
Combinatorial Problem Solving with
Serial and Nonserial Decision Diagrams

John Hooker
Carnegie Mellon University

Workshop on SAT and Combinatorial Solving
Banff, Canada
January 2026

1

2

DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea
(1970s).

They have been used for logic circuit design
and product configuration since the 1980s.

3

DD-based combinatorial problem solving

Decision diagrams (DDs) are an old idea
(1970s).

They have been used for logic circuit design
and product configuration since the 1980s.

DDs have recently been adapted to
combinatorial optimization and constraint
solving.

That is the subject of this talk.

4

DD-based combinatorial problem solving

Part I. A brief survey of previous developments (serial DDs)

Part II. Recent work on nonserial DDs

Serial DD Nonserial DD

5

DD-based combinatorial problem solving

DDs can perform the functions
one typically finds in
optimization and constraint
solvers.

Modeling
with recursive
formulations

Relaxation
with relaxed

diagrams

Primal
heuristics

with restricted
diagrams

Constraint
propagation

through a
(relaxed) diagram

Search
with a novel branch-and-

bound method

Optimization &
Constraint solving

Postoptimality
analysis

with sound diagrams

DD-based combinatorial problem solving

Some advantages:
• Ideal for recursive models (dynamic

programming)
• Discrete problem relaxations with

adjustable tightness
• Fast primal heuristics
• No need for linearity, convexity, or

inequality constraints
• Novel approach to branch and bound
• More effective domain propagation for

constraint programming
• Highly parallelizable
• Comprehensive postoptimality analysis

DD-based combinatorial problem solving

Some advantages:
• Ideal for recursive models (dynamic

programming)
• Discrete problem relaxations with

adjustable tightness
• Fast primal heuristics
• No need for linearity, convexity, or

inequality constraints
• Novel approach to branch and bound
• More effective domain propagation for

constraint programming
• Highly parallelizable
• Comprehensive postoptimality analysis

Disadvantages:
• Unclear how to extend to continuous

variables.*
• Reliance on good heuristic choices for

tight relaxations

*But easily embedded in mixed discrete/continuous
solvers

DD-based combinatorial problem solving

Some advantages:
• Ideal for recursive models (dynamic

programming)
• Discrete problem relaxations with

adjustable tightness
• Fast primal heuristics
• No need for linearity, convexity, or

inequality constraints
• Novel approach to branch and bound
• More effective domain propagation for

constraint programming
• Highly parallelizable.
• Comprehensive postoptimality analysis

Disadvantages:
• Unclear how to extend to continuous

variables.*
• Reliance on good heuristic choices for

tight relaxations

New advantage:
• Can exploit loosely coupled variables

with nonserial decision diagrams

*But easily embedded in mixed discrete/continuous
solvers

• Boolean logic

• Switching circuits interpreted as Boolean functions

• Binary-decision programs for representing switching circuits

• Graphical representation of binary-decision programs (BDDs)

• Reduced ordered BDDs

• Applications to circuit design and testing, product configuration, etc.

• DD-based optimization and constraint programming

9

Origin of DDs

Bryant (1986)

Boole (1847,1854)

Peirce (1886) Shannon (1937)

Lee (1959)

Akers (1978)

Hadžić & JH (2006,2007) Behle (2007)

Andersen, Hadžić, JH, Tiedemann (2007)

M. P. Castro, A. A. Ciré, J. C. Beck, Decision diagrams for
discrete optimization: A survey of recent advances,
INFORMS Journal on Computing 34 (2022) 2271-2295

10

A comprehensive survey

https://arxiv.org/abs/2201.11536
https://arxiv.org/abs/2201.11536

Part I – Survey of previous work
• DD basics
• Set packing example
• Reduced serial DDs
• Relaxed serial DDs
• Restricted serial DDs
• DD-based branch and bound
• DD-based constraint propagation
• DD-based Lagrangian relaxation
• Other developments

11

Outline

Part II – Nonserial DDs
• Treewidth
• Set packing example
• Computational results

12

Part I. Survey of Previous Work

Binary decision
diagrams (BDDs)
encode Boolean
functions.

13

DD basics

1

1

1

11

0

0

0
0

0

Binary decision
diagrams (BDDs)
encode Boolean
functions.

Paths to 1 node
represent values of
for which

Paths to 0 node
represent values of
for which

14

DD basics

1

1

1

11

0

0

0
0

0

Binary decision
diagrams (BDDs)
encode Boolean
functions.

Paths to 1 node
represent values of
for which

Paths to 0 node
represent values of
for which

15

DD basics

1

1

1

11

0

0
0

0

0

Long arc indicates

We will not use long arcs.

Binary decision
diagrams (BDDs)
encode Boolean
functions.

Paths to 1 node
represent values of
for which

Paths to 0 node
represent values of
for which

16

DD basics

1

1

1

11

0

0

0
0

0

We will need paths only to the
1 terminal node, to represent
feasible solutions of a constraint set.

17

DD basics

Multivalued DDs
allow for variables with
multiple discrete values.

All results described here
are valid for both binary
and multivalued DDs.

DDs can compactly represent
large feasible sets.

This BDD represents all 117,520
maximal 0-1 solutions of

with only 152 nodes.

18

DD basics

19

DD basics
DDs can compactly represent
large feasible sets.

This BDD represents all 117,520
maximal 0-1 solutions of

with only 152 nodes.

However, DDs can grow
exponentially – for example,
all permutations of 1, …, n

Find a maximum subcollection of sets
in which no two sets have common elements.

{A, C }
{ C,D}
{A,B }
{ C }
{A }
{ B, D}

Example
Set packing

20

{A, C }
{ C,D}
{A,B }
{ C }
{A }
{ B, D}

}solution

Find a maximum subcollection of sets
in which no two sets have common elements.

Example
Set packing

21

{A,C}

{C,D}

{A,B}

{C}

{A}

{B,D}

Layers
correspond
to selection
decisions
for each set.

Variables
indicate the
decisions
(controls).

Serial DD
for a set packing
problem instance

22

{A,C}

Select set {A,C}Don’t select set {A,C}

Decide whether
to select set {A,C}

23

{A,C}

State consists of
elements in sets
so far selected.
As in dynamic
programming.

Decide whether
to select set {A,C}

24

{A,C}

{C,D}
Decide whether
to select set {C,D}

Cannot select {C,D}
because C is
already in the state

25

{A,C}

{C,D}

{A,B}
Decide whether
to select set {A,B}

Serial DD
for a set packing
problem instance

26

{A,C}

{C,D}

{A,B}

{C}
Decide whether
to select set {C}

Serial DD
for a set packing
problem instance

27

{A,B}

{A}

{C}

{A,C}

{C,D}

Decide whether
to select set {A}

DD is not a tree because branches can terminate in
the same state. This happens quite often in a DD.

Serial DD
for a set packing
problem instance

28

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

DD has 39 nodes

Decide whether
to select set {B,D}

Serial DD
for a set packing
problem instance

29

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

Now find an
optimal solution
recursively, using
a backward pass,
as in dynamic
programming.

Value at current node = max number of sets selected below the node

Serial DD
for a set packing
problem instance

30

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

max {0, 0+1} = 1
Mark optimal
decision with
orange arc

Serial DD
for a set packing
problem instance

31

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10max {1, 1+1} = 2

Serial DD
for a set packing
problem instance

32

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

Serial DD
for a set packing
problem instance

33

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1max {3, 1+1} = 3

Serial DD
for a set packing
problem instance

34

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

Serial DD
for a set packing
problem instance

35

{C}

{A}

{B,D}

{A,C}

{C,D}

{A,B}

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

2 2 0 0 1 10

3 1 1 10

3 1 1

3 1

3

Trace optimal
choices top-down
to find optimal
solution
(on longest path)
{C}, {A}, {B,D}

Serial DD
for a set packing
problem instance

36

Reduced DDs

A given Boolean function is represented by a reduced DD
(minimize size DD) that is unique for a given variable ordering.

States become irrelevant after reduction.

Longest (shortest) path can be computed in the usual fashion.

Bryant (1986)

37

39 nodes

Begin with top-down
compilation for set packing
problem.

It can be reduced in
bottom-up fashion.

Reduced DD
For set packing
problem instance.

38

Superimpose nodes that
are roots of identical DDs,
beginning with bottom layer.

Reduced DD
For set packing
problem instance.

39

Now, next layer.

Reduced DD
For set packing
problem instance.

40

Next layer

No more reduction possible.

Reduced DD
For set packing
problem instance.

41

Original and reduced serial DDs

39 nodes 18 nodes

Substantial size reduction.

Reduced DD
For set packing
problem instance.

42

Reduced weighted DDs

A weighted DD has arc costs, used to find min or min path length.

In previous example, all solid (and all dashed) arcs have the same cost.

Otherwise, one must consider arc costs during reduction.

There is a unique reduced weighted DD, which can again be found
by a bottom-up procedure…

…provided the arc costs are canonical (easily achieved).

JH (2013)
Similar result for AADDs:

Sanner & McAllister (2005)

43

Generating a reduced DD

Reduction is usually bottom-up and requires that entire DD be available.

However, reductions can sometimes be identified analytically in advance.

Example: a class of inventory management problems.

44

DP-based weighted DD

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+0

2+0

4+0

0+12

2+3

2+6

1+5
1+10

2+6

Week 1

Week 2

Week 3

Week 4

Week 5

DP recursion
hi = holding cost
ci = purchase cost
di = demand

State si = inventory level (0,1,2)

45

4

DP-based weighted DD

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+0

2+0

4+0

0+12

2+3

2+6

1+5
1+10

2+6

Week 1

Week 2

Week 3

Week 4

Week 5

DP recursion
hi = holding cost
ci = purchase cost
di = demand

9

•

7

13

0

Week 1

Week 2

Week 3

Week 4

Week 5

10

6

12

8

8

14

Reformulated DP
recursion results in
canonical arc costs.

Reduced weighted DD
is much smaller,
computing shortest
path is trivial.

This simplification
was apparently never
observed over decades
of research on inventory
models.

•

•

•

•

JH (2013)

Reduced weighted DD

State si = inventory level (0,1,2)

Reformulated DP recursion

46

4

DP-based weighted DD

2+5

1+15

4+3

2+9

0+6

0 21

0 21

0 21

0

0

0+8

0+60+4

0+12

0+9

0+10

0+20

0+15

4+0

2+0

4+0

0+12

2+3

2+6

1+5
1+10

2+6

Week 1

Week 2

Week 3

Week 4

Week 5

DP recursion
hi = holding cost
ci = purchase cost
di = demand

9

•

7

13

0

Week 1

Week 2

Week 3

Week 4

Week 5

10

6

12

8

8

14

Reformulated DP
recursion results in
canonical arc costs.

Reduced weighted DD
is much smaller,
computing shortest
path is trivial.

This simplification
was apparently never
observed over decades
of research on inventory
models.

•

•

•

•

JH (2013)

Reduced weighted DD

State si = inventory level (0,1,2)

Reformulated DP recursion

47

How does a DD differ from a dynamic programming state transition graph?

A state transition graph can be viewed as a DD, but:

• DD nodes need not be associated with states.
• The reduced DD can be much smaller than the state transition graph.
• Much smaller relaxed DDs provide bounds*
• Much smaller restricted DDs provide a primal heuristic.

*DD-based relaxation ≠ “state space relaxation” in DP

DD vs state transition graph in DP

48

Relaxed DDs

Even reduced DDs tend to grow exponentially for most problems.

However, relaxed DDs of limited width can be obtained by allowing
some infeasible paths.

49

Relaxed DDs

Even reduced DDs tend to grow exponentially for most problems.

However, relaxed DDs of limited width can be obtained by allowing
some infeasible paths.

Two top-down compilation methods generate relaxed DDs:

• Node merger reduces each layer by heuristically merging nodes
and their associated states.

• Node splitting heuristically adds nodes on each layer to rule out
some infeasible solutions.

Hadžić & JH (2006)
Andersen, Hadžić, JH, Tiedemann (2007)
Hadžić, JH, O’Sullivan, Tiedemann (2008)

Bergman, van Hoeve, JH (2011)
50

{C}

{A,C}

{C,D}

{A,B}

Relaxed DD using node merger
for a set packing instance

Start building DD.
We want a
max width of 3.

Merge selected
states to keep
width  3.

Here, resulting
state is
intersection of
merged states.

51

{A}

{C}

{A,C}

{C,D}

{A,B}
Continue building
relaxed DD from
reduced layer,
using relaxed
states.

Choice of nodes
to merge is
heuristic.

Relaxed DD using node merger
for a set packing instance

52

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Relaxed DD using node merger
for a set packing instance

53

Continue building
relaxed DD from
reduced layer,
using relaxed
states.

Choice of nodes
to merge is
heuristic.

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Relaxed DD using node merger
for a set packing instance

54

Continue building
relaxed DD from
reduced layer,
using relaxed
states.

Choice of nodes
to merge is
heuristic.

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Longest path of 4
is a valid upper bound
on optimal value of 3

Relaxed DD using node merger
for a set packing instance

55

A state S relaxes state S if and only if:
• Every control that is feasible in S is feasible in S.
• The arc cost resulting from any feasible control in S is at least

the cost of that control in S (when minimizing).

A state merger operation generates a valid relaxed DD if
• The merger of two states is a relaxation of the merged states.
• State transition preserves relaxation. That is, If S relaxes S, then

φ(S ) relaxes φ(S), for any given state transition φ.

JH (2017)

Relaxed DDs
Conditions for node merger

56

Bound quality vs. relaxed DD width
for max stable set problem.

Greater bound quality can be
obtained by investing more time
to generate a larger relaxed DD

Bergman, Ciré,
van Hoeve, JH (2013)

Relaxed DDs
Adjustable bound quality

Relaxed DD width

Bo
un

d

57

CPLEX bound
is better

(IP solver)

DD bound
is better

Bound quality, DDs vs IP
for max stable set problem.

Relaxed DD width = 1000.

CPLEX bound based on 50 years
of cutting plane research.

DDs require about 5% the
computation time of CPLEX.

Optimal value obtained

Bergman, Ciré,
van Hoeve, JH (2013)

Relaxed DDs
Experimental results
for node merger

58

A restricted DD represents a proper subset of feasible solutions.

It can be compiled top-down by heuristically deleting nodes
as necessary to limit the DD width.

Restricted DDs

Bergman, Ciré,
van Hoeve, JH (2016)

59

A restricted DD represents a proper subset of feasible solutions.

It can be compiled top-down by heuristically deleting nodes
as necessary to limit the DD width.

Finding a shortest (longest) path in a restricted DD provides a
primal heuristic for generating good feasible solutions.

Primal heuristics are responsible for much of the remarkable
speedup of IP solvers.

A restricted DD can be superior to state-of-the art primal heuristics.

Restricted DDs

Bergman, Ciré,
van Hoeve, JH (2016)

60

Restricted DDs
Experimental results

Bergman, Ciré,
van Hoeve, JH (2016)

Primal heuristic

in IP solver

Restricted DD

Primal heuristic

in IP solver

Restricted DD

Quality of solution (smaller gap is better) Time to generate solutions

Primal heuristics for set covering

61

DD-based Branch and Bound

Branch-and-Bound methods of integer programming prune a branching tree,
using bounds on the optimal value from a linear programming relaxation.

DD-based Branch and Bound replaces the LP relaxation with a relaxed DD.

It branches within a relaxed DD, which eliminates many unnecessary branches.

Bergman, Ciré,
van Hoeve, JH (2016)

62

DD-based Branch & Bound
for a set packing instance

This is the
last exact layer
(no node mergers)

Start building a
relaxed DD.

63

{C}

{A,C}

{C,D}

{A,B}

{A,C}

{C,D}

{A,B}So branch on
this layer

DD-based Branch & Bound
for a set packing instance

64

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Build relaxed DD
at first branching node

In classical branch
and bound,
LP relaxation is
used rather than a
relaxed DD.

DD-based Branch & Bound
for a set packing instance

65

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Longest path in the relaxed
DD happens to be feasible.
So we have an incumbent
solution with value 3.

If longest path is infeasible,
we continue recursively by
branching at the last exact
layer of this relaxed DD.

Upper bound = 3
Incumbent solution

DD-based Branch & Bound
for a set packing instance

66

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Decide whether
to select set {B,D}

Upper bound = 2
Backtrack

Build relaxed DD at
2nd branching node
Solution value 2
is no better than
incumbent.
So backtrack.

Upper bound = 3
Incumbent solution

DD-based Branch & Bound
for a set packing instance

67

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Decide whether
to select set {B,D}

Upper bound = 2
Backtrack

Upper bound = 2
Backtrack

Upper bound = 3
Incumbent solution

Solution
value 2
is no better
than
incumbent.
Terminate
search.

DD-based Branch & Bound
for a set packing instance

68

{B,D}

{A}

{C}

{A,C}

{C,D}

{A,B}

Upper bound = 2
Backtrack

Upper bound = 2
Backtrack

Upper bound = 3
Optimal solution

Optimal
solution

DD-based Branch & Bound
for a set packing instance

69

DD-based Branch & Bound
Experimental results

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

A
v
e

ra
g

e
 s

o
lu

ti
o

n
 t
im

e
 (

s
e

c
)

Density of graph

CPLEX

MDDs

Computation time
for max cut problem
on a graph

Bergman, Ciré,
van Hoeve, JH (2016)

70

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

DD-based Branch & Bound
Experimental results

Performance profiles for max 2SAT

Bergman, Ciré,
van Hoeve, JH (2016)

0

10

20

30

40

50

60

70

80

90

100

0.1 1 10 100 1000

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 s

o
lv

e
d

Computation time (sec)

MDDs

CPLEX

30 variables

Bergman,
Ciré,

van Hoeve,
JH (2016)

40 variables

71

Domain filtering and propagation are key elements of
constraint programming.

Filtering removes values from variable domains that are
inconsistent with a given constraint.

The reduced domains are propagated to the next constraint
for additional filtering.

DD-based constraint propagation

72

Domain filtering and propagation are key elements of
constraint programming.

Filtering removes values from variable domains that are
inconsistent with a given constraint.

The reduced domains are propagated to the next constraint
for additional filtering.

Proposal: maintain a relaxed DD, rather than just variable
domains, for each constraint.

Propagation of a relaxed DD conveys more information than domains.

DD-based constraint propagation

Andersen, Hadžić, JH,
Tiedemann (2007)

73

DD-based constraint propagation
Example

Bergman,
Ciré,

van Hoeve,
JH (2016)

filters domains to

no more filtering possible for propagated domains

Standard domain propagation

74

DD-based constraint propagation
Example

Bergman,
Ciré,

van Hoeve,
JH (2016)

Andersen, Hadžić, JH,
Tiedemann (2007)

filters domains to

no more filtering possible for propagated domains

2 3

1 1

2

Propagation through a relaxed DD

smaller
domains

Standard domain propagation

1
2

3

1
2

3

1

2
1

1

2
1

1

2

75

DD-based constraint propagation
Experimental results

Bergman,
Ciré,

van Hoeve,
JH (2016)

Ciré & van Hoeve (2013)
2

smaller
domains

Pure CP better

CP + DD
better

Traveling salesman problem with
time windows

Intensely studied problem

Relaxed DD propagator for all-diff
added to standard CP solver

Closed 3 long-standing open instances

Ciré & van Hoeve
(2013)

0.1 1 10 0.1100 1000
0.

1
1

10
10

0
10

00

C
P+

D
D

 -
se

co
nd

s

CP - seconds
76

Lagrange multipliers can be added to arc costs to obtain tighter DD-based
bounds on the optimal value.

Classical methods can then be used to solve the Lagrangian dual on the DD.

This takes time, but the resulting extremely tight bounds can be used
to assess the quality of heuristic solutions.

DD-based Lagrangian relaxation

Bergman, Ciré,
van Hoeve (2015)

77

DD-based Lagrangian relaxation
Example: Job sequencing

78

Let be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one equal to j

Let be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one equal to j

The Lagrangian relaxation of the problem is

DD-based Lagrangian relaxation
Example: Job sequencing

79

Original arc cost
from layer i

Should be
zero

Lagrange
multiplier

Let be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one equal to j

The Lagrangian relaxation of the problem is

DD-based Lagrangian relaxation
Example: Job sequencing

80

Rearranging

Let be the i-th job in the sequence.
A path in the DD corresponds to an assignment of jobs to positions 1, ..., n.
Each job must occur exactly once in a feasible path.

So for each job j we must have
exactly one equal to j

The Lagrangian relaxation of the problem is

This becomes arc
cost in relaxed DD

DD-based Lagrangian relaxation
Example: Job sequencing

81

Offset penalty
at top of DD

DD-based Lagrangian relaxation
Example: Job sequencing

Relaxed
sequencing DD
with Lagrange
multipliers (3 jobs)

This is a
multivalued DD

Shortest path is
solution of
Lagrangian
relaxation for a
given set of s.

Original arc cost +
Lagrange multiplier

Selected
value of x1 Offset

penalty

A set of 60 hard job sequencing instances have been studied for 25 years.

As of 2019, none had been solved to proven optimality, although heuristic
algorithms had been proposed.

DDs + Lagrangian relaxation obtain extremely tight bounds, showing that
the heuristic solutions are very close to optimal.

6 solutions are proved optimal.

DD-based Lagrangian relaxation
Computational experiments

Biskup & Feldman
(2001)

JH (2019)

83

Sampling of results, Biskup-Feldman instances

Best known solution
JH (2019)

Time: 8 min
per instance

Time: 65 min
per instance

84

DD-based Lagrangian relaxation
Computational experiments

• Network flow model of DD
• Allows DD to be integrated into linear or integer

programming model.

• Cutting planes from DD network flow models
• Focus on separation algorithms

• Multiple network flow DDs with linked variables
• LP/MILP model provides linking constraints.

• Flow-based DDs for nonlinear problems

Becker et al. (2005)
Behle (2007)

Bergman & Lozano (2021)

Other developments

85

Bergman & Ciré (2016)
Bergman, Cardonha, Mehrani (2019)

Lozano, Bergman, Smith (2020)
Nadaraja & Ciré (2020)

Castro, Cire, Beck (2022)

Bergman & Ciré (2018)
Lozano, Bergman, Smith (2020)

Bergman & Lozano (2021)

Becker et al. (2005)
Behle (2007)

Tjandraatmadja & van Hoeve (2019)
Davarnia & van Hoeve (2021)

• DDs for probabilistic constraints
• Uses sentential DDs, maps problem into MILP.

• Solving 2-stage stochastic programs with DDs
• Also maps to MILP.

• Stochastic exact and relaxed DDs
• Can solve stochastic DP problems by branch and bound.

• DD for continuous variables

Latour et al. (2017)
Latour, Babaki, Nijssen (2019)

Other developments

86

JH (2022)

Davarnia (2021)
Salemi & Davarnia (2021)

Haus, Michini, Laumanns (2017)
Guo, Bodur, Alema, Urbach (2021)

Lozano & Smith (2022)

• DDs in Benders decomposition
• DD can represent either master problem or subproblem.

• Feasibility checking in constraint programming.
• Nogood generation.

• Parallel computation with DD-based branch and bound.
• Much more effective than parallelization of IP solvers.

• Postoptimality analysis for IP
• Much more comprehensive than traditional methods.

Bergman & Lozano (2021)
Lozano & Smith (2019)

Salemi & Davarnia (2021)

Other developments

87

Subbarayan (2008)
Gange, Stuckey, Szymanek (2013)

Jung and Régin (2021)

Hadžić & JH (2006)
Serra & JH (2020)

Bergman et al. (2014)

• General DD-based solver for combinatorial
optimization
• CODD, based on DD compilation software Ddo

and HADDOCK
• Uses dynamic programming problem formulations

Gillard, Schaus, Coppé (2020)
Gentzel, Michel, van Hoeve (2020)

Michel & van Hoeve (2024)

Other developments

88

89

Part II. Nonserial Decision Diagrams

They exploit structure of problem instances with small treewidth.

Treewidth (with respect to an ordering) = max in-degree of nodes
in the induced dependency graph.

Complexity of a problem instance is at worst exponential in its
minimum treewidth over all orderings.

Instances with small treewidth generate much smaller
nonserial DDs and are much easier to solve.

90

Nonserial DDs

Why nonserial DDs?

• They exploit structure of problem instances whose
variables partially decouple.

• They combine nonserial dynamic programming ideas
with DD solution technology – reduction, relaxation,
restriction, flow models, etc.

• They can be dramatically smaller than serial DDs.
• Reduction in compilation time is even greater.

91

Nonserial DDs

When exact DDs are smaller….

• Relaxed DDs of a given size provide tighter bounds.
• Restricted DDs of a given size are more likely to yield

feasible solutions.
• Flow models are more likely to be tractable.

92

Nonserial DDs

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

{A,C} {A,B}{C}

{C,D} {B,D} {A}

Arc indicates one or more
elements in common

93

Dependency graph
For set packing example

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

We generally don’t know the min-treewidth ordering.
As a heuristic, we use a min-degree ordering.

First, build dependency graph that shows variable coupling.
Here, 0-1 variables indicate whether each set is included in packing.

Arc indicates one or more
elements in common

{A,C} {A,B}{C}

{C,D} {B,D} {A}

94

Dependency graph
For set packing example

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

Remove

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers
for nonserial DD

95

Dependency graph
For set packing example

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

Induced arc

{A,C} {A,B}{C}

{C,D} {A}

{B,D}
Build tree of layers
for nonserial DD

96

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C} {A,B}{C}

{C,D} {A}
Remove

{B,D} {A}
Build tree of levels
for nonserial DD

97

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}

Build tree of levels
for nonserial DD

98

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C} {A,B}{C}

{C,D} {A}

Remove

{B,D} {A}

{C}{A,B}

Build tree of levels
for nonserial DD

99

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

{A,B}

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C}{C}

{C,D} {A}

Remove
{B,D} {A}

{C}{A,B}

{C,D}

Build tree of levels
for nonserial DD

100

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

{A,B}

{B,D}

{A,C}
{C,D}
{A,B}
{C}
{A}

{B,D}

{A,C}{C}

{C,D} {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

Treewidth =
max in-degree = 2

101

Dependency graph
For set packing example

Now, build induced dependency graph by removing nodes
in min degree order, adding arcs to connect all neighbors.

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

Layers form a
tree rather than
an ordered
sequence

Layers in orange

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

102

Nonserial DD
For set packing example

{A,C}
Decide whether
to select set {A,C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

103

{A,C}

{C,D}
Decide whether
to select set {C,D}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

104

{A,C}

{C,D}
Decide whether
to select set {C,D}

0-choice branches
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

105

{A,C}

{C,D}
Decide whether
to select set {C,D}

0-choice branches
to two layers

1-choice branches
to two layers

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

106

{A,C}

{C,D}
Decide whether
to select set {C,D}

Can be viewed as and-or DD

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

107

{A,C}

{C,D}
Decide whether
to select set {C,D}

Duplication of states creates some overhead,
but this will be offset by smaller width of layers.

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

108

{A,C}

{C,D}

{A,B} {C}Decide whether
to select set {A,B}

Decide whether
to select set {C}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

109

Nonserial DD
For set packing example

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

DD has 36 nodes

Decide whether
to select set {B,D}

Decide whether
to select set {A}

{B,D} {A}

{C}{A,B}

{C,D}

{A,C}

110

Nonserial DD
For set packing example

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

Evaluate the DD
bottom-up as before

111

Nonserial DD
For set packing example

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

112

Nonserial DD
For set packing example

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

max {1+1, 0+0+1} = 2
Outgoing 1-arcs
counted as one arc
(as in and-or DD)

113

Nonserial DD
For set packing example

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1

114

Nonserial DD
For set packing example

{A,C}

{C,D}

{A,B} {C}

{A}{B,D}

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 1 1 0 0 01

0 0 0 0

2 1 1 1 0 0

3 1

3

Trace tree of
optimal choices
to find optimal
solution
{C} + {A} + {B,D}

115

Nonserial DD
For set packing example

Serial and nonserial DDs

36 nodes
116

39 nodes

Difference can be
much greater in
larger instances.

Nonserial DD
For set packing example

Original and reduced nonserial DDs

36 nodes 15 nodes
117

Nonserial DD
For set packing example

Reduced serial and nonserial DDs

18 nodes 15 nodes
118

Difference can be
much greater in
larger instances.

Nonserial DD
For set packing example

Compare size of non-reduced serial and nonserial DDs for randomly
generated set packing instances of various treewidths.

Use min-degree ordering for serial and nonserial DDs, as it
benefits both.

Let each element occur in a given set with probability p.

Discard random instances with a disconnected dependency graph.

Use smaller values of p to get smaller treewidths.

119

Nonserial DDs
Computational experiments

100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

Each instance is
represented by two
data points.

Instances with many
elements per set are
easier to solve
due to fewer feasible
solutions.

120

Serial and nonserial
DD size vs treewidth

100

1000

10000

0 5 10 15

D
D

 s
iz

e

Treewidth

20 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-6 elements/set

Smaller bandwidths
result in much larger
serial DDs (instances
are harder).

Nonserial DD size is
fairly constant.

Nonserial DD’s
exploitation of small
bandwidth offsets
greater difficulty of
the instance.

121

100

1000

10000

100000

0 5 10 15 20 25 30

D
D

 s
iz

e

Treewidth

30 sets, 20 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 1.6-6 elements/set

Similar pattern,
except for inverted-U
shape of nonserial
data points

122

Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

Larger DDs, but
otherwise similar
pattern

123

Serial and nonserial
DD size vs treewidth

1000

10000

100000

1000000

0 5 10 15 20 25

D
D

 s
iz

e

Treewidth

30 sets, 40 elements

Serial DDs

Nonserial DDs

Average 2.4-6 elements/set

4.3 hours

1.3 seconds

Difference in compile
time is even more
dramatic than DD size.

Compile time is
roughly quadratic in
max layer size.

Serial DD layers are
much larger.

124

1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

Some serial DDs are
too large to build.

Nonserial DD size
again levels off with
smaller treewidths

125

1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

16.5 hours

2.1 seconds
Compile time advantage
of nonserial DD is again
even greater than size
advantage.

126

1000

10000

100000

1000000

10 15 20 25 30 35 40

D
D

 s
iz

e

Treewidth

40 sets, 30 elements

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth

Average 2.4-9 elements/set

Computation terminated

16.5 hours

2.1 seconds
Compile time advantage
of nonserial DD is again
even greater than size
advantage.

127

Preliminary results for 0-1 programming

Use sparser coefficient matrices to get smaller treewidths.

Nobody suggests solving 0-1 problems this way. Use a MIP solver.

But… 0-1 inequality constraints may be a subset of the problem

and… results are the same for any set of constraints (linear or
nonlinear) in which each constraint has the same feasible solutions.

128

Nonserial DDs
Computational experiments

Serial and nonserial
DD size vs treewidth
0-1 programming

Average 2-15 nonzeros/row

Much scatter, because
random instances vary
widely in difficulty

129

10

100

1000

10000

100000

1000000

0 5 10 15 20

D
D

 s
ize

Treewidth

20 variables, 10 constraints

Serial DDs

Nonserial DDs

Serial and nonserial
DD size vs treewidth
0-1 programming

Average 2-15 nonzeros/row

Pattern is clearer when
plotting ratio of serial to
nonserial DD size.

Nonserial DDs impose
20% overhead when
there is no decoupling
(treewidth = # variables)

130

1

10

100

1000

0 5 10 15 20
Treewidth

Serial to nonserial DD size ratio

Nonserial DDs
DD size & build time
0-1 programming

Average 2-3 nonzeros/row

Serial DDs too large to build
even for smallest treewidths.

Nonserial DD build time is
very small for treewidth  12

131

0.001

0.01

0.1

1

10

100

1000

10000

100000

1000000

0 5 10 15
Treewidth

100 variables, 50 constraints

DD size

Time (sec)

Set packing problem

Nonserial DDs are very helpful when you need them,
and are not helpful when you don’t need them.

Problem class containing 0-1 programming

Nonserial DDs radically smaller than serial DDs,
easy to build when treewidth  12 or so.

132

Conclusions

We should always use nonserial DDs in DD applications.

There is only a small computational overhead for doing so.

There are enormous computational benefits when treewidth
is limited.

All DD technologies easily generalize to the nonserial case
(reduction, relaxation, restriction, flow models)

133

Tentative conclusions

134

Congratulations!
You survived 133 slides!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

