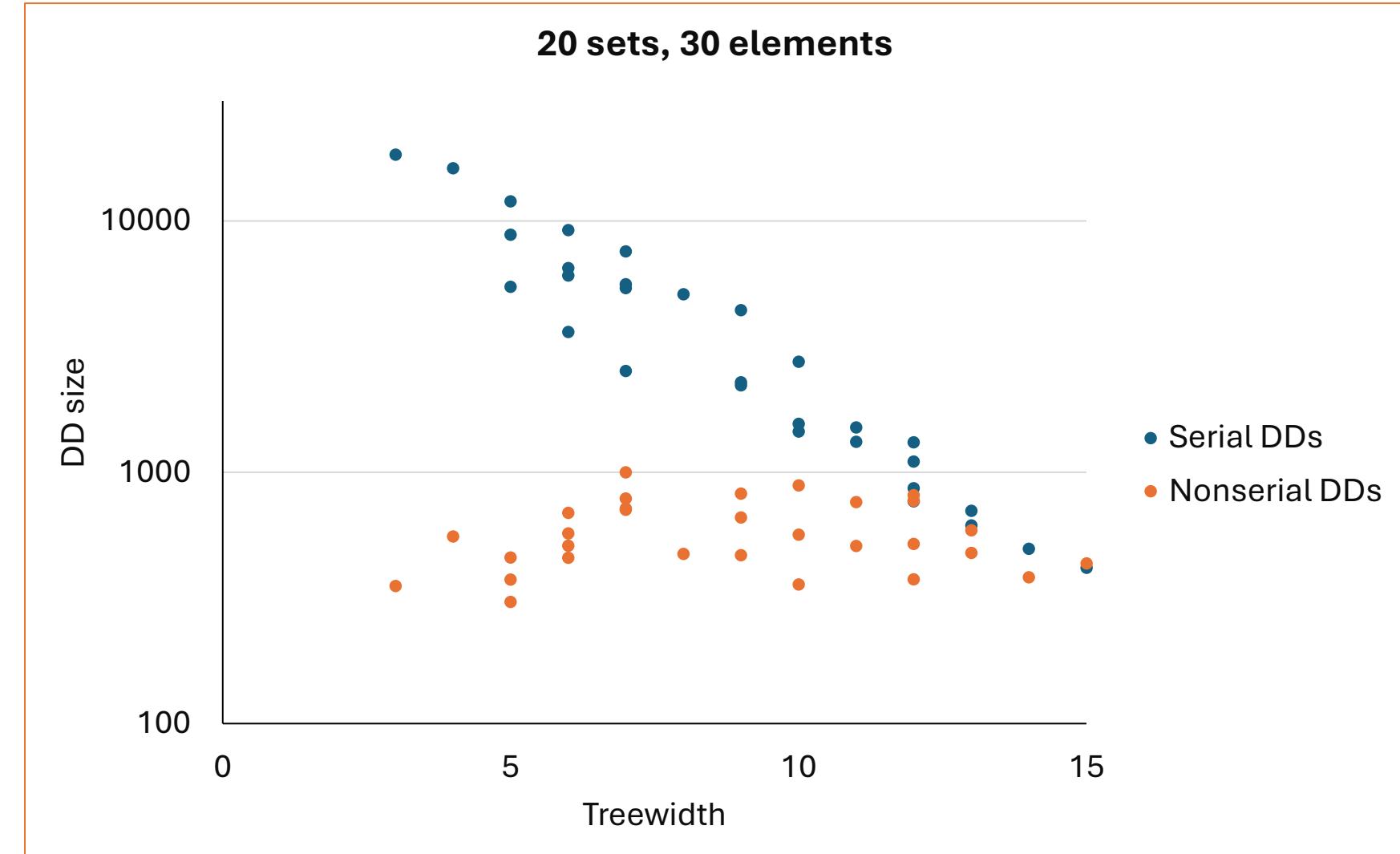
**Discard** random instances with a **disconnected** dependency graph.

Use smaller **values of  $p$**  to get smaller **treewidths**.

## Serial and nonserial DD size vs treewidth

Each instance is  
represented by **two**  
**data points**.

Instances with **many**  
**elements per set** are  
**easier to solve**  
due to fewer feasible  
solutions.



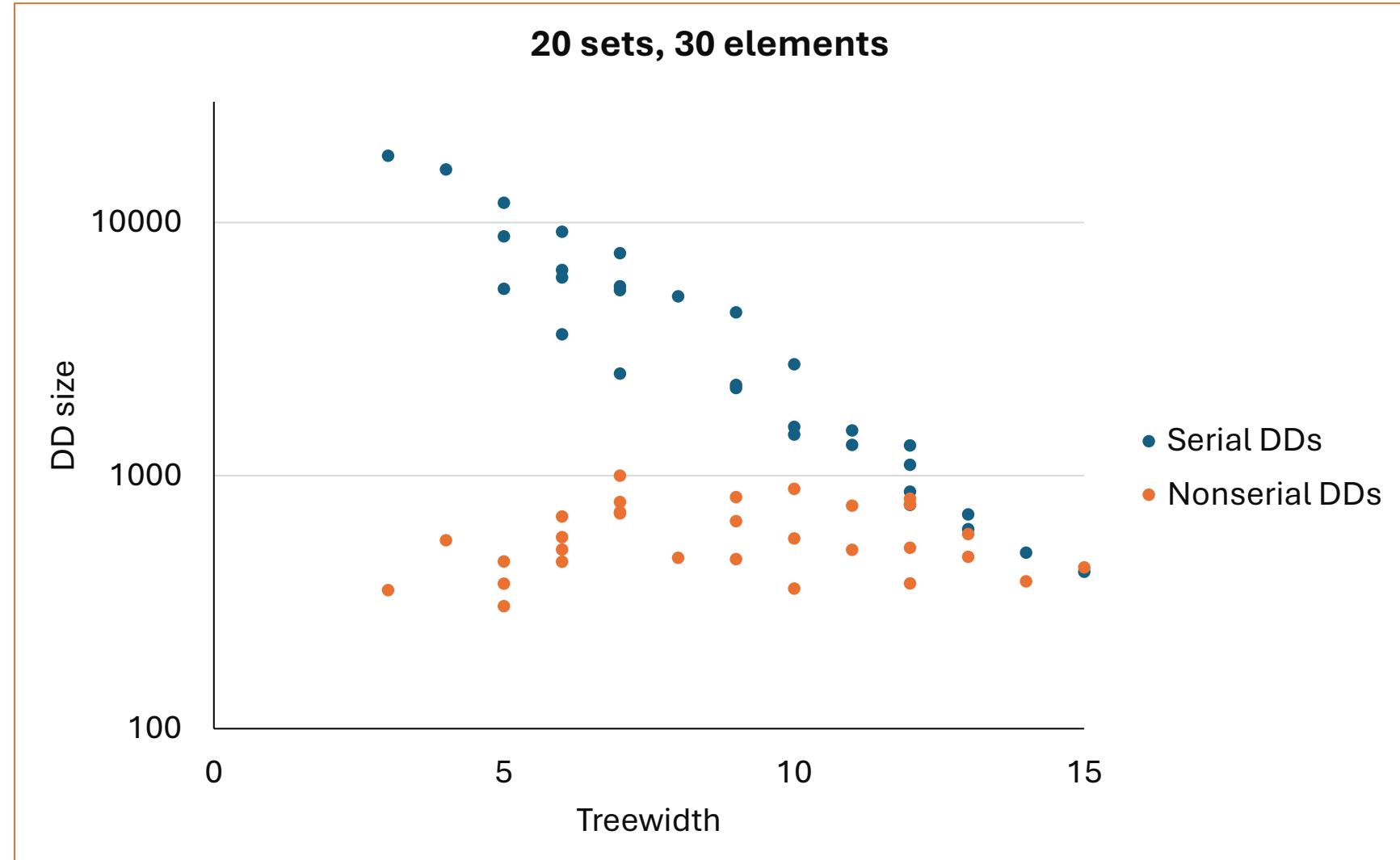
Average 2.4-6 elements/set

## Serial and nonserial DD size vs treewidth

**Smaller bandwidths**  
result in **much larger**  
**serial DDs** (instances  
are harder).

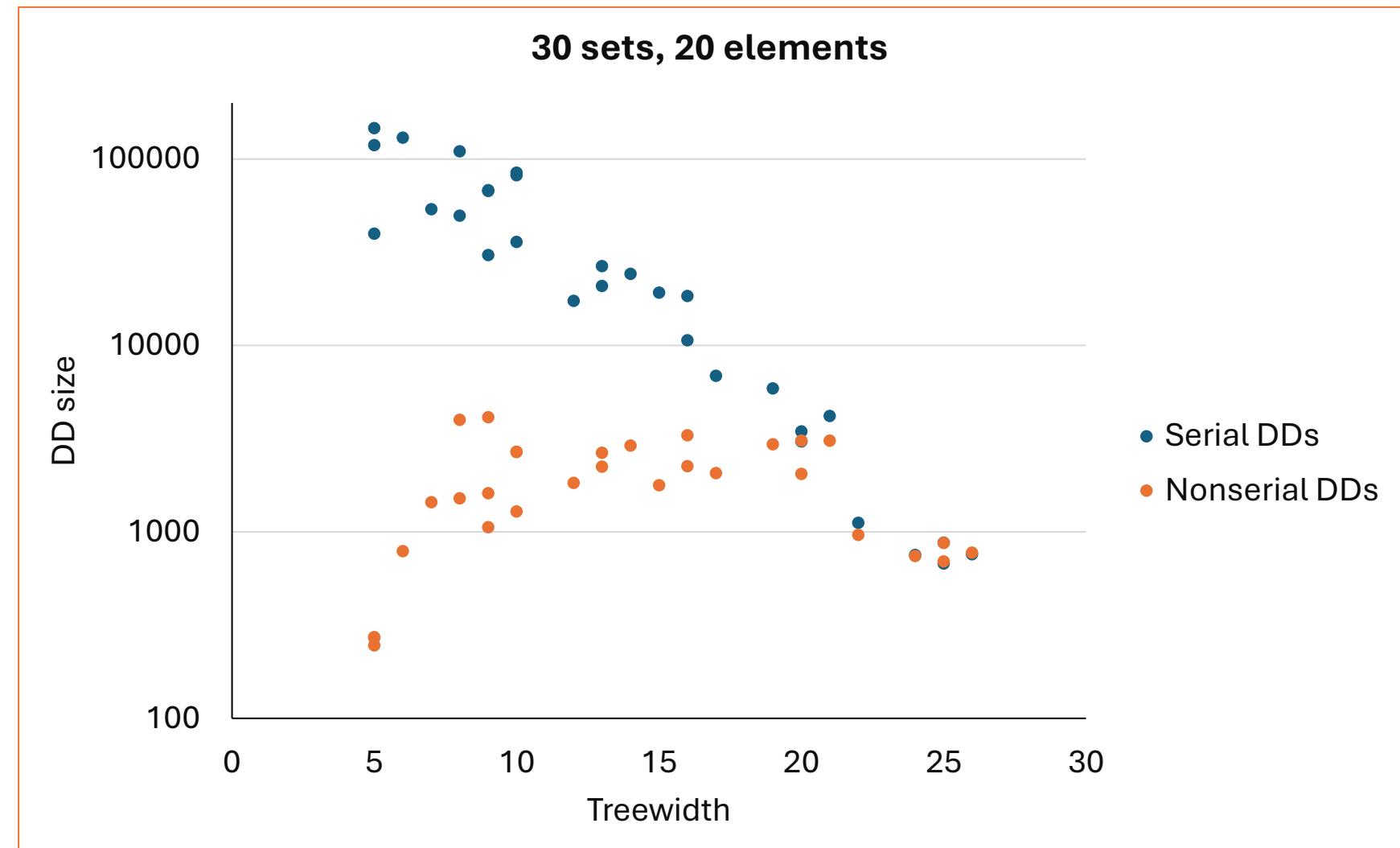
**Nonserial DD size is**  
fairly **constant**.

Nonserial DD's  
exploitation of small  
bandwidth **offsets**  
greater difficulty of  
the instance.



## Serial and nonserial DD size vs treewidth

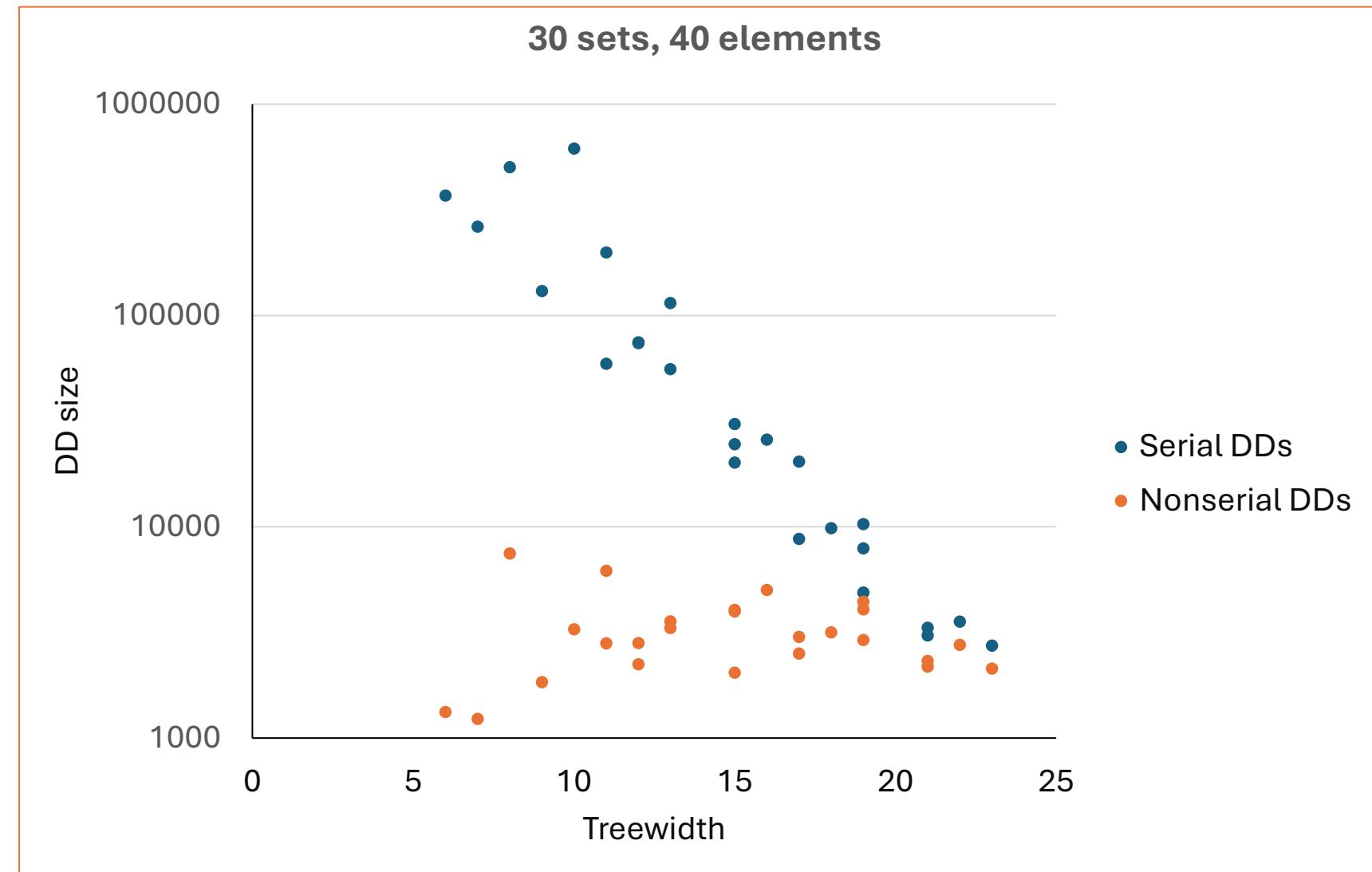
Similar pattern,  
except for inverted-U  
shape of nonserial  
data points



Average 1.6-6 elements/set

## Serial and nonserial DD size vs treewidth

Larger DDs, but  
otherwise **similar**  
pattern

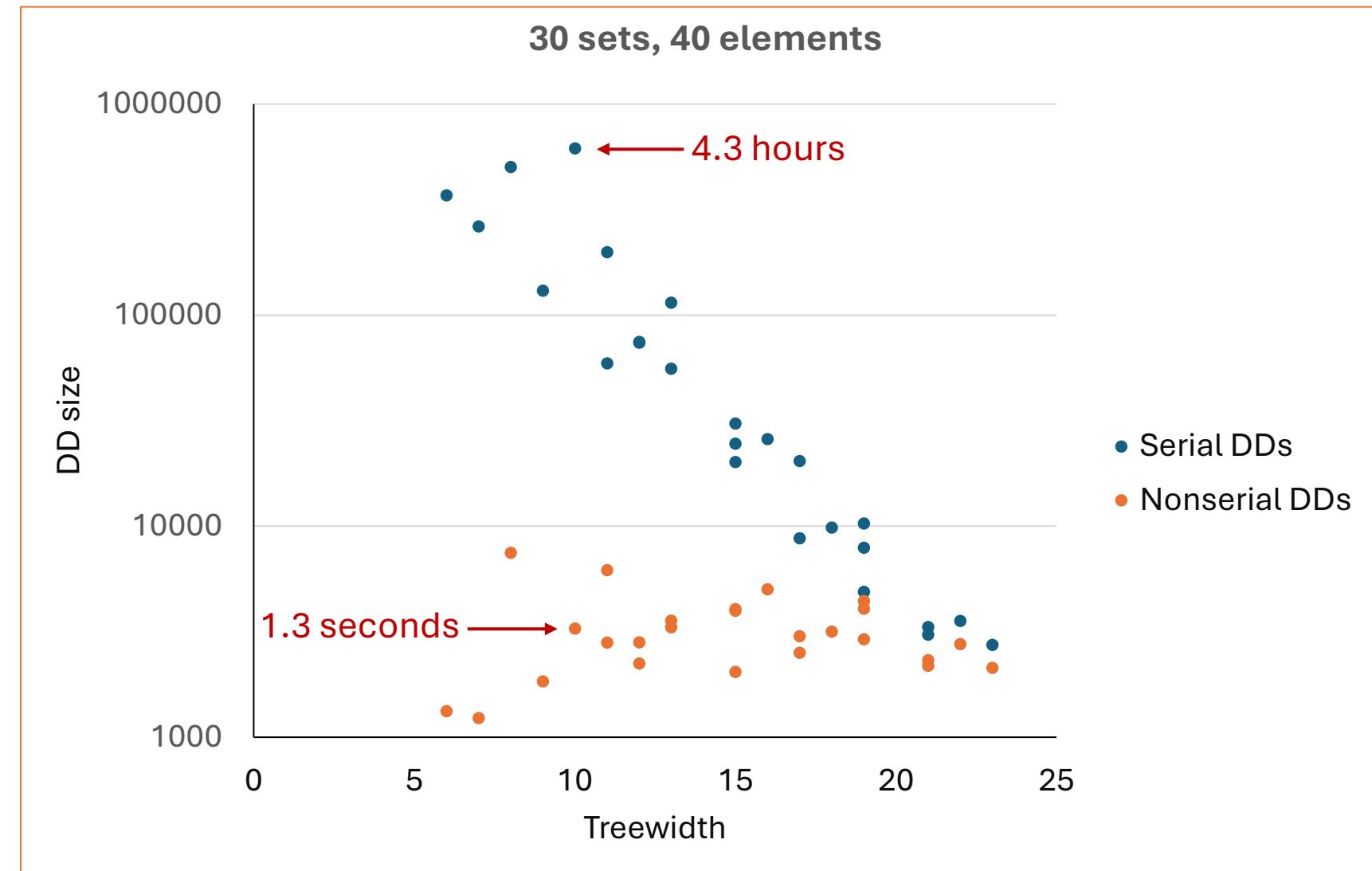


## Serial and nonserial DD size vs treewidth

Difference in **compile time** is even more dramatic than DD size.

Compile time is roughly **quadratic** in max **layer size**.

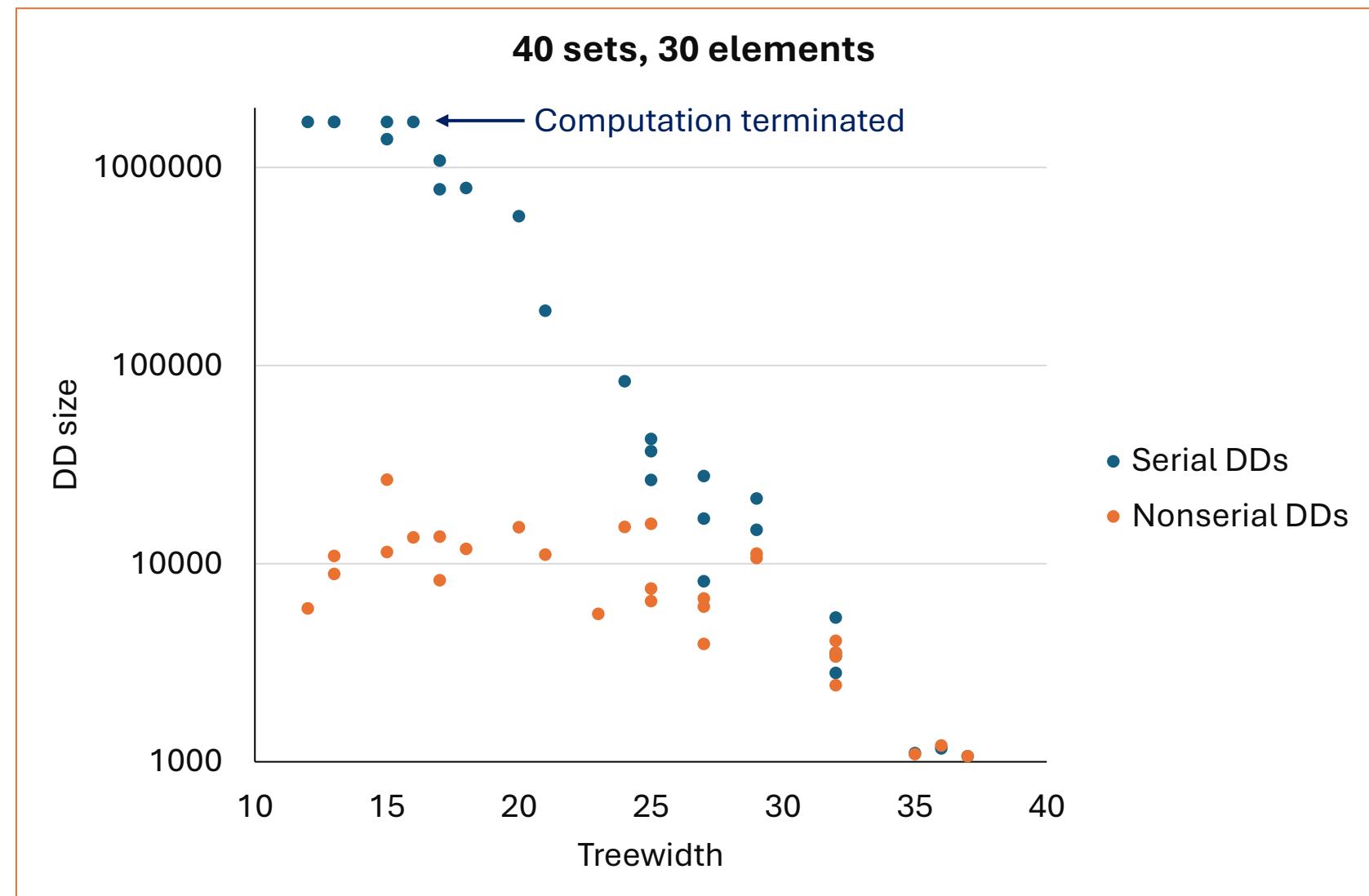
Serial DD layers are much **larger**.



## Serial and nonserial DD size vs treewidth

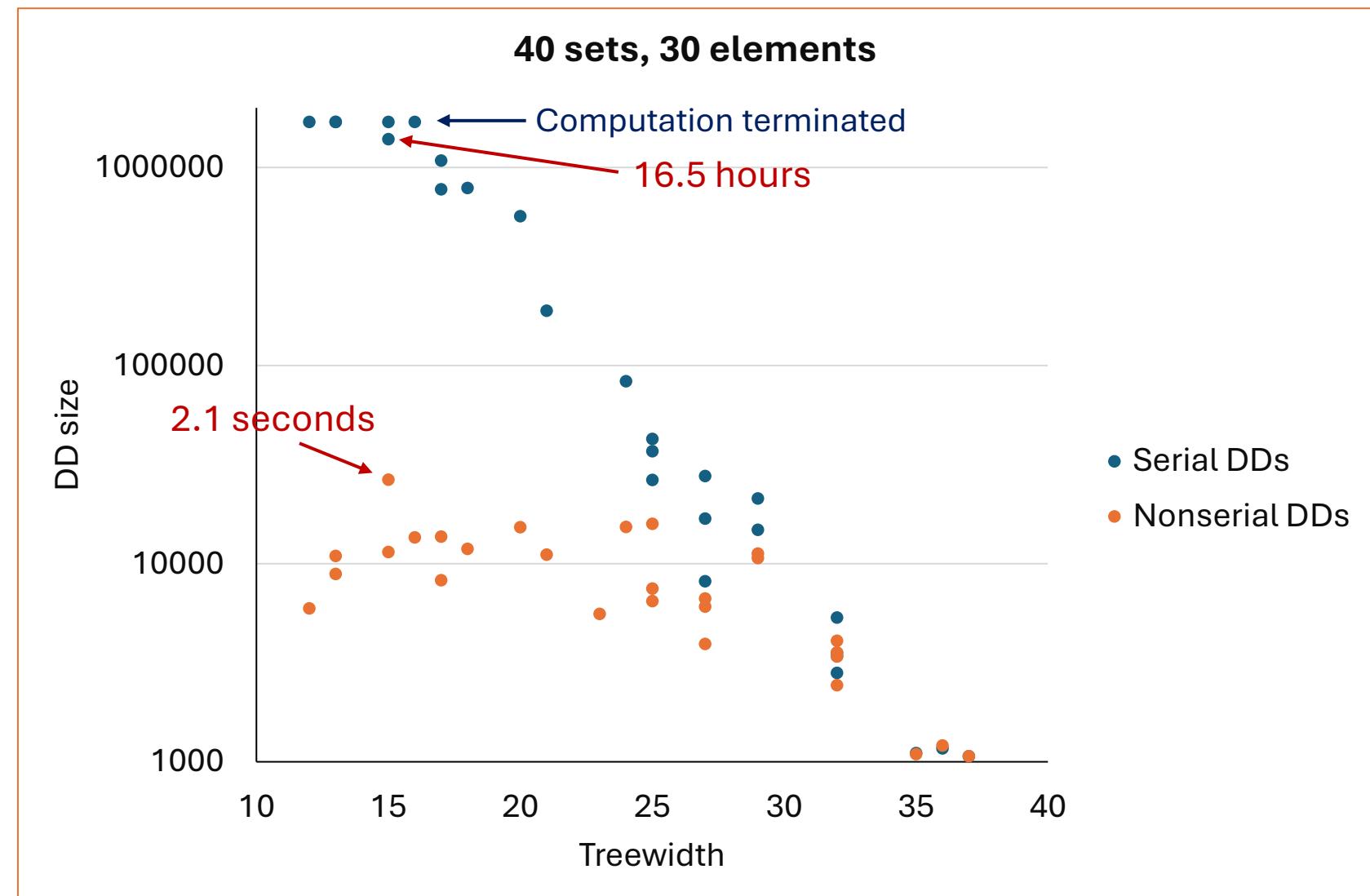
Some **serial** DDs are  
too large to build.

**Nonserial** DD size  
again levels off with  
smaller treewidths



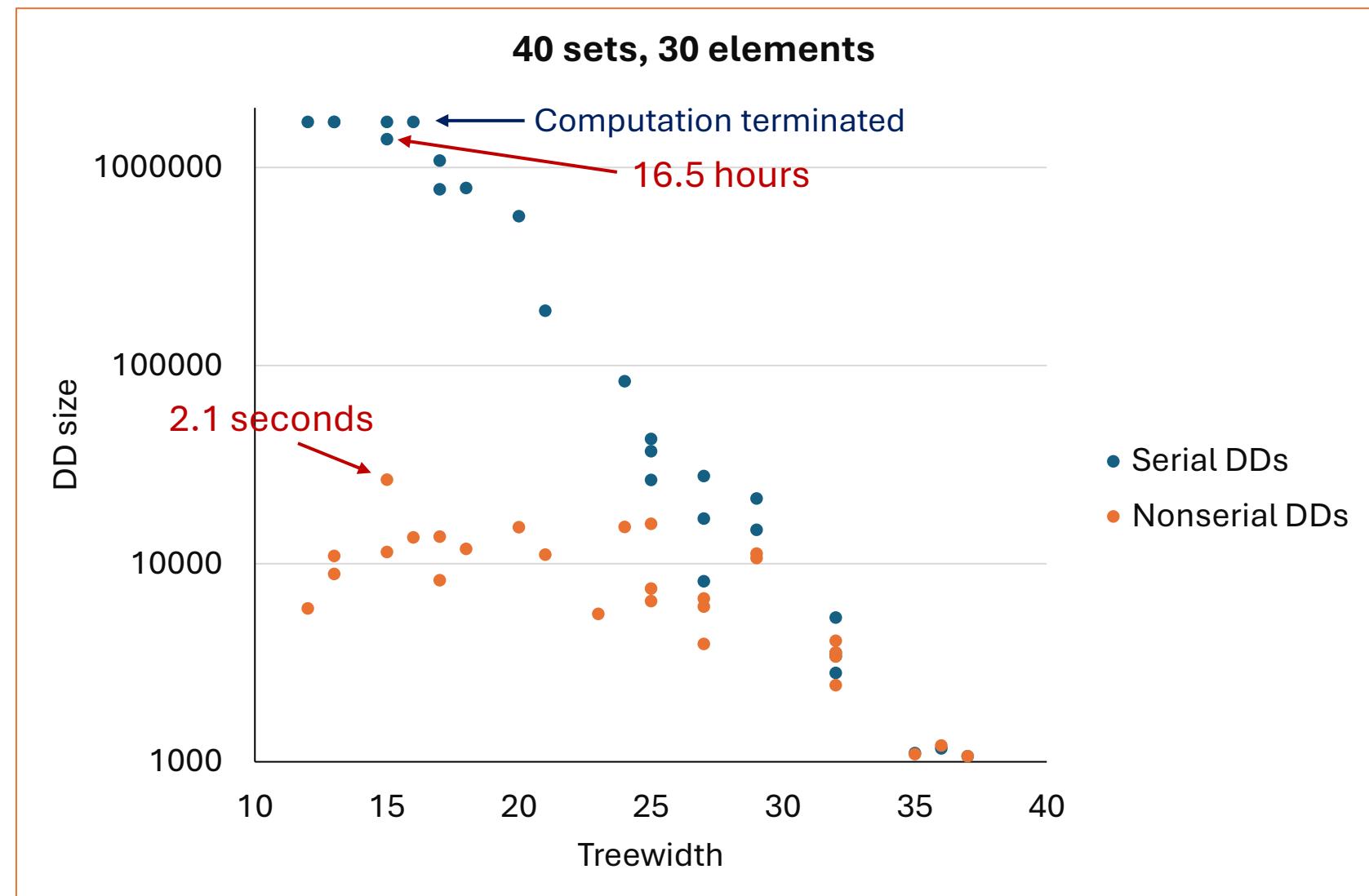
## Serial and nonserial DD size vs treewidth

Compile time advantage  
of nonserial DD is again  
even greater than size  
advantage.



## Serial and nonserial DD size vs treewidth

Compile time advantage  
of nonserial DD is again  
even greater than size  
advantage.



# Nonserial DDs

## Computational experiments

### Preliminary results for 0-1 programming

Use sparser coefficient matrices to get smaller treewidths.

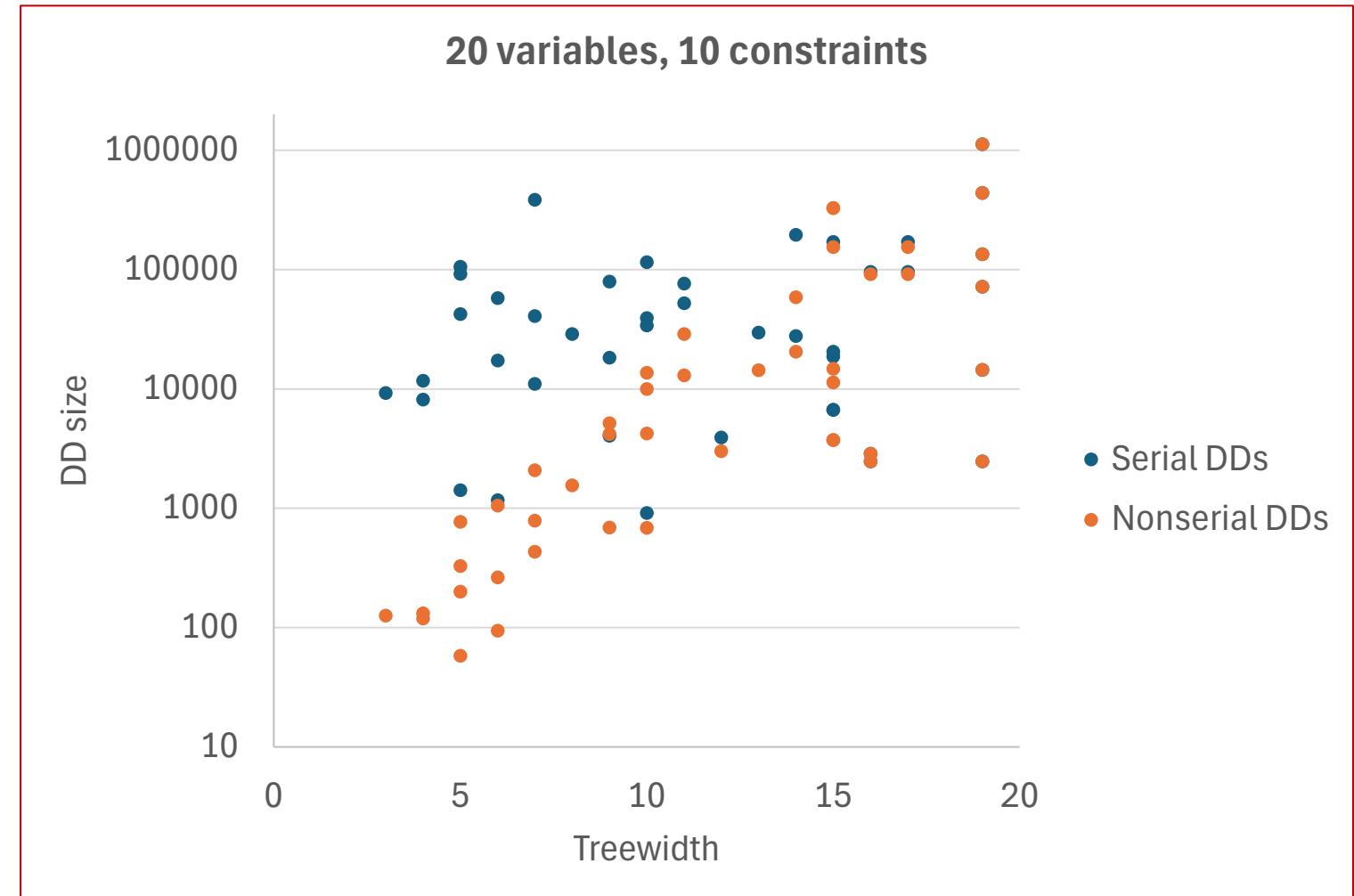
Nobody suggests solving 0-1 problems this way. Use a MIP solver.

But... 0-1 inequality constraints may be a **subset** of the problem

and... results are the same for **any set of constraints** (linear or nonlinear) in which each constraint has the same feasible solutions.

# Serial and nonserial DD size vs treewidth 0-1 programming

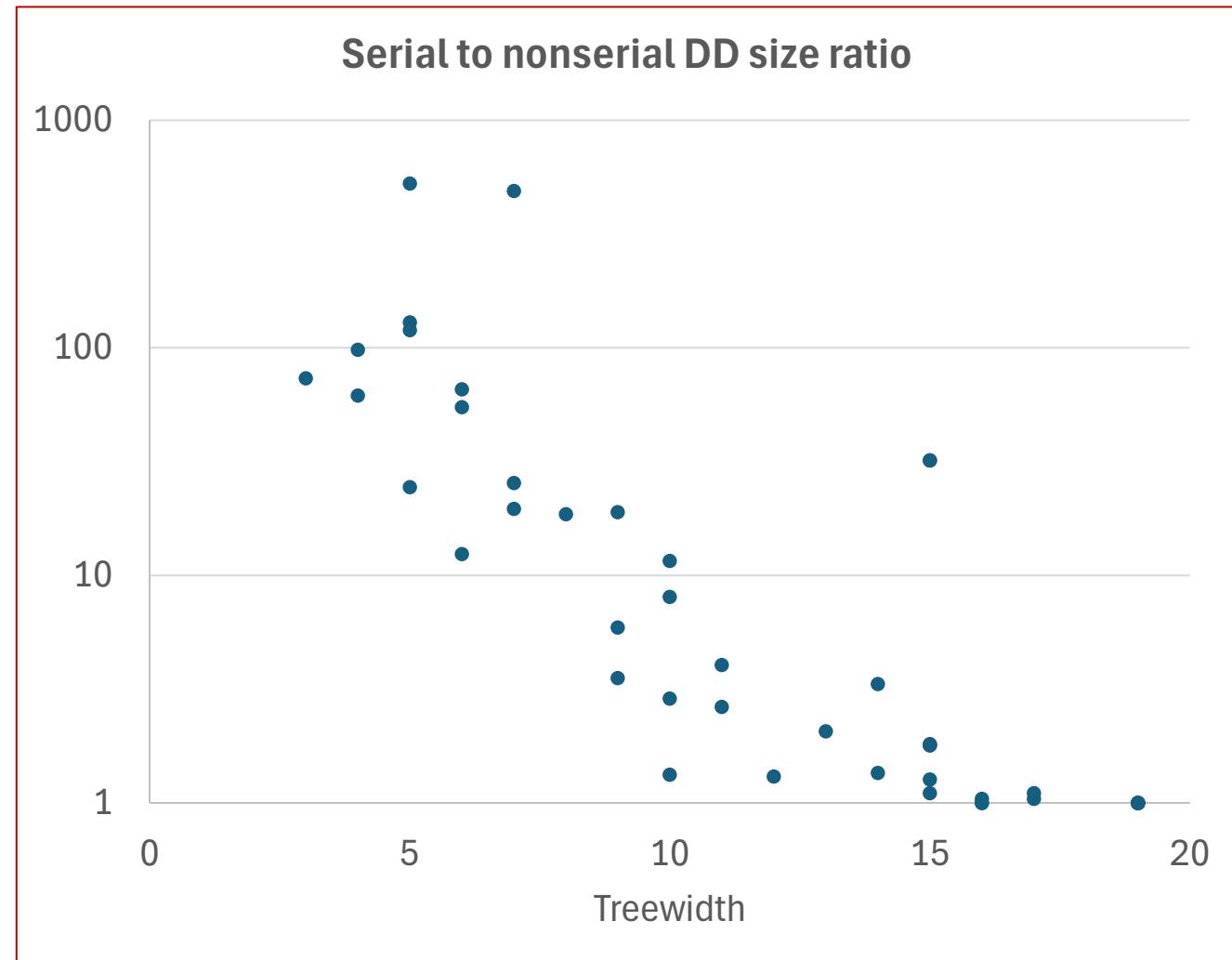
Much scatter, because  
random instances vary  
widely in difficulty



## Serial and nonserial DD size vs treewidth 0-1 programming

Pattern is clearer when  
plotting **ratio** of serial to  
nonserial DD size.

Nonserial DDs impose  
20% overhead when  
there is **no** decoupling  
(treewidth = # variables)



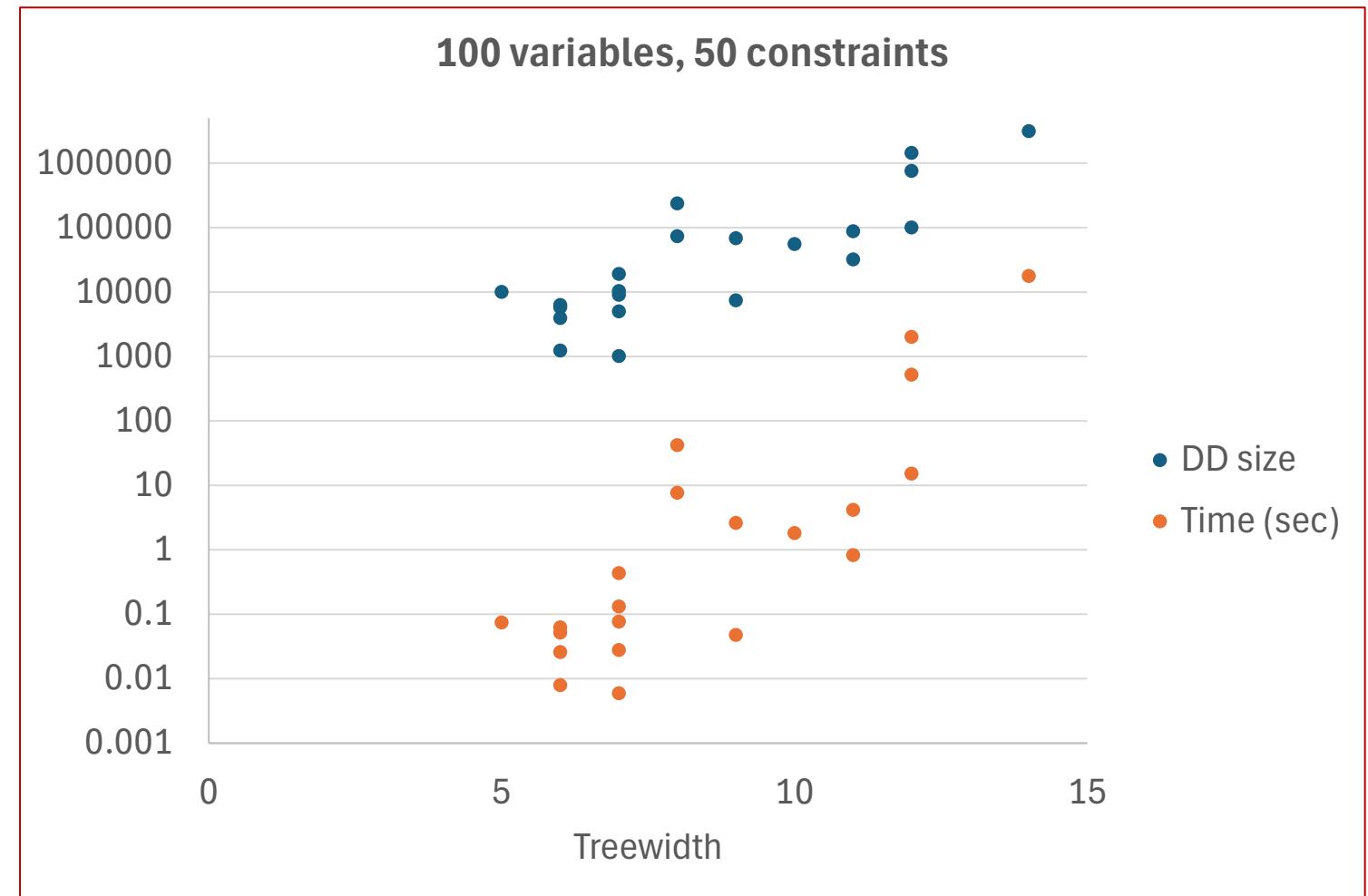
## Nonserial DDs

DD size & build time

0-1 programming

Serial DDs **too large to build** even for smallest treewidths.

Nonserial DD build time is **very small** for treewidth  $\leq 12$



# Conclusions

## Set packing problem

**Nonserial DDs** are **very helpful** when you **need them**,  
and are **not helpful** when you **don't need them**.

## Problem class containing 0-1 programming

**Nonserial DDs** radically **smaller** than serial DDs,  
easy to build when treewidth  $\leq 12$  or so.

# Tentative conclusions

We should **always use nonserial DDs** in DD applications.

There is only a **small computational overhead** for doing so.

There are **enormous computational benefits** when treewidth is limited.

All DD technologies easily **generalize** to the nonserial case (reduction, relaxation, restriction, flow models)

**Congratulations!**  
You survived 133 slides!

