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• Consistency is a core concept of constraint 

programming.

– Roughly speaking, consistent = partial assignments 

that violate no constraint are consistent with the 

constraint set.

– They occur in some feasible solution.

– Consistency  less backtracking

– Sometimes no backtracking, depending on the type of 

consistency.
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Consistency



• The concept of consistency never developed in 

the optimization literature.

– Even though it is closely related to the amount of 

backtracking…

– …and even though valid inequalities (cutting planes) 

can reduce backtracking by achieving a greater degree 

of consistency

– …as well as by tightening a relaxation.
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Consistency



• Goal: Adapt consistency to integer programming.

– This can lead to new methods to reduce backtracking.

– Can also help to explain behavior of cutting planes.

– Requires us to bridge two thought systems.
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Consistency



• Goal: Adapt consistency to integer programming.

– This can lead to new methods to reduce backtracking.

– Can also help to explain behavior of cutting planes.

– Requires us to bridge two thought systems.

– Caveat: We don’t claim, at this point, that these ideas 

will improve IP solvers.

– Although we have some interesting preliminary results.

– Reminder:  It took 20+ years to learn how to use simple 

Gomory cuts in an IP solver.
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Consistency



• Define a consistent partial assignment.

– A partial assignment                 is consistent with 

constraint set S if

is feasible.

– Constraint set S is consistent if every partial assignment 

that violates no constraint in S is consistent with S.
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Consistency

A partial assignment 

violates a constraint 

only if it assigns values

to all variables in the constraint.

Tuple of vj s

for j  J



Example.

S =

Feasible set:

S is not consistent because (x1,x2) = (0,0) violates 

no constraint in S but is inconsistent with S; that is,

is infeasible.

7

Consistency



Define consistency in terms of projection.

The projection of constraint set S onto J is
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Consistency & Projection

Set of tuples

(x1,…,xn) 

satisfying S



Define consistency in terms of projection.

The projection of constraint set S onto J is

Let be set of assignments                 that are 

consistent with S.  Then S is consistent if and only if
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Consistency & Projection

Set of tuples

(x1,…,xn) 

satisfying S

Set of constraints in S

whose variables 

belong to xJ



Example.

S =

D(S) =

S is not consistent because
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Consistency & Projection

(0,0)

(0,1)

(1,0)

(1,1)

(0,1)

(1,0)

(1,1)



S is domain consistent if and only if

Example.

D(S) =

S is domain consistent because 
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Domain Consistency

Domain of xj

{0,1}{0,1}



• There is no backtracking if domain consistency is 

achieved at every node of the branching tree.

– At level k, set xk equal to any value in its domain.

The corresponding subtree contains a feasible solution, 

and we can continue branching.
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Domain Consistency



• There is no backtracking if the original constraint 

set is fully consistent.

– At level k in the branching tree, where 

(x1,…,xk1) = (v1,…,vk1):

if (x1,…,xk) = (v1,…,vk) violates no constraint, then the 

subtree formed by setting xk = vk contains a feasible 

solution, and we can continue branching.
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Domain Consistency



• This is a weaker type of consistency that can also 

avoid backtracking.

– We define k-consistency with respect to the particular 

variable ordering x1,…,xn (the intended branching order).

– Constraint set S is k-consistent if

where
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k-consistency

Or: any assignment to first k  1 variables that violates no constraint 

can be extended to an assignment to first k variables that violates 

no constraint



• 1-consistent:  trivial
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k-consistency

Example



• 1-consistent:  trivial

• 2-consistent:  need only check (x1,x4)
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k-consistency

Example



• 1-consistent:  trivial

• 2-consistent:  need only check (x1,x4)

• not 3-consistent:  

(x1,x2) = (0,0) cannot be extended to (x1,x2,x4) = (0,0,?)
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k-consistency

Example



• Suppose we add a constraint:

• This is 3-consistent.

• New constraint rules out the only

partial solution that couldn’t be 

extended: (x1,x2) = (0,0)

• Now S is k-consistent for k = 1,2,3.

• No backtracking occurs.

• For example, (x1,x2,x3,x4) = (0,1,1,0).
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k-consistency



• Two interpretations of the

new constraint

– Rank 1 Chvátal-Gomory cut

• Cuts off part of LP relaxation

• Namely, vertices 

– Resolvent of (a) and (c)

• Cuts off an inconsistent partial assignment 

• In this case, achieves 3-consistency.
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k-consistency

Resolution:



• Problem: consistency and k-consistency are 

very hard to achieve.

• Possible solution:  Use LP consistency and 

LP k-consistency

• LP = linear programming
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• Problem: consistency and k-consistency are

very hard to achieve.

• Possible solution:  Use LP consistency and 

LP k-consistency

• LP = linear programming

• Applies to integer programming constraint sets.

• For simplicity, assume variables are 0-1

• Definitions

– Let 

– Let the LP relaxation be

– We assume               contains 
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• Defining LP consistency

– Recall that classical consistency is defined 

with respect to a relaxation:
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LP consistency

Relaxation of S



• Defining LP consistency

– Recall that classical consistency is defined 

with respect to a relaxation:

– Rationale: consistency makes it easy to detect 

inconsistent partial assignments 

– An inconsistent partial assignment 

always violates the relaxation SJ.

– is obviously infeasible.
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LP consistency

Relaxation of S



• Defining LP consistency

– Define LP consistency with respect to 

LP relaxation:

24

LP consistency

LP relaxation of S

Set of 0-1 

assignments to xJ

feasible for SLP



• Defining LP consistency

– Define LP consistency with respect to 

LP relaxation:

– Rationale: LP consistency makes it easy to detect 

inconsistent 0-1 partial assignments

– An inconsistent 0-1 partial assignment xJ = vJ

always violates the relaxation SLP.

– Infeasibility of                             is easy to check.

– It’s an LP problem! 
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LP consistency

LP relaxation of S

Set of 0-1 

assignments to xJ

feasible for SLP
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LP consistency

x1

Example.

S is not LP consistent because the partial assignment

is consistent with SLP but not with S.

Both                           and                           violate S.   

x2



Theorem.  A consistent 0-1 constraint set is LP consistent.

Relationship with integer hull

Theorem.  A feasible 0-1 constraint set S is LP consistent 

if SLP describes the integer hull of S.

• The converse does not hold.  An LP consistent model 

need not define the integer hull.

• LP consistency is not a concept of traditional polyhedral 

theory.
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LP consistency
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LP consistency

Example

S1 is LP consistent because 

it describes integer hull.

S2 is also LP consistent 

even though it does not 

describe the integer hull.

x2

x1

x3
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LP consistency

Example

Facet-defining inequalities in S1

sum to the non-facet-defining 

inequality in S2.

Yet the “weaker” inequality in S2

cuts off more 0-1 points than 

either facet-defining inequality.

x2

x1

x3
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LP consistency

Example

The purpose of achieving

LP consistency is to cut off

infeasible 0-1 (partial)

assignments…

Not to cut off fractional

vertices of LP relaxation.

x2

x1

x3



Relationship with cutting planes

Definition:  the inequality

Theorem.  A 0-1 partial assignment is consistent with SLP

if and only if it violates no clausal rank 1 Chvátal-Gomory

cut for SLP.
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LP consistency

is clausal because it represents the logical clause



Relationship with cutting planes

Definition:  the inequality

Theorem.  A 0-1 partial assignment is consistent with SLP

if and only if it violates no clausal rank 1 Chvátal-Gomory

cut for SLP.

Theorem.  S is LP consistent if and only if all of its implied

clausal inequalities are rank 1 C-G cuts for SLP.

• Achieving LP consistency has same power as deriving 

all clausal rank 1 C-G cuts.  32

LP consistency

is clausal because it represents the logical clause
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LP k-consistency

• LP k-consistency is a weaker form of 

LP consistency, and easier to achieve.

– S is LP k-consistent if

where

Or: any 0-1 assignment to first k  1 variables that is consistent 

with SLP can be extended to an assignment to first k variables 

that is consistent with SLP.



• There is no backtracking if the original constraint 

set is LP k-consistent for k = 1,…,n.

• …and we solve LPs along the way.

– At level k in the branching tree, where we have fixed

:

If                                                           is a feasible LP,

then the subtree formed by setting               contains a 

feasible solution, and we can continue branching.
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LP k-consistency



Achieving LP k-consistency

We used a modified lift-and-project procedure

Let

where              includes  

Generate the nonlinear system

Linearize the system by replacing each       with

and each         with   

Theorem.  Adding this system to SLP yields an 

LP k-consistent constraint set.

Note that we lift only into 1 higher dimension.



Achieving LP k-consistency

We used a modified lift-and-project procedure

Optionally:

Project resulting system onto    to obtain constraints 

in original variables.

Project system onto           to obtain sparse cuts.

Thus when k is small, LP k-consistency can be achieved 

by adding very sparse cuts—which tend to be strong.
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LP k-consistency
Example

Lift & project generates LP 2-consistent constraint set

x1

x2
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LP k-consistency
Example

Lift & project generates LP 2-consistent constraint set

Projection onto 

(x1,x2) yields 

x1

x2



LP k-consistency and Backtracking

Achieving LP k-consistency can reduce backtracking 

when traditional separating cuts do not.

This is shown in the following example.

A lift-and-project cut that achieves LP 2-consistency 

results in a smaller search tree than separating 

lift-and-project cuts.



LP k-consistency and Backtracking

Achieving LP k-consistency can reduce backtracking 

when traditional separating cuts do not.

This is shown in the following example.

A lift-and-project cut that achieves LP 2-consistency 

results in a smaller search tree than separating 

lift-and-project cuts.

The example does not show that achieving 

LP k-consistency is practical in an IP solver.  

It only shows that, even in a very small example, 

achieving LP k-consistency can cut off partial 

assignments and reduce backtracking when 

separating cuts do not.  



Separating cuts

x1

x2

Maximize



Separating cuts

x1

x2

Maximize

LP solution is



Separating cuts

Maximize

LP solution is

Generate lift & project cuts on x1

x1

x2

Only one cut is separating



Separating cuts

Maximize

LP solution is

Generate lift & project cuts on x1

x1

x2

Only one cut is separating

New LP solution is



Separating cuts

x1

x2

New LP solution is

Branch on x2



Separating cuts

Branch on x1



Separating cuts

Branch on x1

Backtrack.



Separating cuts LP 2-consistency

Branching order x1, x2
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x1

x2



Separating cuts LP 2-consistency

Branching order x1, x2
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x1

x2

Achieve 2-consistency

by generating lift & 

project cut on x2



Separating cuts LP 2-consistency

Branching order x1, x2
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x1

x2

Achieve 2-consistency

by generating lift & 

project cut on x2

Keep this cut even though 

it is not separating



Separating cuts LP 2-consistency

Branching order x1, x2
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x1

x2

Achieve 2-consistency

by generating lift & 

project cut on x2

Keep this cut even though 

it is not separating.

is inconsistent with 

LP relaxation



Separating cuts LP 2-consistency
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x1

x2

Keep this cut even though 

it is not separating.

is inconsistent with 

LP relaxation

So branch



Separating cuts LP 2-consistency
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Keep this cut even though 

it is not separating.

is inconsistent with 

LP relaxation

So branch

This solves the problem 

with smaller search tree.



• We can achieve LP k-consistency at any level k

of the branching tree with 1 step of lift & project.

• That is, lift into 1 higher dimension and project. 

• This allows us to avoid backtracking.
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Application



• We can achieve LP k-consistency at any level k

of the branching tree with 1 step of lift & project.

• That is, lift into 1 higher dimension and project. 

• This allows us to avoid backtracking.

• This gets computationally very hard as k increases.

• So achieve LP k-consistency at top few levels 

of the tree.

• This yields sparse cuts.

• Lift into several higher dimensions if desired, rather 

than 1.

• To reduce future backtracking.

• Perhaps use RLT.
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Application



• Resulting cuts are different than in standard 

branch and cut

• They contain variables that are already fixed

• …rather than variables not yet fixed.

• They have a different purpose.

• They are intended to cut off inconsistent 0-1 partial 

assignments rather than tighten LP relaxation.

• Although they can do both, just as traditional cuts 

can do both.
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LP k-consistency



Very preliminary computational tests

Random instances.
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CPLEX with 

default cuts

No presolve

CPLEX with default cuts

(no presolve)

plus RLT cuts to achieve 

LP k-consistency at all nodes.

Bound on objective function

included in constraint set.

vs.



Very preliminary computational tests

Random instances.
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Vars. Con-

strs.

# CPLEX

cuts

CPLEX

tree

size

CPLEX 

time

(s)

# our

cuts

Our

tree

size

Our

time

(s)

25 25 58 263 3.6 34 82 87

30 30 55 194 2.6 48 158 194

35 35 105 1412 19 175 394 905



• New concept of consistency

• LP consistency, based on defining consistency with respect 

to a relaxation

• Novel approach to IP.

• Identify cuts that exclude infeasible partial solutions rather 

than fractions solutions.

• May be computationally useful at some point.

• Rethinking IP.

• How an inequality can be stronger than facet-defining.

• How cuts can reduce backtracking without an LP relaxation, 

by achieving some form of consistency.

59

Contributions



• Extend to MILP

• Probably straightforward

• Computational issues

• Heuristics to generate sparse cuts (by achieving 

LP k-consistency for small k)

• At which nodes to achieve (partial) k-consistency?

• Reinterpret traditional cuts

• To what extent do they achieve consistency?

• Traditional cuts that are useful even when non-separating
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Research Issues


