Combinatorial Problem Solving with
Serial and Nonserial Decision Diagrams

John Hooker
Carnegie Mellon University

Workshop on SAT and Combinatorial Solving
Banff, Canada
January 2026

Carnegie Mellon University

Tepper School of Business

DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea
(1970s).

They have been used for logic circuit design
and product configuration since the 1980s.

Carnegie Mellon University
Tepper School of Business

DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea
(1970s).

They have been used for logic circuit design
and product configuration since the 1980s.

DDs have recently been adapted to
combinatorial optimization and constraint

solving.

That is the subject of this talk.

Carnegie Mellon University
Tepper School of Business

DD-based combinatorial problem solving

Partl. A brief survey of previous developments (serial DDs)

Part ll. Recentwork on nonserial DDs

Carnegie Mellon University Serial DD
Tepper School of Business

Nonserial DD

DD-based combinatorial problem solving

DDs can perform the functions

one typically finds in

optimization and constraint

solvers.

Carnegie Mellon University
Tepper School of Business

Modeling
with recursive
formulations

Relaxation
with relaxed
diagrams

Search

with a novel branch-and-

bound method

N
e

Optimization &
Constraint solving

Primal
heuristics
with restricted
diagrams

~
N

Postoptimality
analysis
with sound diagrams

Constraint
propagation
through a
(relaxed) diagram

DD-based combinatorial problem solving

Some advantages:

* Ideal forrecursive models (dynamic
programming)

* Discrete problem relaxations with
adjustable tightness

* Fast primal heuristics

* No need for linearity, convexity, or
inequality constraints

* Novel approach to branch and bound

* More effective domain propagation for
constraint programming

 Highly parallelizable

e Comprehensive postoptimality analysis

Carnegie Mellon University
Tepper School of Business

DD-based combinatorial problem solving

Some advantages:

Ideal for recursive models (dynamic
programming)

Discrete problem relaxations with
adjustable tightness

Fast primal heuristics

No need for linearity, convexity, or
inequality constraints

Novel approach to branch and bound
More effective domain propagation for
constraint programming

Highly parallelizable

Comprehensive postoptimality analysis

Carnegie Mellon University
Tepper School of Business

Disadvantages:
e Unclear how to extend to continuous
variables.*

* Reliance on good heuristic choices for
tight relaxations

*But easily embedded in mixed discrete/continuous
solvers

DD-based combinatorial problem solving

Some advantages:

Ideal for recursive models (dynamic
programming)

Discrete problem relaxations with
adjustable tightness

Fast primal heuristics

No need for linearity, convexity, or
inequality constraints

Novel approach to branch and bound
More effective domain propagation for
constraint programming

Highly parallelizable.
Comprehensive postoptimality analysis

Carnegie Mellon University
Tepper School of Business

Disadvantages:
e Unclear how to extend to continuous
variables.*

* Reliance on good heuristic choices for
tight relaxations

*But easily embedded in mixed discrete/continuous
solvers

New advantage:
 (Can exploit loosely coupled variables
with nonserial decision diagrams

Origin of DDs

* Boolean logic Boole (1847,1854)
« Switching circuits interpreted as Boolean functions Peirce (1886) Shannon (1937)
* Binary-decision programs for representing switching circuits Lee (1959)

 Graphical representation of binary-decision programs (BDDs) Akers (1978)

* Reduced ordered BDDs Bryant (1986)

* Applications to circuit design and testing, product configuration, etc.

* DD-based optimization and constraint programming

Carnegie Mellon University
Tepper School of Business

Hadzi¢ & JH (2006,2007)

Behle (2007)

Andersen, Hadzi¢, JH, Tiedemann (2007)

A comprehensive survey

M. P. Castro, A. A. Ciré, J. C. Beck, Decision diagrams for
discrete optimization: A survey of recent advances,
INFORMS Journal on Computing 34 (2022) 2271-2295

Carnegie Mellon University
Tepper School of Business

10

https://arxiv.org/abs/2201.11536
https://arxiv.org/abs/2201.11536

Outline

Part | - Survey of previous work Part Il - Nonserial DDs
* DD basics * Treewidth

 Set packing example * Set packing example

* Reduced serial DDs e Computational results

* Relaxed serial DDs

 Restricted serial DDs

* DD-based branch and bound

* DD-based constraint propagation
« DD-based Lagrangian relaxation
e Other developments

Carnegie Mellon University
Tepper School of Business

Carnegie Mellon University

Tepper School of Business

Partl. Survey of Previous Work

12

DD basics

Binary decision Ty T2 3| f
diagrams (BDDs) 0 0 0|1
encode Boolean O 0 110
functions. O 1 010
0 1 1 |1
1 0 010
1 0 1 [0
1 1 0|1
1 1 1 |1

Carnegie Mellon University

Tepper School of Business .

DD basics

Binary decision
diagrams (BDDs)
encode Boolean
functions.

Paths to 1 node
represent values of &

forwhich f(ax) = 1

Paths to 0 node
represent values of &

forwhich f(x) = 0

Carnegie Mellon University

Tepper School of Business

T x2 x3 | f
O 0 0|1
0 0 1 10
O 1 00
0 1 1 |1
1 0 010
1 0 110
1 1 0|1
1 1 1 |1

14

DD basics

Binary decision
diagrams (BDDs)
encode Boolean
functions.

Paths to 1 node

represent values of @
forwhich f(x) = 1

Paths to 0 node

represent values of @
for which f(ax) = 1

Carnegie Mellon University
Tepper School of Business

+—w—w—w—toooo,§

—— o o~ = o ol
—_— o~ OoOR O~ O
—_ -0 O = O O Y

Long arc indicates

f(]-,0,0) :f(]‘707]‘) :O

We will not use long arcs.

15

DD basics

Binary decision Ty Ty x3 | f
diagrams (BDDs) 0 0 0|1
encode Boolean O 0 110
functions. 0 1 0 |0

o 1 1 |1
Paths to 1 node 1 0 0|0
represent values of & 1 0 110
forwhich f(ax) = 1 1 1 0|1

1 1 1|1
Paths to 0 node

represent values of &
forwhich f(x) =1

We will need paths only to the
Carnegie Mellon University 1 terminal node, to represent
Tepper School of Business feasible solutions of a constraint ejTGet.

DD basics

Multivalued DDs
allow for variables with
multiple discrete values.

All results described here
are valid for both binary
and multivalued DDs.

Carnegie Mellon University
Tepper School of Business

17

DD basics

DDs can compactly represent
large feasible sets.

This BDD represents all 117,520

maximal 0-1 solutions of

300xg + 30021 + 2852 + 28513 + 26524

+ 20515 + 230x¢ + 23027 + 19028 + 20029

+ 400x19 + 200217 + 400219 + 200213 + 400214
+ 200x15 + 40016 + 200217 + 400218 < 2700

with only 152 nodes.

Carnegie Mellon University

Tepper School of Business

18

DD basics

DDs can compactly represent
large feasible sets.

This BDD represents all 117,520
maximal 0-1 solutions of

300xg + 30021 + 2852 + 28513 + 26524

+ 20515 + 230x¢ + 23027 + 19028 + 20029

+ 400x19 + 200217 + 400219 + 200213 + 400214
+ 200215 + 40016 + 200217 4+ 400218 < 2700

with only 152 nodes.

However, DDs can grow
exponentially — for example,
all permutations of 1, ..., n

Carnegie Mellon University

Tepper School of Business

19

Example
Set packing

Carnegie Mellon University
Tepper School of Business

Find a maximum subcollection of sets
in which no two sets have common elements.

A C }
{1 GDj
AB]
{ C}
A J
{ B, D}

20

Example
Set packing

Carnegie Mellon University
Tepper School of Business

Find a maximum subcollection of sets
in which no two sets have common elements.

{A, C }
{ (D}
{AB }
{ C }
{A } g solution
{ B, D}

21

Serial DD
for a set packing

problem instance

Layers
correspond
to selection
decisions
for each set.

Variables
indicate the
decisions
(controls).

Carnegie Mellon University

Tepper School of Business

{B,D}

A

\\ N \\
N
\ N
\ \
N
\ N
\ N\

ABD

C BCD AC ABCD

22

Decide whether
to select set {A,C}

Carnegie Mellon University
Tepper School of Business

Don’t select set {A,C}

AC

Select set {A,C}

23

Decide whether

> {A,C} _. 0
to select set {A,C} P \

0 AC

State consists of
elements in sets
so far selected.
As in dynamic
programming.

Carnegie Mellon University
Tepper School of Business

Decide whether
to select set {C,D}

Carnegie Mellon University
Tepper School of Business

Cannot select {C,D}
because Cis
already in the state

25

Serial DD (Al 0
for a set packing \
problem instance {C’D}/;@\ X

Decide whether AR 0 cD AC

to select set {A,B} / \ v \ '
/I \ \
/ \ \
/ \ \

0 AB CD ABCD AC

Carnegie Mellon University

Tepper School of Business

26

Serial DD {A,C’}/,‘ 0
for a set packing \
problem instance C, D} - \ AC

Decide whether

to select set {C} \

Carnegie Mellon University

Tepper School of Business

27

Serial DD
for a set packing
problem instance

Decide whether
to select set {A}

Carnegie Mellon University
Tepper School of Business

/
/
Cr 0 AB CD
ll " \\\ \\ \
'l “ \\\ \\ \\
b \ \\ \ \
(A} 0 C AB ABC CD ABCD AC
' ' T~ TS \ e
l' \ \\ \\\\ \\\ ______ A\— - \\\\
1 \ S - ™o \ S
I \ - ~ \ RS
0 A C AC AB ABC CD ACD ABCD

DD is not a tree because branches can terminate in
the same state. This happens quite often in a DD.

28

Serial DD
for a set packing

problem instance

Decide whether
to select set{B,D}

Carnegie Mellon University

Tepper School of Business

(AB} 0 CD
II\ \\ \
/ \ \
/ \ \
/ \ \
{C} 0] AB CD ABCD AC
l' \ \\\ ‘\\ \
ll “ \\\ \\ \‘
! \ \\ \ \
{Ay 0 C AB ABGC CD ABCD __AC
I \ \\ \\ _______ \ \\\
] \ N == —\\ \ S
I \ L N \ S~
(B,D} A‘ C AC AB _ ABC CD ACD ABCD
I \ \ - Seo_ -1 ~o
' X i R \\><:’>\\~\ RN T~ o
» BD A ABD C BCD AC ABCD AB ABC CD ABC
29

DD has 39 nodes

Serial DD

for a set packing
problem instance S AC
{AB} 0 AC

Now find an I,' \
optimal solution K '
recursively, using Cr 0 ABCD AC

a backward pass, ! \ . \

as in dynamic ! N \

C ABCD _AC

programming.

ABC CD ABC
0 0 0

Iy 7

BD A ABD C BCD AC ABCD AB

Carnegie Mellon University
Tepper School of Business ,\O o o0 o0 © 0 0 0
Value at current node = max number of sets selected below th&node

0
N é\ \

m \

0

Serial DD (AC) . 0
for a set packing
problem instance {C’D}/;@’\ :

max {0, 0O+1}=1
Mark optimal
decision with
orange arc

0 0 0 0 0

0 0 0 0

Carnegie Mellon University
Tepper School of Business

31

Serial DD
for a set packing
problem instance

max {1, 1+1}=2

Carnegie Mellon University
Tepper School of Business

/
/
©cr 0 AB o)
" ‘\ \\\ \\ \\
ll “ \\\ \\ ‘\
I < \
A} () C A? ABC CD ABCD __AC
=|'2\ 2\\ RN O\\\ 1 - \—<:__— 1
| \ - S -7 > \\\
| \ ~
I \ Se
BD} 0 A ACD ABCD
ﬂ\ @ (90
| \ ,":\ \\\\
1 \\ S o S S
® BD A B ABC CD ABC
O O 0 0 0) 0 0 0 0 0 0 0
32

Serial DD (AC) . 0
for a set packing
problem instance {C’D}/'w\ AC

0 0 0 0

33

0 0 0

Carnegie Mellon University
Tepper School of Business

Serial DD (A0
for a set packing
problem instance &b} \ X
max {3, 1+1} = 3 ils\ 1 \ 1
/

Carnegie Mellon University
Tepper School of Business

0 0 0 0 0 0 0 0 0

34

Serial DD (AC) . 0
for a set packing
problem instance {C,D}/,g’\ AC.

Carnegie Mellon University
Tepper School of Business

0O O 0 0 0 0 0 0 0 0 0

35

Serial DD

for a set packing
problem instance

Trace optimal
choices top-down
to find optimal
solution

(on longest path)
{C}, {A}, {B,D}

Carnegie Mellon University
Tepper School of Business

{C.D} L0
,, 3\ | h
/’ N
/’ N
{(AB} 0 CD AC.
1'3\ 1 1
/ \ \
7 \ \
! \ \
cr 0 AB CD ABCD AC
;3\ 1\ ™ 0%, 1,
I \ N \ \
{A}
{B,D}

0 0 0 0 0 0 0 0

0

36

Reduced DDs

A given Boolean function is represented by a reduced DD
(minimize size DD) that is unique for a given variable ordering.

States become irrelevant after reduction.

Longest (shortest) path can be computed in the usual fashion.

Carnegie Mellon University
Tepper School of Business

Bryant (1986)

37

Reduced DD
For set packing
problem instance.

Begin with top-down
compilation for set packing
problem.

It can be reduced in
bottom-up fashion.

Carnegie Mellon University

Tepper School of Business

38

Reduced DD
For set packing
problem instance.

Superimpose nodes that
are roots of identical DDs,
beginning with bottom layer.

Carnegie Mellon University

Tepper School of Business

39

Reduced DD
For set packing
problem instance.

Now, next layer.

Carnegie Mellon University

Tepper School of Business

40

Reduced DD
For set packing
problem instance.

Next layer

No more reduction possible.

Carnegie Mellon University

Tepper School of Business

41

Reduced DD
For set packing
problem instance.

Original and reduced serial DDs

Substantial size reduction.

Carnegie Mellon University

Tepper School of Business

39 nodes

42

Reduced weighted DDs

A weighted DD has arc costs, used to find min or min path length.
In previous example, all solid (and all dashed) arcs have the same cost.
Otherwise, one must consider arc costs during reduction.

There is a unique reduced weighted DD, which can again be found
by a bottom-up procedure...

...provided the arc costs are canonical (easily achieved).

JH (2013)
Similar result for AADDs:
Sanner & McAllister (2005)

Carnegie Mellon University

Tepper School of Business

43

Generating a reduced DD

Reduction is usually bottom-up and requires that entire DD be available.
However, reductions can sometimes be identified analytically in advance.

Example: a class of inventory management problems.

Carnegie Mellon University
Tepper School of Business

44

DP-based weighted DD
Week 1 0

State s; = inventory level (0,1,2)

o+4| 0*6

4+0
2+6

DP recursion
h;=holding cost

Week 5 0 / c; = purchase cost
ee d,=demand

gi(si) = II;III {hiSi + c;ry + gi—|—1(3i +x; — dz)} 45

Week 1

Week 5

DP-based weighted DD

0

0+4

0

0+6

2+6

e

State s; = inventory level (0,1,2)

4+0

DP recursion
h;=holding cost
Cc; = purchase cost
d;,=demand

Reduced weighted DD

Week 1

Week 2

Week 3

Week 4

Week 5

10

12

4
7

9
<13

0

(
(

8

8

14

Reformulated DP
recursion results in
canonical arc costs.

Reduced weighted DD
is much smaller,
computing shortest
path is trivial.

This simplification

was apparently never
observed over decades
of research on inventory
models.

JH (2013)

Reformulated DP recursion

/

gi(si) = min {hisi +cixi + giga1(si + x5 — dz)} 9i = HED {hz‘+1$§ + ci(xf —m 4 d;) + cip1(m — x)) s gi+1}

DP-based weighted DD Reduced weighted DD

Week 1 0 4|
State s; = inventory level (0,1,2) Week 1 o Reformulated DP
o+4| 06 recursion results in
6 7 8 canonical arc costs.
Week 2 ° Beduced weighted DD
is much smaller,
computing shortest
. °of 8 path is trivial.
Week 3 P This simplification
was apparently never
observed over decades
12 13 14 of research on inventory
models.
40 Week 4 o
2+6
0+12
DP recursion JH (2013)
h;=holding cost 0
Week 5 0 / C; = purchase cost Week 5) Reformulated DP recursion
d;=demand /

gi(si) = min {hisi +cixi + giga1(si + x5 — dz)} 9i = HED {hz‘+1$§ + ci(xf —m+d;) + cip1(m — x)) s gi+1}

DD vs state transition graph in DP

How does a DD differ from a dynamic programming state transition graph?

A state transition graph can be viewed as a DD, but:

* DD nodes need not be associated with states.

* Thereduced DD can be much smaller than the state transition graph.
e Much smaller relaxed DDs provide bounds*

e Much smaller restricted DDs provide a primal heuristic.

*DD-based relaxation # “state space relaxation” in DP

Carnegie Mellon University
Tepper School of Business

48

Relaxed DDs

Even reduced DDs tend to grow exponentially for most problems.

However, relaxed DDs of limited width can be obtained by allowing
some infeasible paths.

Carnegie Mellon University
Tepper School of Business

49

Relaxed DDs

Even reduced DDs tend to grow exponentially for most problems.

However, relaxed DDs of limited width can be obtained by allowing
some infeasible paths.

Two top-down compilation methods generate relaxed DDs:

* Node merger reduces each layer by heuristically merging nodes
and their associated states.

* Node splitting heuristically adds nodes on each layer to rule out
some infeasible solutions.

Hadzi¢ & JH (2006)
Andersen, Hadzié¢, JH, Tiedemann (2007)
Carnegie Mellon University Hadzi¢, JH, O’Sullivan, Tiedemann (2008)

Tepper School of Business Bergman, van Hoeve, JH (2011)

50

Relaxed DD using node merger
for a set packing instance

-
-

AC) -0

{c,0} .0
Start building DD. \
We wa?t a ABl 0
max width of 3. /

/
/
/
/

Merge selected | cy 0 AB

states to keep
width < 3.

Here, resulting
state is

intersection of
merged states.

Carnegie Mellon University

Tepper School of Business

N
ABCD

Merged state =
{C,D}n{A,B,C,D}n{A,C} = {C}

51

Relaxed DD using node merger ».C} __.0
for a set packing instance \

{C.D} .02 AC

Continue building /
relaxed DD from TN I

reduced layer,
using relaxed

states.
Merged state =

{C,D}n{A,B,C,D}n{A,C} ={C}

Choice of nodes
to merge is
heuristic.

Carnegie Mellon University

Tepper School of Business .

Relaxed DD using node merger ».C} __.0
for a set packing instance \

{C,D} (1)\ AC
{ABY 0 CD . AC
Continue building) N I
relaxed DD from \
reduced layer, cCy 0 AB “C
using relaxed i \ \\K _________
states. PN - ~XC

to merge is
heuristic. ’

0 \
Choice of nodes i \\ N
0

Carnegie Mellon University

Tepper School of Business

Relaxed DD using node merger

for a set packing instance
{C.D} .

{AB} @
Continue building ,
relaxed DD from /’ \
reduced layer, cy 0
using relaxed ,l' \
states. ! -
w0 ¢
Choice of nodes :\\\\\ "N
to merge is | 7

heuristic. . /
'.
!
Carnegie Mellon University 0 BD A ABD

Tepper School of Business

AC) -0

54

Relaxed DD using node merger {ACi _. 0
for a set packing instance el \

T \\\\\\\\\\ l
AC

0
." \ > Longest path of 4
0 S is a valid upper bound

A
I :\ '\\ on optimal value of 3
A C

Carnegie Mellon University
Tepper School of Business

Relaxed DDs
Conditions for node merger

A state S’ relaxes state S if and only if:

 Everycontrolthatis feasiblein Sis feasiblein S'.

* The arc costresulting from any feasible controlin S is at least
the cost of that controlin S’ (when minimizing).

A state merger operation generates a valid relaxed DD if

* The merger of two states is a relaxation of the merged states.

e State transition preserves relaxation. Thatis, If S’ relaxes S, then
P(S ') relaxes ¢(S), for any given state transition ¢.

JH (2017)

Carnegie Mellon University
Tepper School of Business

Relaxed DDs
Adjustable bound quality

Bound quality vs. relaxed DD width
for max stable set problem.

Greater bound quality can be
obtained by investing more time
to generate a larger relaxed DD

Bergman, Ciré,
van Hoeve, JH (2013)

Carnegie Mellon University
Tepper School of Business

Bound

80

70

60

50

40

30

20

10

10

100

Relaxed DD width

57

Relaxed DDs

Experimental results 22
for node merger
2r CPLEX bound
Bound quality, DDs vs IP e Is better
for max stable set problem. E 18l (IP solver)
Relaxed DD width = 1000. E .
2 16 y * oo om
CPLEX bound based on 50 years = MO _.
. QO /,‘...] e o
of cutting plane research. @ 14} ST .o
DDs require about 5% the ol DD bound -
computation time of CPLEX. | is better -
Bergman, Cire, 1 L el o | cmsmemmmmb— demmeeo
van Hoeve, JH (2013) 1 1.2 14 1.6 1.8 2

Carnegie Mellon University
Tepper School of Business

Optimal value obtained

LP+cuts bound / optimum

58

Restricted DDs

A restricted DD represents a proper subset of feasible solutions.

It can be compiled top-down by heuristically deleting nodes
as necessary to limit the DD width.

. o Bergman, Cire,
Carnegie Mellon Un1vers1ty. van Hoeve, JH (2016)
Tepper School of Business

Restricted DDs

A restricted DD represents a proper subset of feasible solutions.

It can be compiled top-down by heuristically deleting nodes
as necessary to limit the DD width.

Finding a shortest (longest) path in a restricted DD provides a
primal heuristic for generating good feasible solutions.

Primal heuristics are responsible for much of the remarkable
speedup of IP solvers.

A restricted DD can be superior to state-of-the art primal heuristics.

. o Bergman, Ciré,
Carnegie Mellon Un1vers1ty. van Hoeve, JH (2016)
Tepper School of Business

60

Restricted DDs

Experimental results

Primal heuristics for set covering

Quality of solution (smaller gap is better)

Time to generate solutions

Primal heuristic
in IP solver

Restricted DD

P ——t—

BDD —a— 1

60 T T T T T T T T 1000 -
& 35 Primal heuristic 7 100 -
§ in IP solver
-E'-‘ 50 B] —_— 10 C
= [Fj]
= un
E v
S 45| Restricted DD = L
W
o
©
g
4 40 — 0.1 -
P ———
BDD —a—— B
35 | | | | | | | | 0.01
0 500 1000 1500 2000 2500 3000 3500 4000 0

Carnegie Mellon University
Tepper School of Business

n

n

Bergman, Ciré,
van Hoeve, JH (2016)

1000 1500 2000 2500 3000 3500 4000

61

DD-based Branch and Bound

Branch-and-Bound methods of integer programming prune a branching tree,
using bounds on the optimal value from a linear programming relaxation.

DD-based Branch and Bound replaces the LP relaxation with a relaxed DD.

It branches within a relaxed DD, which eliminates many unnecessary branches.

Bergman, Ciré,
van Hoeve, JH (2016)

Carnegie Mellon University

Tepper School of Business .

DD-based Branch & Bound
for a set packing instance

Start building a
relaxed DD.

This is the ,

last exactlayer ——— {AB} {

/
(no node mergers) E \
/
/

Carnegie Mellon University

Tepper School of Business

63

DD-based Branch & Bound
for a set packing instance

{C.D} .

So branch on

. » {AB}
this layer

Carnegie Mellon University

Tepper School of Business

64

DD-based Branch & Bound

L ACH .0
for a set packing instance \

{c 0 AB Build relaxed DD
/ \ \ at first branching node
Ay 0 C_ AB
i “\~° In classical branch
E ‘/)\ and bound,
B,D} 0 A C LP relaxationis
: E | used rather than a
:\ | | relaxed DD.
Carnegie Mellon University 0 A C

Tepper School of Business

DD-based Branch & Bound
for a set packing instance

Carnegie Mellon University
Tepper School of Business

Upper bound =3
Incumbent solution

Longest path in the relaxed
DD happens to be feasible.
So we have an incumbent
solution with value 3.

If longest path is infeasible,
we continue recursively by
branching at the last exact
layer of this relaxed DD.

66

DD-based Branch & Bound
for a set packing instance

{c.D} ,
/,,,
,/
{AB} 0
/ \\\\
/
/
/
{Cr 0 AB
I \
I \
I \
Ay 0 C. AB
Decide whether ! 0N
—— {B,D} 0 A C
to select set {B,D} 5.0} , : .
o
Carnegie Mellon University 0 A C

Upper bound =3
Incumbent solution

Tepper School of Business

CD ABCD

I
CD ABCD

! \

\
1 \
| \

1 \
CD ACD ABICD

: | l

: | I
CD ACD ABCD

Upper bound =2

Backtrack

Build relaxed DD at
2"d branching node
Solution value 2

IS no better than
incumbent.

So backtrack.

67

DD-based Branch & Bound
for a set packing instance

{co}y ,0Z
4
{AB} 0
/ \\\\
U
J
!
{C} @\\\ AB
Ay 0 C. AB
Decide whether | \ 2N
B,D A C
to select set {B,D} 5,01 I(D\ :l :|
Carnegie Mellon University 0 A C

Tepper School of Business Upper bound =3

Incumbent solution

CD ABCD

\
! N
J \
! \ \

CD ACD ABCD

CD ACD ABCD
Upper bound =2
Backtrack

AC\
\
W
|
: Solution
A.C value 2
! is no better
: than
AC incumbent.
: Terminate
: search.
AC\
AC ABCD

Upper bound =2
Backtrack o

DD-based Branch & Bound
for a set packing instance

.o}y ,0Z
4
{AB} 0
/ \\\\
U
/
!
{Cr 0 AB
Optimal | |
» \
solution I,'ﬁ \
Ay 0 C. AB
:\
{B,D} 0 A C
| ! :
:\ | l
Carnegie Mellon University 0 A C

Upper bound =3
Optimal solution

Tepper School of Business

CD ABCD

\
/ \
! \
I \ N

CD ACD ABCD
CD ACD ABCD
Upper bound =2

Backtrack

AC ABCD
Upper bound =2

Backtrack o9

DD-based Branch & Bound
Experimental results

80
: : 70
Computation time
S 60
for max cut problem 3
on a graph g %0
E -e-CPLEX
5 40 ~-MDD
= S
-]
S 30
()
Bergman, Ciré, ? 20
van Hoeve, JH (2016) g
< 10
0 O === ==
0 0.2 0.4 0.6 0.8 1

Density of graph

Carnegie Mellon University

Tepper School of Business .

DD-based Branch & Bound
Experimental results

Performance profiles for max 2SAT

100
90
80
70
60
50
40
30
20

10

Number of instances solved

o Number of instances solved

N 1 10 100 1000
Computation time (sec)

o

30 variables

Bergman, Ciré,
van Hoeve, JH (2016)

Carnegie Mellon University
Tepper School of Business

—MDDs
—CPLEX

10 100 1000
Computation time (sec)

40 variables

71

DD-based constraint propagation

Domain filtering and propagation are key elements of
constraint programming.

“" Constraint

o . . Programming §
Filtering removes values from variable domains that are

inconsistent with a given constraint.

The reduced domains are propagated to the next constraint
for additional filtering.

Carnegie Mellon University

Tepper School of Business
72

DD-based constraint propagation

Domain filtering and propagation are key elements of
constraint programming.

“” Constraint

o . . Programming §
Filtering removes values from variable domains that are

inconsistent with a given constraint.

The reduced domains are propagated to the next constraint
for additional filtering.

Proposal: maintain a relaxed DD, rather than just variable Andersen, Hadzi¢, JH,
domains, for each constraint. Tiedemann (2007)

Propagation of a relaxed DD conveys more information than domains.
Carnegie Mellon University

Tepper School of Business
73

DD-based constraint propagation

Example Standard domain propagation

1 + 229 + 323 < 10 «— filters domainsto z1,xo € {1,2,3}, z3 € {1,2}
all-different(z1, x2, x3) «— no more filtering possible for propagated domains
T1,x2,23 € {1,2,3}

74

DD-based constraint propagation

Example Standard domain propagation

1 + 229 + 323 < 10 «— filters domainsto z1,xo € {1,2,3}, z3 € {1,2}
. ¢
all-different(z1, x2, x3) «— no more filtering possible for propagated domains

T1,%2,T3 € {15273}

Propagation through a relaxed DD

xr1 € {1,2,3} T € {2,3}
1 x9 € {1,2,3} T2 € {1}\
™\ smaller
/ domains
x5 € {1,2} z3 € {2}
Andersen, Hadzi¢, JH,
Tiedemann (2007)
Relaxed DD for Relaxed DD after applying all-different

To + 2x9 + 3x3 < 10 to propagated DD rather than propagated domains s

DD-based constraint propagation
Experimental results

o
o |
o
Traveling salesman problem with
time windows Pure CP better
S A
Intensely studied problem ”
E
Relaxed DD propagator for all-diff S 2 -
added to standard CP solver K CP+DD
8 better
Closed 3 long-standing open instances é’)_ - -
X X
X x
X xx
Ciré & van Hoeve ; - . X X X XX x
(2013) x y X X o K x
I X ! X 1 X 1 |
0.1 1 10 100 1000

CP - seconds
76

DD-based Lagrangian relaxation

Lagrange multipliers can be added to arc costs to obtain tighter DD-based
bounds on the optimal value.

Bergman, Ciré,
van Hoeve (2015)

Classical methods can then be used to solve the Lagrangian dual on the DD.

This takes time, but the resulting extremely tight bounds can be used
to assess the quality of heuristic solutions.

Carnegie Mellon University

Tepper School of Business

DD-based Lagrangian relaxation
Example: Job sequencing

Let ; be the /-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.

Each job must occur exactly once in a feasible path.
1 ifx; =9

— { 0 otherwise
z; = jl|=0

So for each job j we must have
exactly one Z; equaltoj —1+ y:

1

Carnegie Mellon University
Tepper School of Business

DD-based Lagrangian relaxation
Example: Job sequencing

Let ; be the /-th job in the sequence.

A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.

Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one Z; equaltoj —1+ y:

1

The Lagrangian relaxation of the problem is

minicm —I—Z)\j(— 1 —I—Z:[.:UZ :j])

Original arc cost Lagrange Should be
from layer multiplier Zero

|

=0

0 otherwise

79

DD-based Lagrangian relaxation
Example: Job sequencing

Let ; be the /-th job in the sequence.

A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.

Each job must occur exactly once in a feasible path.
B { 1 ifz; =

So for each job j we must have : . — 0 otherwise

exactlyone equaltoj —1+ :in =J]=0

1

The Lagrangian relaxation of the problem is

minZCixi —I-Z)\j(— 1 —I_Z[':UZ :]]) — Z (Ciwi T)\mj) o Z)\j
i J i i J
Rearrlnging

Carnegie Mellon University

Tepper School of Business

80

DD-based Lagrangian relaxation
Example: Job sequencing

Let ; be the /-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.

Each job must occur exactly once in a feasible path.
1 ifx; =9

— { 0 otherwise
z; = jl|=0

So for each job j we must have
exactlyone equaltoj —1+ y:

i
The Lagrangian relaxation of the problem is
) 7) () / J
This becomes arc \

cost in relaxed DD Offset penalty
attop of DD
81

Carnegie Mellon University

Tepper School of Business

DD-based Lagrangian relaxation
Example: Job sequencing

Relaxed
sequencing DD
with Lagrange
multipliers (3 jobs)

Thisis a
multivalued DD

Shortest path is
solution of
Lagrangian
relaxation for a
given set of As.

Carnegie Mellon University

Tepper School of Business

Selected
value of x, Offset
\ penalty
X1 1 r
0+ A1 — D i\ 2 0+ A3 —[D . \i
0+ Xy —30. N
e 2 3 | N3 2 1
0+ s 0+ As
2 _|_ Az 2 + Al 2 + Ag 2 + /\1
L3 3 1,13 2
22 4+ Ao
4 +/\ 2+ A3
Original arc cost + ¢

Lagrange multiplier

DD-based Lagrangian relaxation
Computational experiments

A set of 60 hard job sequencing instances have been studied for 25 years.

Biskup & Feldman
(2001)

As of 2019, none had been solved to proven optimality, although heuristic
algorithms had been proposed.

DDs + Lagrangian relaxation obtain extremely tight bounds, showing that
the heuristic solutions are very close to optimal.

JH (2019)

6 solutions are proved optimal.

Carnegie Mellon University
Tepper School of Business

DD-based Lagrangian relaxation

Computational experiments

Sampling of results, Biskup-Feldman instances

Instance | Target Bound Gap |Percent
gap
50 jobs
1| 39250 39250 0 0%
21 29043 29043 0 0%
31 33180 33180 0 0%
Time:~8min 4| 25856 25847 91 0.03%
perinstance 5| 31456 31439 17| 0.05%
6| 33452 33444 8| 0.02%
T 42234 42228 6 0.01%
8| 42218 42203 15 0.04%
91 33222 33218 41 0.01%
10| 31492 31481 11| 0.03%

Time: ~65 min
perinstance

Carnegie Mellon University

Tepper School of Busi

T

Ness

Best known solution

Instance | Target Bound Gap | Percent
gap
100 jobs
1{139573 139556 17 0.01%
21120484 120465 19 0.02%
31124325 124289 36 | 0.03%
41122901 122876 25| 0.02%
51119115 119101 14| 0.01%
6| 133545 133536 91 0.007%
71129849 129830 19 0.01%
81153965 153958 71 0.005%
91111474 111466 & | 0.007%
10 | 112799 112792 71 0.006%
/ JH (2019)

Other developments

Network flow model of DD
* Allows DD to be integrated into linear or integer
programming model.

Cutting planes from DD network flow models
* Focus on separation algorithms

Multiple network flow DDs with linked variables
 LP/MILP model provides linking constraints.

* Flow-based DDs for nonlinear problems

Carnegie Mellon University
Tepper School of Business

Becker et al. (2005)
Behle (2007)
Bergman & Lozano (2021)

Becker et al. (2005)
Behle (2007)
Tjandraatmadja & van Hoeve (2019)
Davarnia & van Hoeve (2021)

Bergman & Ciré (2016)
Bergman, Cardonha, Mehrani (2019)
Lozano, Bergman, Smith (2020)
Nadaraja & Ciré (2020)
Castro, Cire, Beck (2022)

Bergman & Ciré (2018)
Lozano, Bergman, Smith (2020)
Bergman & Lozano (2021)

85

Other developments

DDs for probabilistic constraints
 Uses sentential DDs, maps problem into MILP.

Solving 2-stage stochastic programs with DDs
* Also maps to MILP.

Stochastic exact and relaxed DDs

 (Can solve stochastic DP problems by branch and bound.

DD for continuous variables

Carnegie Mellon University
Tepper School of Business

Latour et al. (2017)
Latour, Babaki, Nijssen (2019)

Haus, Michini, Laumanns (2017)
Guo, Bodur, Alema, Urbach (2021)
Lozano & Smith (2022)

JH (2022)

Davarnia (2021)
Salemi & Davarnia (2021)

86

Other developments

* DDsin Benders decomposition Bergman & Lozano (2021)
. Lozano & Smith (2019)
* DD canrepresent either master problem or subproblem. Salemi & Davarnia (2021)
* Feasibility checking in constraint programming. Subbarayan (2008)

Gange, Stuckey, Szymanek (2013)

* Nogood generation. Jung and Régin (2021)

Parallel computation with DD-based branch and bound. Bergman et al. (2014)
* Much more effective than parallelization of IP solvers.

Postoptimality analysis for IP HadZi¢ & JH (2006)
* Much more comprehensive than traditional methods. Serra & JH (2020)

Carnegie Mellon University

Tepper School of Business .

Other developments

e General DD-based solver for combinatorial

thimization Gillard, Schaus, Coppé (2020)
o Gentzel, Michel, van Hoeve (2020)
e CODD, based on DD compilation software Ddo Michel & van Hoeve (2024)

and HADDOCK
 Uses dynamic programming problem formulations

Carnegie Mellon University
Tepper School of Business

Carnegie Mellon University

Tepper School of Business

Part Il. Nonserial Decision Diagrams

89

Nonserial DDs

They exploit structure of problem instances with small treewidth.

Treewidth (with respect to an ordering) = max in-degree of nodes
in the induced dependency graph.

Complexity of a problem instance is at worst exponential in its
minimum treewidth over all orderings.

Instances with small treewidth generate much smaller
nonserial DDs and are much easier to solve.

Carnegie Mellon University
Tepper School of Business

90

Nonserial DDs

Why nonserial DDs?

* They exploit structure of problem instances whose
variables partially decouple.

* They combine nonserial dynamic programming ideas
with DD solution technology — reduction, relaxation,
restriction, flow models, etc.

* Theycan be dramatically smaller than serial DDs.

* Reduction in compilation time is even greater.

Carnegie Mellon University
Tepper School of Business

91

Nonserial DDs

When exact DDs are smaller....

* Relaxed DDs of a given size provide tighter bounds.

* Restricted DDs of a given size are more likely to yield
feasible solutions.

* Flow models are more likely to be tractable.

Carnegie Mellon University
Tepper School of Business

92

Dependency graph
For set packing example

{A,Cl First, build dependency graph that shows variable coupling.
{C,D} Here, 0-1 variables indicate whether each set is included in packing.
{A,B}
{C) {C} — {A.C}— {AB)
{A} Arc indicates one or more
{B,D} “— elementsincommon
{C,D}—>{B,D} {A}

Carnegie Mellon University

Tepper School of Business o

Dependency graph
For set packing example

{A,C} First, build dependency graph that shows variable coupling.
{C,D} Here, 0-1 variables indicate whether each set is included in packing.
{A,B}

{C} {C} —> {A,C}<— {A,B}

{A} Arc indicates one or more
{B,D} l / >< T‘/ elements in common

{C,D}<«—{B,D} {A}

We generally don’t know the min-treewidth ordering.
As a heuristic, we use a min-degree ordering.

Carnegie Mellon University
Tepper School of Business

94

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes

{A,C} in min degree order, adding arcs to connect all neighbors.
{C,D}
{A,B}

{C} {C} —> {A,C}<— {A,B}

|~ X]
{B,D}

(CD}«<—(BD) {A}
Remove
{B,D}

Build tree of layers
for nonserial DD

Carnegie Mellon University

Tepper School of Business

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes

{A,C} in min degree order, adding arcs to connect all neighbors.
{C,D}
{A,B}

{C} {C} —> {A,C}<— {A,B}

{A}
{8,D} T
{C,D} f {A}

Induced arc {B,D}

Build tree of layers
for nonserial DD

Carnegie Mellon University

Tepper School of Business

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes

{A,C} in min degree order, adding arcs to connect all neighbors.
{C,D}
{A,B}

{C} {C} —> {A,C}<— {A,B}

(A}
1B,D}

(.} (&

Remove

{B,D} {A}
Build tree of levels —

for nonserial DD

Carnegie Mellon University
Tepper School of Business

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes

{A,C} in min degree order, adding arcs to connect all neighbors.
{C,D}
{A,B} Remove
{C} {A,C}<— {A,B}
{A}
{B,D}
(c.0})
{B,D} {A}
/V

Build tree of levels
for nonserial DD

Carnegie Mellon University
Tepper School of Business

Dependency graph
For set packing example

{AC}
1C,D}
{A,B}
1C}
1A}
1B,D}

Carnegie Mellon University
Tepper School of Business

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

Remove

(A,CH<—({A.BD)

(c.D) {A’TBY}\{C}

{B,D} {A}

Build tree of levels —

for nonserial DD

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes

{A,C} in min degree order, adding arcs to connect all neighbors.
{C,D}
{A,B}

{C} {A,C}

(A} ' .

o) @5 | {A,B}/' \{C}
™

Remove

{B,D} {A}
Build tree of levels —

for nonserial DD

Carnegie Mellon University

Tepper School of Business 100

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes

{A,C} in min degree order, adding arcs to connect all neighbors.
{C,D} {A,C}
{A,B} T
{C} {A,C} oo
{A} ‘ ’
(8,0} | /N
{A,BY}\{C}
{B,D} {A}

Treewidth= _—
max in-degree = 2
Carnegie Mellon University
Tepper School of Business

101

Nonserial DD C} |
For set packing example .-~ \

” .—— Layersin orange
{A,C}
{C,D}
Layers form a //’ “\\
tree rather than {A,B} {C}
an ordered T
sequence {B,D} {A}

) BD AB CD ABCD AC

Carnegie Mellon University
102

Tepper School of Business

Decide whether
to select set {A,C}

Carnegie Mellon University
Tepper School of Business

{A,C}

{C,D}

7N\

{A,B} {C}

1™

{B,D} {A}

103

Decide whether
to select set {C,D}

Carnegie Mellon University
Tepper School of Business

— {C,D}

{A,C}

{C,D}

7N\

{A,B} {C}

1™

{B,D} {A}

104

Decide whether

to select set {C,D} .0y

O-choice branches
to two layers

Carnegie Mellon University
Tepper School of Business

{A,C}

{C,D}

7N\

{A,B} {C}

1™

{B,D} {A}

105

Decide whether

to select set {C,D} &by

O-choice branches
to two layers

Carnegie Mellon University
Tepper School of Business

1-choice branches
to two layers

{A,C}

{C,D}

7N\

{A,B} {C}

1™

{B,D} {A}

106

Decide whether
to select set {C,D}

Carnegie Mellon University
Tepper School of Business

— {C,D}

CD

{A,C}

{C,D}

7N\

{A,B} {C}

1™

{B,D} {A}

107

Decide whether
to select set {C,D}

Carnegie Mellon University
Tepper School of Business

— {C,D}

N

Duplication of states creates some overhead,
but this will be offset by smaller width of layers.

{A,C}

{C,D}

7N\

{A,B} {C}

1™

{B,D} {A}

108

{A,C}

Nonserial DD ACH -0 T
For set packing example .-~ \ A
{c.0y Cg_ ’ __-AC {ATB} {c}
{B,D} {A}

Decide whether
to select set {C}

Decide whether

{C}
to select set {A,B}

Carnegie Mellon University

Tepper School of Business
109

{A,C}

{C,D}

Nonserial DD ACH -0
For set packing example \

P g P L N

-AC {ATB%\{C}

{C.D} T @
{B.D} A

, Decide whether
{A
.@ AB CD ABCD AC WAl to select set {A}

Decide whether
to select set{B,D} ' (. AEf C[\) ABED /AC ;\ \
' AB CD ABCD AC) A A\B cD ACD ABCD AGC

110

Carnegie Mellon University
Tepper School of Business
DD has 36 nodes

Nonserial DD ACH -0

For set packing example)

{C.D} @
{A,B}Y (" O {C}
Evaluate the DD ’,' C CD AC
bottom-up as before !
B0} 0 AB CD ABCD A‘S; ~@\ AB \C[QQD AC (A}
) BD AB CD ABCD AC § A AB CD ACD ABCD AC
O O 0 0 0 0 O O 0] 0 0 0) 0

Carnegie Mellon University

Tepper School of Business

111

Nonserial DD ACH -0

For set packingexample .-~ \

(C.D} g _-AC

| \ S o e ~

~

AB CD ABCD AC) AB CD ABCD AC - A}

. ! ! _
K O O 0. 1\ ; Ov 1 O~ 0
] \ \ \ \] \ \ \ \
\ \ \ \ I \ \ N\ N\
\ \ \ \ I \ \ o N
I

ll \ \ \
/ BD AB CD ABCD AC
0

) A AB CD ACD ABGCD AC
O 0 0O o0 0 0 0 O

O O 0 0

Carnegie Mellon University
Tepper School of Business

112

Nonserial DD ACH -0

For set packingexample .-~ \

{C.D} < §_ _-AC.

{C}
I
Outgoing 1-arcs ,
counted as one arc |
(as in and-or DD) |
I I 1 \\\ S e
B0} 0 AB CD ABCD AC » AB CD ABCD AC (A}

g g \ - .
A O O 0. 1\ | Ov 1N O~ 0%
I A \ X \ I) X S N\
\ \ \ \ I \ \ \\ \
[

ll \ \ \ N \\
) BD AB CD ABCD AC (A AB CD ACD ABCD AC
0O 0 0 0 0 0 00 0 0 0 0 0

Carnegie Mellon University
Tepper School of Business

113

Nonserial DD ACH -0

For set packingexample .-~ \

{C.DF 0 _-AC

~

I
]
I
I
I I \\\ ~
D1 0 AB CD ABCD AC 0 AB CD ABCD AC - (A}
1

\ .
\ O 0. 1 ' 0w 1 O~ 0
] \ \ \ \ I \ \ \ N\
\ \ \ \ 1) \ N\ \
\ \ \ \ I \ \ o *
I

ll \ \ \ N \\
) BD AB CD ABCD AC (A AB CD ACD ABCD AC
O 0 0 0 0 0 0 0 0 0 0 0 0

o

Carnegie Mellon University
Tepper School of Business

114

Nonserial DD {ACH (- g §
For set packing example .-~ \

(C.0} C0_ _-AC
Trage tree of (A.B) AC . (C)
optimal choices 0]
to find optimal . 'l
CD AC
0

{C}+{A}+{B,D}

~

AB CD ABCD AC

| \
{B,D} B CD ABCD AC |
| A /1\ :\ . 1\\\0\ N
] \ \ \ \ I \ \ \ \
\ \ \ \ 1 \ \ \ N\
\ | \ \ \\ \\
AC

\ \ \

\ \ \ \ N
AB CD ABCD AC 0 A AB CD ACD ABCD

O 0 0 0 0 00 0 0 0 0 0

{A}

!

(]

]

]

solution !
]

]

]

]

I

]

1

0

—
o

115

Carnegie Mellon University
Tepper School of Business

Nonserial DD
For set packing example

, Serial and nonserial DDs

Difference can be
much greater in
larger instances.

36 nodes

Carnegie Mellon University

Tepper School of Business

116

Nonserial DD
For set packing example

Original and reduced nonserial DDs

Carnegie Mellon University

Tepper School of Business

36 nodes 15 nodes

117

Nonserial DD
For set packing example

Reduced serial and nonserial DDs

Difference can be
much greater in
larger instances.

Carnegie Mellon University

Tepper School of Business 18 nodes

118

Nonserial DDs
Computational experiments

Compare size of non-reduced serial and nonserial DDs for randomly
generated set packing instances of various treewidths.

Use min-degree ordering for serial and nonserial DDs, as it
benefits both.

Let each element occur in a given set with probability p.
Discard random instances with a disconnected dependency graph.

Use smaller values of p to get smaller treewidths.

Carnegie Mellon University

Tepper School of Business
119

Serial and nonserial

DD size vs treewidth 20 sets, 30 elements
® [J
[J
Each instance is 10000 e °
represented by two e ' o, .
data points. °
Q ¢ o
(7]
Instances with many 2 000) 't 3. e Serial DDs
elements per set are . 8 e * .8, » Nonserial DDs
easier to solve A c o * o o o . .
due to fewer feasible . . . ¢ ‘
solutions.
100
0 5 10 15
Treewidth

Carnegie Mellon University

Tepper School of Business Average 2.4-6 elements/set
120

Serial and nonserial

DD size vs treewidth 20 sets, 30 elements
Smaller bandwidths *oe .
result in much larger 10000 . .
serial DDs (instances e ¥ o
[J
are harder). .
o} ° °
Nonserial DD size is o) $ 2 . e Serial DDs
: 0 1000 . °
fairly constant. .8 R » Nonserial DDs
[J
° . ! ° ®* o o : °
Nonserial DD’s . : . ° ¢
exploitation of small
bandwidth offsets 100
gr:egter difficulty of 0 . 10 15
the instance. Treewidth

Carnegie Mellon University

Tepper School of Business Average 2.4-6 elements/set
121

Serial and nonserial
DD size vs treewidth

Similar pattern,
except for inverted-U
shape of nonserial
data points

Carnegie Mellon University
Tepper School of Business

100000

10000

DD size

1000

100

30 sets, 20 elements

® o
o ®
°
o..‘O
°
¢ °
“o o ° ":
° °
oo" ¢ e ‘ ‘
e $ o
L)
10 15 20 25
Treewidth

30

e Serial DDs

e Nonserial DDs

Average 1.6-6 elements/set

122

Serial and nonserial
DD size vs treewidth

Larger DDs, but
otherwise similar
pattern

Carnegie Mellon University
Tepper School of Business

DD size

1000000

100000

10000

1000

30 sets, 40 elements

® °
°
o ©
° °
. o
° .. ’
.oo‘ o ® 4 ‘:.
° ¢ ¢ ° # o
® 9
5 10 15 20
Treewidth

25

e Serial DDs

e Nonserial DDs

Average 2.4-6 elements/set

123

Serial and nonserial

DD size vs treewidth 30 sets, 40 elements
1000000
. °® +—43hours
Difference in compile .
. [J
time is even more o
dramatic than DD size. 100000 ° .
© .’ °
Compile time is = .
roughly quadratic in a o e Serial DDs
: N ial DD
max layer size. 10000 . o » Nonserial DDs
[J
B []
Serial DD layers are 1.3 seconds L ! .o
much larger. . ° o ° s .
1000 e
0 5 10 15 20 25
Treewidth

Carnegie Mellon University

Tepper School of Business Average 2.4-6 elements/set 124

Serial and nonserial

DD size vs treewidth 40 sets, 30 elements
°e oo —— Computation terminated
1000000 *
[X J
[J
Some serial DDs are
too large to build. .
100000
1) []
Nonserial DD size = .
again levels off with a . . o e Serial DDs
. ® .
smaller treewidths ce ©® oo * * Nonserial DDs
10000 . .
° ° $ s .
o
$
1000 0%,
10 15 20 25 30 35 40
Treewidth

Carnegie Mellon University

Tepper School of Business Average 2.4-9 elements/set 125

Serial and nonserial
DD size vs treewidth

Compile time advantage
of nonserial DD is again
even greater than size
advantage.

Carnegie Mellon University
Tepper School of Business

40 sets, 30 elements

o0 :wutation terminated
1000000 . 16.5 hours
o
[]
100000
o) []
= 2.1 seconds .
8 \ ° e © o
o0 ® oo * o
10000 s L, .
° ° $ s .
s
H
1000 -
10 15 20 25 30 35
Treewidth

40

e Serial DDs

e Nonserial DDs

Average 2.4-9 elements/set

126

Serial and nonserial
DD size vs treewidth

Compile time advantage
of nonserial DD is again
even greater than size
advantage.

Carnegie Mellon University
Tepper School of Business

40 sets, 30 elements

o0 :wutation terminated
1000000 . 16.5 hours
o
[]
100000
o) []
= 2.1 seconds .
8 \ ° e © o
o0 ® oo * o
10000 s L, .
° ° $ s .
s
H
1000 -
10 15 20 25 30 35
Treewidth

40

e Serial DDs

e Nonserial DDs

Average 2.4-9 elements/set

127

Nonserial DDs
Computational experiments

Preliminary results for 0-1 programming

Use sparser coefficient matrices to get smaller treewidths.
Nobody suggests solving 0-1 problems this way. Use a MIP solver.
But... 0-1 inequality constraints may be a subset of the problem

and... results are the same for any set of constraints (linear or
nonlinear) in which each constraint has the same feasible solutions.

Carnegie Mellon University

Tepper School of Business
128

Serial and nonserial

DD size vs treewidth
. 20 variables, 10 constraints
0-1 programming
1000000 .
° ° °
e o
100000 . s O
e’ s ¢ ¢
[J o [J [:
Much scatter, because g 10000 s "o Tge v g o
random instances vary @ 8o . .
widely in difficulty e o, " b0 o Seralbbs
1000 e %o Lo e Nonserial DDs
[J P e
[J
100 °*
[J
10
0 5 10 15 20
Treewidth

Carnegie Mellon University

Tepper School of Business Average 2-15 nonzeros/row
129

Serial and nonserial
DD size vs treewidth
0-1 programming

Pattern is clearer when
plotting ratio of serial to
nonserial DD size.

Nonserial DDs impose
20% overhead when
there is no decoupling
(treewidth = # variables)

Carnegie Mellon University
Tepper School of Business

1000

100

10

Serial to nonserial DD size ratio

® °
]
e °
°
o [J
o Y)
° °
°
°
° °
°
°
° ° °
5 10
Treewidth

Average 2-15 nonzeros/row

130

Nonserial DDs
DD size & build time
0-1 programming

Serial DDs too large to build
even for smallest treewidths.

Nonserial DD build time is
very small for treewidth <12

Carnegie Mellon University
Tepper School of Business

1000000
100000
10000
1000
100

10

1

0.1

0.01
0.001

100 variables, 50 constraints

Treewidth

e DD size

e Time (sec)

15

Average 2-3 nonzeros/row

131

Conclusions

Set packing problem

Nonserial DDs are very helpful when you need them,
and are not helpful when you don’t need them.

Problem class containing 0-1 programming

Nonserial DDs radically smaller than serial DDs,
easy to build when treewidth <12 or so.

Carnegie Mellon University

Tepper School of Business
132

Tentative conclusions

We should always use nonserial DDs in DD applications.
There is only a small computational overhead for doing so.

There are enormous computational benefits when treewidth
is limited.

All DD technologies easily generalize to the nonserial case
(reduction, relaxation, restriction, flow models)

Carnegie Mellon University

Tepper School of Business .

Congratulations!
You survived 133 slides!

Carnegie Mellon University

Tepper School of Business 1o

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

