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DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea
(1970s).

They have been used for logic circuit design 
and product configuration since the 1980s.
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DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea
(1970s).

They have been used for logic circuit design  
and product configuration since the 1980s.

DDs have recently been adapted to 
combinatorial optimization and constraint 
solving.  

That is the subject of this talk.
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DD-based combinatorial problem solving

Part I.  A brief survey of previous developments (serial DDs)

Part II.  Recent work on nonserial DDs

Serial DD Nonserial DD
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DD-based combinatorial problem solving

DDs can perform the functions 
one typically finds in 
optimization and constraint 
solvers.

Modeling
with recursive 
formulations

Relaxation
with relaxed 

diagrams

Primal
heuristics

with restricted 
diagrams

Constraint
propagation

through a 
(relaxed) diagram

Search
with a novel branch-and-

bound method

Optimization &
Constraint solving

Postoptimality 
analysis

with sound diagrams



DD-based combinatorial problem solving

Some advantages:
• Ideal for recursive models (dynamic 

programming)
• Discrete problem relaxations with 

adjustable tightness
• Fast primal heuristics
• No need for linearity, convexity, or 

inequality constraints
• Novel approach to branch and bound
• More effective domain propagation for 

constraint programming
• Highly parallelizable
• Comprehensive postoptimality analysis
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DD-based combinatorial problem solving

Some advantages:
• Ideal for recursive models (dynamic 

programming)
• Discrete problem relaxations with 

adjustable tightness
• Fast primal heuristics
• No need for linearity, convexity, or 

inequality constraints
• Novel approach to branch and bound
• More effective domain propagation for 

constraint programming
• Highly parallelizable.
• Comprehensive postoptimality analysis

Disadvantages:
• Unclear how to extend to continuous 

variables.*
• Reliance on good heuristic choices for 

tight relaxations

New advantage:
• Can exploit loosely coupled variables

with nonserial decision diagrams

*But easily embedded in mixed discrete/continuous 
solvers



• Boolean logic

• Switching circuits interpreted as Boolean functions        

• Binary-decision programs for representing switching circuits

• Graphical representation of binary-decision programs (BDDs)

• Reduced  ordered BDDs

• Applications to circuit design and testing, product configuration, etc.

• DD-based optimization and constraint programming
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Origin of DDs

Bryant (1986)

Boole (1847,1854)

Peirce (1886) Shannon (1937)

Lee (1959)

Akers (1978)

Hadžić & JH (2006,2007) Behle (2007)

Andersen, Hadžić, JH, Tiedemann (2007)



M. P. Castro, A. A. Ciré, J. C. Beck, Decision diagrams for 
discrete optimization: A survey of recent advances, 
INFORMS Journal on Computing 34 (2022) 2271-2295
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A comprehensive survey

https://arxiv.org/abs/2201.11536
https://arxiv.org/abs/2201.11536


Part I – Survey of previous work
• DD basics
• Set packing example
• Reduced serial DDs
• Relaxed serial DDs
• Restricted serial DDs
• DD-based branch and bound
• DD-based constraint propagation
• DD-based Lagrangian relaxation
• Other developments
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Outline

Part II – Nonserial DDs
• Treewidth
• Set packing example
• Computational results
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Part I.  Survey of Previous Work



Binary decision 
diagrams (BDDs) 
encode  Boolean 
functions.
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Binary decision 
diagrams (BDDs) 
encode  Boolean 
functions.

Paths to 1 node
represent values of 
for which

Paths to 0 node
represent values of 
for which 
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Binary decision 
diagrams (BDDs) 
encode  Boolean 
functions.

Paths to 1 node
represent values of 
for which

Paths to 0 node
represent values of 
for which 
 

15

DD basics
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Long arc indicates

We will not use long arcs.



Binary decision 
diagrams (BDDs) 
encode  Boolean 
functions.

Paths to 1 node
represent values of 
for which

Paths to 0 node
represent values of 
for which 
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DD basics

1

1

1

11

0

0

0
0

0

We will need paths only to the 
1 terminal node, to represent 
feasible solutions of a constraint set.
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DD basics

Multivalued DDs
allow for variables with
multiple discrete values.

All results described here
are valid for both binary
and multivalued DDs.



DDs can compactly represent 
large feasible sets.

This BDD represents all 117,520 
maximal 0-1 solutions of

with only 152 nodes.

18

DD basics



19

DD basics
DDs can compactly represent 
large feasible sets.

This BDD represents all 117,520 
maximal 0-1 solutions of

with only 152 nodes.

However, DDs can grow 
exponentially – for example,
all permutations of 1, …, n



Find a maximum subcollection of sets 
in which no two sets have common elements.

{A,   C    }
{       C,D}
{A,B       }
{       C    }
{A           }
{    B,   D}

Example
Set packing

20



{A,   C    }
{       C,D}
{A,B       }
{       C    }
{A           }
{    B,   D}

}solution

Find a maximum subcollection of sets 
in which no two sets have common elements.

Example
Set packing
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{A,C}

{C,D}

{A,B}

{C}

{A}

{B,D}

Layers 
correspond 
to selection
decisions 
for each set.

Variables 
indicate the 
decisions
(controls).

Serial DD 
for a set packing
problem instance
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{A,C}

Select set {A,C}Don’t select set {A,C}

Decide whether 
to select set {A,C}
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{A,C}

State consists of 
elements in sets 
so far selected.
As in dynamic 
programming.

Decide whether 
to select set {A,C}
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{A,C}

{C,D}
Decide whether 
to select set {C,D}

Cannot select {C,D} 
because C is 
already in the state
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{A,C}

{C,D}

{A,B}
Decide whether 
to select set {A,B}

Serial DD 
for a set packing
problem instance
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{A,C}

{C,D}

{A,B}

{C}
Decide whether 
to select set {C}

Serial DD 
for a set packing
problem instance
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{A,B}

{A}

{C}

{A,C}

{C,D}

Decide whether 
to select set {A}

DD is not a tree because branches can terminate in 
the same state.  This happens quite often in a DD.

Serial DD 
for a set packing
problem instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

DD has 39 nodes

Decide whether 
to select set {B,D}

Serial DD 
for a set packing
problem instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

Now find an 
optimal solution 
recursively, using 
a backward pass, 
as in dynamic 
programming.

Value at current node = max number of sets selected below the node

Serial DD 
for a set packing
problem instance
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{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

max {0, 0+1} = 1
Mark optimal
decision with
orange arc

Serial DD 
for a set packing
problem instance
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{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10max {1, 1+1} = 2

Serial DD 
for a set packing
problem instance
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{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

Serial DD 
for a set packing
problem instance
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{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1max {3, 1+1} = 3

Serial DD 
for a set packing
problem instance
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{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

Serial DD 
for a set packing
problem instance
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{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

3

Trace optimal 
choices top-down 
to find optimal 
solution 
(on longest path)
{C}, {A}, {B,D}

Serial DD 
for a set packing
problem instance
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Reduced DDs

A given Boolean function is represented by a reduced DD 
(minimize size DD) that is unique for a given variable ordering.  

States become irrelevant after reduction.

Longest (shortest) path can be computed in the usual fashion.

Bryant (1986)
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39 nodes

Begin with top-down 
compilation for set packing 
problem.

It can be reduced in 
bottom-up fashion.

Reduced DD
For set packing 
problem instance.
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Superimpose nodes that 
are roots of identical DDs,
beginning with bottom layer.

Reduced DD
For set packing 
problem instance.
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Now, next layer.

Reduced DD
For set packing 
problem instance.
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Next layer

No more reduction possible.

Reduced DD
For set packing 
problem instance.
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Original and reduced serial DDs

39 nodes 18 nodes

Substantial size reduction.

Reduced DD
For set packing 
problem instance.
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Reduced weighted DDs

A weighted DD has arc costs, used to find min or min path length.

In previous example, all solid (and all dashed) arcs have the same cost.  

Otherwise, one must consider arc costs during reduction.

There is a unique reduced weighted DD, which can again be found 
by a bottom-up procedure…

…provided the arc costs are canonical (easily achieved).

JH (2013)
Similar result for AADDs:

Sanner & McAllister (2005)
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Generating a reduced DD

Reduction is usually bottom-up and requires that entire DD be available.  

However, reductions can sometimes be identified analytically in advance.

Example: a class of inventory management problems.

44



DP-based weighted DD

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+0

2+0

4+0

0+12

2+3

2+6

1+5
1+10

2+6

Week 1

Week 2

Week 3

Week 4

Week 5

DP recursion
hi = holding cost
ci = purchase cost
di = demand

State si = inventory level (0,1,2)
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DP-based weighted DD

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+0

2+0

4+0

0+12

2+3

2+6

1+5
1+10

2+6

Week 1

Week 2

Week 3

Week 4

Week 5

DP recursion
hi = holding cost
ci = purchase cost
di = demand

9

•

7

13

0

Week 1

Week 2

Week 3

Week 4

Week 5

10

6

12

8

8

14

Reformulated DP 
recursion results in 
canonical arc costs.

Reduced weighted DD 
is much smaller,
computing shortest
path is trivial.

This simplification 
was apparently never 
observed over decades 
of research on inventory 
models.

•

•

•

•

JH (2013)

Reduced weighted DD

State si = inventory level (0,1,2)

Reformulated DP recursion
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DP-based weighted DD

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+0

2+0

4+0

0+12

2+3

2+6

1+5
1+10

2+6

Week 1

Week 2

Week 3

Week 4

Week 5

DP recursion
hi = holding cost
ci = purchase cost
di = demand

9

•

7

13

0

Week 1

Week 2

Week 3

Week 4

Week 5

10

6

12

8

8

14

Reformulated DP 
recursion results in 
canonical arc costs.

Reduced weighted DD 
is much smaller,
computing shortest
path is trivial.

This simplification 
was apparently never 
observed over decades 
of research on inventory 
models.

•

•

•

•

JH (2013)

Reduced weighted DD

State si = inventory level (0,1,2)

Reformulated DP recursion
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How does a DD differ from a dynamic programming state transition graph?

A state transition graph can be viewed as a DD, but:

• DD nodes need not be associated with states.
• The reduced DD can be much smaller than the state transition graph.
• Much smaller relaxed DDs provide bounds*
• Much smaller restricted DDs provide a primal heuristic.

*DD-based relaxation ≠ “state space relaxation” in DP

DD vs state transition graph in DP
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Relaxed DDs

Even reduced DDs tend to grow exponentially for most problems.  

However, relaxed DDs of limited width can be obtained by allowing 
some infeasible paths.
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Relaxed DDs

Even reduced DDs tend to grow exponentially for most problems.  

However, relaxed DDs of limited width can be obtained by allowing 
some infeasible paths.

Two top-down compilation methods generate relaxed DDs:

• Node merger reduces each layer by heuristically merging nodes 
and their associated states.

• Node splitting heuristically adds nodes on each layer to rule out 
some infeasible solutions.

Hadžić & JH (2006)
Andersen, Hadžić, JH, Tiedemann (2007)
Hadžić, JH, O’Sullivan, Tiedemann (2008)

Bergman, van Hoeve, JH (2011)
50



{C}

{A,C}

{C,D}

{A,B}

Relaxed DD using node merger
for a set packing instance

Start building DD.
We want a 
max width of 3.

Merge selected 
states to keep 
width  3.

Here, resulting 
state is 
intersection of 
merged states.
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{A}

{C}

{A,C}

{C,D}

{A,B}
Continue building 
relaxed DD from 
reduced layer, 
using relaxed 
states.

Choice of nodes
to merge is
heuristic.

Relaxed DD using node merger
for a set packing instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Relaxed DD using node merger
for a set packing instance
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Continue building 
relaxed DD from 
reduced layer, 
using relaxed 
states.

Choice of nodes
to merge is
heuristic.



{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Relaxed DD using node merger
for a set packing instance
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Continue building 
relaxed DD from 
reduced layer, 
using relaxed 
states.

Choice of nodes
to merge is
heuristic.



{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Longest path of 4
is a valid upper bound 
on optimal value of 3

Relaxed DD using node merger
for a set packing instance
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A state S relaxes state S if and only if:
• Every control that is feasible in S is feasible in S.
• The arc cost resulting from any feasible control in S is at least 

the cost of that control in S (when minimizing).  

A state merger operation generates a valid relaxed DD if
• The merger of two states is a relaxation of the merged states.  
• State transition preserves relaxation.  That is, If S relaxes S, then 

φ(S ) relaxes φ(S), for any given state transition φ.

JH (2017) 

Relaxed DDs 
Conditions for node merger
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Bound quality vs. relaxed DD width 
for max stable set problem.

Greater bound quality can be 
obtained by investing more time 
to generate a larger relaxed DD

Bergman, Ciré, 
van Hoeve, JH (2013) 

Relaxed DDs 
Adjustable bound quality

Relaxed DD width

Bo
un

d
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CPLEX bound 
is better

(IP solver)

DD bound
is better

Bound quality, DDs vs IP 
for max stable set problem.

Relaxed DD width = 1000.

CPLEX bound based on 50 years 
of cutting plane research.

DDs require about 5% the 
computation time of CPLEX.

Optimal value obtained

Bergman, Ciré, 
van Hoeve, JH (2013) 

Relaxed DDs 
Experimental results
for node merger
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A restricted DD represents a proper subset of feasible solutions.

It can be compiled top-down by heuristically deleting nodes 
as necessary to limit the DD width.

Restricted DDs 

Bergman, Ciré, 
van Hoeve, JH (2016) 
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A restricted DD represents a proper subset of feasible solutions.

It can be compiled top-down by heuristically deleting nodes 
as necessary to limit the DD width.

Finding a shortest (longest) path in a restricted DD provides a 
primal heuristic for generating good feasible solutions.

Primal heuristics are responsible for much of the remarkable 
speedup of IP solvers.

A restricted DD can be superior to state-of-the art primal heuristics.  

Restricted DDs 

Bergman, Ciré, 
van Hoeve, JH (2016) 
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Restricted DDs 
Experimental results

Bergman, Ciré, 
van Hoeve, JH (2016) 

Primal heuristic 

in IP solver

Restricted DD

Primal heuristic 

in IP solver

Restricted DD

Quality of solution (smaller gap is better) Time to generate solutions

Primal heuristics for set covering
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DD-based Branch and Bound

Branch-and-Bound methods of integer programming prune a branching tree, 
using bounds on the optimal value from a linear programming relaxation.

DD-based Branch and Bound replaces the LP relaxation with a relaxed DD.

It branches within a relaxed DD, which eliminates many unnecessary branches.  

Bergman, Ciré, 
van Hoeve, JH (2016) 
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DD-based Branch & Bound
for a set packing instance

This is the 
last exact layer
(no node mergers)

Start building a
relaxed DD.
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{C}

{A,C}

{C,D}

{A,B}



{A,C}

{C,D}

{A,B}So branch on
this layer

DD-based Branch & Bound
for a set packing instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Build relaxed DD 
at first branching node

In classical branch 
and bound, 
LP relaxation is 
used rather than a 
relaxed DD.

DD-based Branch & Bound
for a set packing instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Longest path in the relaxed 
DD happens to be feasible.
So we have an incumbent 
solution with value 3.

If longest path is infeasible, 
we continue recursively by 
branching at the last exact 
layer of this relaxed DD.

Upper bound = 3 
Incumbent solution

DD-based Branch & Bound
for a set packing instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Decide whether 
to select set {B,D}

Upper bound = 2
Backtrack

Build relaxed DD at 
2nd branching node
Solution value 2
is no better than 
incumbent.
So backtrack.

Upper bound = 3 
Incumbent solution

DD-based Branch & Bound
for a set packing instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Decide whether 
to select set {B,D}

Upper bound = 2
Backtrack

Upper bound = 2
Backtrack

Upper bound = 3 
Incumbent solution

Solution 
value 2
is no better 
than 
incumbent.
Terminate 
search.

DD-based Branch & Bound
for a set packing instance
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{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Upper bound = 2
Backtrack

Upper bound = 2
Backtrack

Upper bound = 3 
Optimal solution

Optimal 
solution

DD-based Branch & Bound
for a set packing instance
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DD-based Branch & Bound
Experimental results

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 s

o
lu

ti
o

n
 t
im

e
 (

s
e

c
)

Density of graph

CPLEX

MDDs

Computation time 
for max cut problem 
on a graph

Bergman, Ciré, 
van Hoeve, JH (2016) 
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Performance profiles for max 2SAT

Bergman, Ciré, 
van Hoeve, JH (2016) 
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Ciré, 

van Hoeve, 
JH (2016) 
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Domain filtering and propagation are key elements of 
constraint programming.

Filtering removes values from variable domains that are 
inconsistent with a given constraint.

The reduced domains are propagated to the next constraint 
for additional filtering.

DD-based constraint propagation
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Domain filtering and propagation are key elements of 
constraint programming.

Filtering removes values from variable domains that are 
inconsistent with a given constraint.

The reduced domains are propagated to the next constraint 
for additional filtering.

Proposal: maintain a relaxed DD, rather than just variable 
domains, for each constraint.

Propagation of a relaxed DD conveys more information than domains.

DD-based constraint propagation

Andersen, Hadžić, JH, 
Tiedemann (2007)
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DD-based constraint propagation
Example

Bergman, 
Ciré, 

van Hoeve, 
JH (2016) 

filters domains to  

no more filtering possible for propagated domains

Standard domain propagation
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DD-based constraint propagation
Example

Bergman, 
Ciré, 

van Hoeve, 
JH (2016) 

Andersen, Hadžić, JH, 
Tiedemann (2007)

filters domains to  

no more filtering possible for propagated domains

2 3

1 1

2

Propagation through a relaxed DD

smaller 
domains

Standard domain propagation

1
2

3

1
2

3

1

2
1

1

2
1

1

2
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DD-based constraint propagation
Experimental results

Bergman, 
Ciré, 

van Hoeve, 
JH (2016) 

Ciré & van Hoeve (2013)
2

smaller 
domains

Pure CP better

CP + DD 
better

Traveling salesman problem with 
time windows

Intensely studied problem

Relaxed DD propagator for all-diff 
added to standard CP solver

Closed 3 long-standing open instances  

Ciré & van Hoeve 
(2013) 
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Lagrange multipliers can be added to arc costs to obtain tighter DD-based 
bounds on the optimal value.  

Classical methods can then be used to solve the Lagrangian dual on the DD.

This takes time, but the resulting extremely tight bounds can be used 
to assess the quality of heuristic solutions.  

DD-based Lagrangian relaxation

Bergman, Ciré, 
van Hoeve (2015)
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DD-based Lagrangian relaxation
Example: Job sequencing

78

Let        be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one        equal to j



Let        be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one        equal to j

The Lagrangian relaxation of the problem is 

DD-based Lagrangian relaxation
Example: Job sequencing

79

Original arc cost 
from layer i

Should be 
zero

Lagrange
multiplier



Let        be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one        equal to j

The Lagrangian relaxation of the problem is 

DD-based Lagrangian relaxation
Example: Job sequencing

80

Rearranging



Let        be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one        equal to j

The Lagrangian relaxation of the problem is 

This becomes arc 
cost in relaxed DD

DD-based Lagrangian relaxation
Example: Job sequencing

81

Offset penalty
at top of DD



DD-based Lagrangian relaxation
Example: Job sequencing

Relaxed 
sequencing DD
with Lagrange 
multipliers (3 jobs)

This is a 
multivalued DD

Shortest path is 
solution of 
Lagrangian 
relaxation for a 
given set of s.

Original arc cost +
Lagrange multiplier

Selected 
value of x1 Offset 

penalty



A set of 60 hard job sequencing instances have been studied for 25 years.  

As of 2019, none had been solved to proven optimality, although heuristic 
algorithms had been proposed.  

DDs + Lagrangian relaxation obtain extremely tight bounds, showing that 
the heuristic solutions are very close to optimal.

6 solutions are proved optimal.  

DD-based Lagrangian relaxation
Computational experiments

Biskup & Feldman 
(2001)

JH (2019)
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Sampling of results, Biskup-Feldman instances

Best known solution
JH (2019)

Time: 8 min
per instance

Time: 65 min
per instance
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DD-based Lagrangian relaxation
Computational experiments



• Network flow model of DD
• Allows DD to be integrated into linear or integer 

programming model.

• Cutting planes from DD network flow models
• Focus on separation algorithms

• Multiple network flow DDs with linked variables
• LP/MILP model provides linking constraints.

• Flow-based DDs for nonlinear problems 

Becker et al. (2005)
Behle (2007)

Bergman & Lozano (2021)

Other developments
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Bergman & Ciré (2016)
Bergman, Cardonha, Mehrani (2019)

Lozano, Bergman, Smith (2020)
Nadaraja & Ciré (2020)

Castro, Cire, Beck (2022)

Bergman & Ciré (2018) 
Lozano, Bergman, Smith (2020)

Bergman & Lozano (2021)

Becker et al. (2005)
Behle (2007)

Tjandraatmadja & van Hoeve (2019)
Davarnia & van Hoeve (2021)



• DDs for probabilistic constraints
• Uses sentential DDs, maps problem into MILP.

• Solving 2-stage stochastic programs with DDs
• Also maps to MILP.

• Stochastic exact and relaxed DDs
• Can solve stochastic DP problems by branch and bound.

• DD for continuous variables

Latour et al. (2017)
Latour, Babaki, Nijssen (2019)

Other developments
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JH (2022)

Davarnia (2021)
Salemi & Davarnia (2021)

Haus, Michini, Laumanns   (2017)
Guo, Bodur, Alema, Urbach (2021)

Lozano & Smith (2022)



• DDs in Benders decomposition
• DD can represent either master problem or subproblem.

• Feasibility checking in constraint programming.
• Nogood generation.

• Parallel computation with DD-based branch and bound.
• Much more effective than parallelization of IP solvers.

• Postoptimality analysis for IP
• Much more comprehensive than traditional methods.

Bergman & Lozano (2021)
Lozano & Smith (2019)

Salemi & Davarnia (2021)

Other developments
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Subbarayan (2008)
Gange, Stuckey, Szymanek (2013)

Jung and Régin (2021)

Hadžić & JH (2006)
Serra & JH (2020)

Bergman et al. (2014)



• General DD-based solver for combinatorial 
optimization
• CODD, based on DD compilation software Ddo 

and HADDOCK
• Uses dynamic programming problem formulations

Gillard, Schaus, Coppé (2020)
Gentzel, Michel, van Hoeve (2020)

Michel & van Hoeve (2024)

Other developments
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Part II.  Nonserial Decision Diagrams



They exploit structure of problem instances with small treewidth.  

Treewidth (with respect to an ordering) = max in-degree of nodes 
in the induced dependency graph.

Complexity of a problem instance is at worst exponential in its 
minimum treewidth over all orderings.

Instances with small treewidth generate much smaller 
nonserial DDs and are much easier to solve.
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Nonserial DDs



Why nonserial DDs?

• They exploit structure of problem instances whose 
variables partially decouple.  

• They combine nonserial dynamic programming ideas 
with DD solution technology – reduction, relaxation, 
restriction, flow models, etc.

• They can be dramatically smaller than serial DDs.
• Reduction in compilation time is even greater.
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Nonserial DDs



When exact DDs are smaller….

• Relaxed DDs of a given size provide tighter bounds.  
• Restricted DDs of a given size are more likely to yield 

feasible solutions.
• Flow models are more likely to be tractable.
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Nonserial DDs



{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

{A,C} {A,B}{C}

{C,D} {B,D} {A}

Arc indicates one or more 
elements in common
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Dependency graph
For set packing example



{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

We generally don’t know the min-treewidth ordering.  
As a heuristic, we use a min-degree ordering.

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

Arc indicates one or more 
elements in common

{A,C} {A,B}{C}

{C,D} {B,D} {A}
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Dependency graph
For set packing example



{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.

Remove

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers 
for  nonserial DD
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Dependency graph
For set packing example



{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Induced arc

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers 
for  nonserial DD
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Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.



{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C} {A,B}{C}

{C,D} {A}
Remove

{B,D} {A}
Build tree of levels 
for  nonserial DD
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Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.



{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}

Build tree of levels 
for  nonserial DD
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Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.



{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}{A,B}

Build tree of levels 
for  nonserial DD
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Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.



{A,B}

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C}{C}

{C,D} {A}

Remove
{B,D} {A}

{C}{A,B}

{C,D}

Build tree of levels 
for  nonserial DD
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Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.



{A,B}

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C}{C}

{C,D} {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

Treewidth = 
max in-degree = 2
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Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes 
in min degree order, adding arcs to connect all neighbors.



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

Layers form a 
tree rather than 
an ordered 
sequence

Layers in  orange

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

102

Nonserial DD 
For set packing example



{A,C}
Decide whether 
to select set {A,C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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{A,C}

{C,D}
Decide whether 
to select set {C,D}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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{A,C}

{C,D}
Decide whether 
to select set {C,D}

0-choice branches 
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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{A,C}

{C,D}
Decide whether 
to select set {C,D}

0-choice branches 
to two layers

1-choice branches 
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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{A,C}

{C,D}
Decide whether 
to select set {C,D}

Can be viewed as and-or DD

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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{A,C}

{C,D}
Decide whether 
to select set {C,D}

Duplication of states creates some overhead, 
but this will be offset by smaller width of layers.

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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{A,C}

{C,D}

{A,B} {C}Decide whether 
to select set {A,B}

Decide whether 
to select set {C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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Nonserial DD 
For set packing example



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

DD has 36 nodes

Decide whether 
to select set {B,D}

Decide whether 
to select set {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}
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Nonserial DD 
For set packing example



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

Evaluate the DD 
bottom-up  as  before
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Nonserial DD 
For set packing example



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0
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Nonserial DD 
For set packing example



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

max {1+1, 0+0+1} = 2
Outgoing 1-arcs
counted as one arc
(as in and-or DD)
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Nonserial DD 
For set packing example



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1
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Nonserial DD 
For set packing example



{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1

3

Trace tree of 
optimal choices 
to find optimal 
solution
{C} + {A} + {B,D}
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Nonserial DD 
For set packing example



Serial and nonserial DDs

36 nodes
116

39 nodes

Difference can be 
much greater in 
larger instances.

Nonserial DD 
For set packing example



Original and reduced nonserial DDs

36 nodes 15 nodes
117

Nonserial DD 
For set packing example



Reduced serial and nonserial DDs

18 nodes 15 nodes
118

Difference can be 
much greater in 
larger instances.

Nonserial DD 
For set packing example



Compare size of non-reduced serial and nonserial DDs for randomly 
generated set packing instances of various treewidths.

Use min-degree ordering for serial and nonserial DDs, as it 
benefits both.

Let each element occur in a given set with probability p.

Discard random instances with a disconnected dependency graph.

Use smaller values of p to get smaller treewidths.
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Nonserial DDs 
Computational experiments



100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

Each instance is 
represented by two 
data points.

Instances with many 
elements per set are 
easier to solve 
due to fewer feasible 
solutions.
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Serial and nonserial
DD size vs treewidth



100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-6 elements/set

Smaller bandwidths 
result in much larger 
serial DDs (instances 
are harder).

Nonserial DD size is 
fairly constant.

Nonserial DD’s 
exploitation of small 
bandwidth offsets 
greater difficulty of 
the instance.
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100

1000

10000

100000

0 5 10 15 20 25 30

D
D

 s
iz

e

Treewidth

30 sets, 20 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 1.6-6 elements/set

Similar pattern, 
except for inverted-U 
shape of nonserial 
data points
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Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

Larger DDs, but 
otherwise similar 
pattern
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Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

4.3 hours

1.3 seconds

Difference in compile 
time is even more 
dramatic than DD size.

Compile time is 
roughly quadratic in 
max layer size.

Serial DD layers are 
much larger.
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1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

Some serial DDs are
too large to build.

Nonserial DD size 
again levels off with 
smaller treewidths
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1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

16.5 hours

2.1 seconds
Compile time advantage 
of nonserial DD is again 
even greater than size 
advantage.
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1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

16.5 hours

2.1 seconds
Compile time advantage 
of nonserial DD is again 
even greater than size 
advantage.
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Preliminary results for 0-1 programming

Use sparser coefficient matrices to get smaller treewidths.

Nobody suggests solving 0-1 problems this way.  Use a MIP solver.

But… 0-1 inequality constraints may be a subset of the problem

and… results are the same for any set of constraints (linear or 
nonlinear) in which each constraint has the same feasible solutions.
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Nonserial DDs 
Computational experiments



Serial and nonserial
DD size vs treewidth
0-1 programming

Average 2-15 nonzeros/row

Much scatter, because 
random instances vary 
widely in difficulty
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Serial and nonserial
DD size vs treewidth
0-1 programming

Average 2-15 nonzeros/row

Pattern is clearer when 
plotting ratio of serial to 
nonserial DD size.

Nonserial DDs impose 
20% overhead when 
there is no decoupling
(treewidth = # variables)
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0 5 10 15 20
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Serial to nonserial DD size ratio



Nonserial DDs
DD size & build time
0-1 programming

Average 2-3 nonzeros/row

Serial DDs too large to build 
even for smallest treewidths.

Nonserial DD build time is
very small for treewidth  12
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Set packing problem

Nonserial DDs are very helpful when you need them, 
and are not helpful when you don’t need them.

Problem class containing 0-1 programming

Nonserial DDs radically smaller than serial DDs,
easy to build when treewidth  12 or so.
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Conclusions



We should always use nonserial DDs in DD applications.  

There is only a small computational overhead for doing so.

There are enormous computational benefits when treewidth 
is limited.

All DD technologies easily generalize to the nonserial case 
(reduction, relaxation, restriction, flow models)
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Tentative conclusions
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Congratulations!
You survived 133 slides!
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