
Consistency for 0–1 Programming

Danial Davarnia1 and J. N. Hooker2

1 Iowa state University
davarnia@iastate.edu

2 Carnegie Mellon University
jh38@andrew.cmu.edu

Abstract. Concepts of consistency have long played a key role in con-
straint programming but never developed in integer programming (IP).
Consistency nonetheless plays a role in IP as well. For example, cutting
planes can reduce backtracking by achieving various forms of consistency
as well as by tightening the linear programming (LP) relaxation. We
introduce a type of consistency that is particularly suited for 0-1 pro-
gramming and develop the associated theory. We define a 0-1 constraint
set as LP-consistent when any partial assignment that is consistent with
its linear programming relaxation is consistent with the original 0-1
constraint set. We prove basic properties of LP-consistency, including
its relationship with Chvátal-Gomory cuts and the integer hull. We show
that a weak form of LP-consistency can reduce or eliminate backtracking
in a way analogous to k-consistency. This work suggests a new approach
to the reduction of backtracking in IP that focuses on cutting off infea-
sible partial assignments rather than fractional solutions.

Keywords: Consistency · Resolution · Constraint satisfaction · Integer
programming · Backtracking · Cutting planes

1 Introduction

Consistency is a fundamental concept of constraint programming (CP) and an
essential tool for the reduction of backtracking during search [1]. Curiously, the
concept never explicitly developed in mathematical programming, even though
solvers rely on a similar type of branching search. In fact, the cutting planes
of integer programming can reduce backtracking by achieving various forms of
consistency as well as by tightening the linear programming (LP) relaxation.

This suggests that it may be useful to investigate the potential role of con-
sistency concepts in mathematical programming. We do so for 0–1 integer pro-
gramming in particular. We study how consistency relates to such integer pro-
gramming ideas as the LP relaxation, Chvátal-Gomory cutting planes [3], and
the integer hull, as well as how consistency can be achieved for 0–1 inequalities.
Our main contribution is to introduce a type of consistency, LP-consistency, that
seems particularly relevant to 0–1 programming, and to develop the underlying
theory. We show that achieving a form of partial LP-consistency can reduce
backtracking in ways that traditional cutting planes do not.

2 Davarnia and Hooker

One way to reduce backtracking is to identify partial assignments to the
variables that are inconsistent with the constraint set, meaning that they cannot
occur in a feasible solution of the constraints. Branching decisions that result in
such partial assignments can then be avoided, thus removing infeasible subtrees
from the search. Unfortunately, it is generally hard to identify inconsistent partial
assignments in advance.

The essence of consistency is that it makes it easier to identify inconsistent
partial assignments. Full consistency allows one to recognize an inconsistent
partial assignment by the fact that it violates a constraint that contains only
the variables in the partial assignment. Because full consistency is very hard
to achieve, CP solvers rely on domain consistency (generalized arc consistency)
[1,4,10,11], which reduces variable domains to the point that every value in them
occurs in some feasible solution. If domain consistency is obtained at the current
node of the search tree, branching on any value in a variable’s domain can lead
to a feasible solution. Domain consistency is itself hard to achieve for the entire
constraint set, but can often be achieved, or partially achieved, for individual
global constraints in the CP model, and this reduces backtracking significantly
[14].

Our approach is based on the idea that consistency can be defined with
respect to a relaxation of the constraint set. Specifically, we interpret consistency
as making it possible to identify inconsistent partial assignments by checking
whether they are consistent with a certain type of relaxation. This perspective
allows us to propose alternative types of consistency by using various types of
relaxation. For traditional consistency, the relaxation is obtained simply by drop-
ping constraints that contain variables that are not in the partial assignment.
We define LP-consistency by replacing this relaxation with the LP relaxation.
Thus LP-consistency ensures that any partial assignment that is consistent with
the LP relaxation is consistent with the original constraint set. Fortunately, one
can easily check consistency with an LP relaxation simply by solving the LP
problem that results from adding the partial assignment to the LP relaxation.

This poses the question of whether it is practical to achieve LP-consistency
for a 0–1 problem. There is no known practical method for achieving full LP-
consistency, but we take a cue from the concept of k-consistency in CP [5,15,16],
which is weaker than full consistency but sufficient to avoid backtracking if
the constraints are not too tightly coupled by common variables. We define a
similar property, sequential LP k-consistency, that can avoid some backtracking
that traditional cutting planes may permit, because it focuses on identifying
inconsistent partial assignments rather than cutting off fractional solutions of
the LP relaxation.

A method for obtaining sequential LP k-consistency is suggested by our
practice of defining consistency concepts in terms of projection, as proposed
in [9]. One can define sequential LP k-consistency, in particular, in terms of the
results of lifting a problem from k − 1 dimensions to k dimensions, and then
projecting it back into k − 1 dimensions. A modified form of the well-known
lift-and-project technique of IP [2] achieves sequential LP k-consistency.

Consistency for 0–1 Programming 3

We begin below by defining and illustrating basic consistency concepts and
showing how they can be cast in terms of projection. We also indicate how
consistency can eliminate or reduce backtracking. We review some prior work
showing that an inference method of propositional logic, resolution, can achieve
consistency for 0–1 problems, and that a weak form of resolution, input resolu-
tion, can generate all Chvátal-Gomory cuts for a set of logical clauses.

At this point we introduce LP-consistency and show some elementary prop-
erties, namely that consistency implies LP-consistency, and a constraint set
that describes the integer hull is necessarily LP-consistent. Yet LP-consistency
is a concept that does not occur in polyhedral theory, and an LP-consistent
constraint set need not describe the integer hull. While the facet-defining in-
equalities that describe the integer hull are generally regarded as the strongest
valid inequalities, we show that they can be weaker than a non-facet-defining
inequality that achieves LP-consistency, in the sense that they exclude fewer
inconsistent 0–1 (partial) assignments. We further elaborate on connections with
cutting plane theory by showing that a 0–1 partial assignment is consistent with
the LP relaxation if and only if it violates no logical clause that is a Chvátal-
Gomory (C-G) cut, and a 0–1 problem is LP-consistent if and only if all of its
implied logical clauses are C-G cuts. We also note that while input resolution
derives C-G cuts, it does not achieve LP-consistency.

The remainder of the paper defines and develops the concept of sequential
LP k-consistency. It shows that achieving sequential LP k-consistency for k =
1, . . . , n (where n is the number of variables) avoids backtracking altogether
for branching order x1, x2, . . . , xn. In practice, one would achieve sequential LP
k-consistency for a few small values of k. We then prove that one step of the
lift-and-project procedure [2] achieves sequential k-consistency for a given k.
Finally, we illustrate how achieving sequential LP k-consistency even for k = 2
can avoid backtracking that is permitted by traditional separating cuts.

2 Consistency and Projection

To define consistency, it is convenient to adopt basic terminology as follows. The
domain Dj of a variable xj is the set of values that can be assigned to xj . A
constraint C is an object that contains some set {x1, . . . , xk} of variables, such
that any given assignment of values to (x1, . . . , xk) either satisfies or violates C.
Thus a constraint is satisfied or violated only when all of its variables have been
assigned values. An assignment to x satisfies a constraint set S when it satisfies
all the constraints in S. A list of symbols defined hereafter appears in Table 1.

Let xJ be the tuple containing the variables in {xj | j ∈ J} for J ⊆ N =
{1, . . . , n}. A partial assignment to x is an assignment of values to xJ for some
J ⊆ N . We can now define a consistent partial assignment and a consistent
constraint set.

Definition 1. Given a constraint set S, a partial assignment xJ = vJ is con-
sistent with S if S ∪ {xJ = vJ} is feasible.

4 Davarnia and Hooker

Since it is hard in general to determine whether S ∪ {xJ = vJ} is feasible, it
is hard to identify which partial assignments are consistent with S. Consistent
constraint sets are defined so that it is easy to identify which partial assignments
are consistent with them.

Definition 2. A constraint set S is consistent if every partial assignment to x
that violates no constraint in S is consistent with S.

The contrapositive is perhaps more intuitive: S is consistent when every partial
assignment that is inconsistent with S violates some individual constraint in
S. Thus a consistent constraint set can be viewed as one in which implied con-
straints are made explicit, in the sense that every inconsistent partial assignment
is explicitly ruled out by some constraint in the set.

Since full consistency is generally hard to achieve, the constraint program-
ming community has found various weaker forms of consistency to be more
useful. By far the most popular is domain consistency, also known as generalized
arc consistency [1,4,10,11].

Definition 3. A constraint set S is domain consistent if xj = vj is consistent
with S for all vj ∈ Dj and all variables xj.

That is, every value in the domain of a variable xj is assigned to xj in some
feasible solution of S. A consistent constraint set is necessarily domain consistent.

Example 1. Suppose that S is the constraint set

x1 + x2 + x4 ≥ 1
x1 − x2 + x3 ≥ 0
x1 − x4 ≥ 0
xj ∈ {0, 1}, all j

Table 1: List of symbols.

xJ tuple of variables xj for j ∈ J
N the set {1, . . . , n}
Jk the set {1, . . . , k}
Dj domain of xj

DJ cartesian product of Dj for j ∈ J
D(S) set of assignments∗ to x that satisfy S
DJ(S) set of assignments∗ to xJ that are consistent with S
D(S)|J projection of D(S) onto xJ

SJ set of constraints in S that contain only variables in xJ

SLP LP relaxation of 0–1 constraint set S
DJ(SLP) set of 0–1 assignments to xJ that are consistent with SLP

SC set of clausal inequalities implied by individual constraints of S
∗an assignment x = v or xJ = vJ assumes that v ∈ D, vJ ∈ DJ .

Consistency for 0–1 Programming 5

The domains are Dj = {0, 1} for j = 1, . . . , 4. The feasible solutions (x1, . . . , x4)
of S are listed below:

(0, 1, 1, 0) (1, 0, 1, 0) (1, 1, 0, 1)
(1, 0, 0, 0) (1, 0, 1, 1) (1, 1, 1, 0)
(1, 0, 0, 1) (1, 1, 0, 0) (1, 1, 1, 1)

Set S is not consistent because, for instance, the partial assignment (x1, x2) =
(0, 0) violates no constraint in S but is inconsistent with S due to the fact that
(x1, x2) = (0, 0) in none of the feasible solutions. On the other hand, S is domain
consistent because xj = 0 and xj = 1 occur in some feasible solution for each j.

The various consistency concepts are more easily defined in terms of projec-
tion, as proposed in [9]. Let DJ be the cartesian product of Dj for j ∈ J , and
let D = DN . When we speak of an assignment x = v or a partial assignment
xJ = vJ , we assume v ∈ D and vJ ∈ DJ . Let D(S) be the set of assignments to x
that satisfy S, and let DJ(S) be the set of assignments to xJ that are consistent
with S. Thus

DJ(S) =
{
vJ ∈ DJ

∣∣ S ∪ {xJ = vJ} is feasible
}

The projection of D(S) onto xJ , which we may write D(S)|J , is {xJ | x ∈ D(S)}.
We can now define consistency in terms of projection. Let SJ be the set

of constraints in S whose variables belong to xJ . Then DJ(SJ) is the set of
assignments to xJ that violate no constraints in S.

Proposition 1. A constraint set S is consistent if and only if DJ(SJ) = D(S)|J
for all J ⊆ N . In addition, S is domain consistent if and only if Dj = D(S)|{j}
for all j ∈ N .

3 Consistency and Backtracking

It is well known that consistency is closely related to backtracking. We note first
that branching can find a feasible solution for a fully consistent constraint set
without backtracking, assuming of course that the constraints have a solution.
Suppose we branch on variables x1, . . . , xn in that order. Each node in level
j of the branching tree corresponds to a partial assignment (x1, . . . , xj−1) =
(v1, . . . , vj−1). We branch on xj at the node by assigning to xj each value vj ∈ Dj

for which the partial assignment (x1, . . . , xj) = (v1, . . . , vj) violates no constraint
in S. Due to the consistency of S, this partial assignment is consistent with S
for at least one value vj ∈ Dj . Thus branching can continue to the bottom of
the tree with no need to backtrack.

A weaker form of consistency, k-consistency, avoids backtracking if there is
limited coupling of variables [6]. More relevant to our purposes is a still weaker
form of consistency that assumes the branching order is given, namely x1, . . . , xn.
Let Jk = {1, . . . , k}.

6 Davarnia and Hooker

Definition 4. A constraint set S is sequentially k-consistent if DJk−1
(SJk−1

) =
DJk

(SJk
)|Jk−1

.

Thus S is sequentially k-consistent if for every partial assignment (x1, . . . , xk−1) =
(v1, . . . , vk−1) that violates no constraint in S, there is a value vk in Dk such
that (x1, . . . , xk) = (v1, . . . , vk) violates no constraint in S. The following is easy
to show.

Proposition 2. If the branching order is x1, . . . , xn, constraint set S can be
solved without backtracking if S is sequentially k-consistent for k = 1, . . . , n.

Example 2. Let S = {3x1 +2x2 ≥ 1, −x1 +2x2 ≥ 0, x ∈ {0, 1}2}. Proposition 2
implies that we can avoid backtracking by branching in the order x1, x2, because
S is sequentially 1-consistent and sequentially 2-consistent.

4 Consistency and Resolution

Previous research has shown that the resolution procedure of propositional logic
achieves consistency for a 0–1 constraint set. First, some definitions. A literal `j
is a proposition of the form xj or ¬xj . A logical clause is a disjunction

∨
j∈J `j

of literals. A clause C1 implies C2 when C1 absorbs C2, meaning that all the
literals of C1 are in C2. There is a resolution proof of any clause that is logically
implied by a clause set C [12,13].

Now let S be 0–1 constraint set {Ax ≥ b, x ∈ {0, 1}n}, where the domains
are Dj = {0, 1} for all j. S logically implies 0–1 constraint set S ′ when all 0–1
points that satisfy S also satisfy S ′. S and S ′ are logically equivalent when they
logically imply each other. A logical clause

∨
j∈J+ xj ∨

∨
j∈J− ¬xj is represented

by the 0–1 inequality ∑
j∈J+

xj +
∑
j∈J−

(1− xj) ≥ 1

A 0–1 inequality is clausal when it represents a clause. It is clear that a 0–1
inequality is logically equivalent to the set of clausal inequalities it implies. Thus
if we let SC be the set of clausal inequalities that are implied by some inequality
in S, then S is logically equivalent to SC. It is shown in [8] that resolution on
clausal inequalities achieves consistency.

The following example illustrates how a traditional cutting plane can serve
the dual purpose of tightening the linear programming (LP) relaxation and
achieving consistency. Let the LP relaxation of S = {Ax ≥ b, x ∈ {0, 1}n}
be SLP = {Ax ≥ b, x ∈ [0, 1]n}.

Example 3. Suppose that S is the constraint set of Example 1. In this case,
S and SC are identical. Resolution yields two additional clausal inequalities,
x1 +x2 ≥ 1 and x1 +x3 ≥ 1. Adding these inequalities to S achieves consistency.
These inequalities are also traditional cutting planes for S, in particular Chvátal-
Gomory (C-G) cuts. The first cuts off two fractional vertices (x1, . . . , x4) =
(1
3 ,

1
3 , 0,

1
3), (1

2 , 0, 0,
1
2) of the polytope described by SLP, and the second cuts off

Consistency for 0–1 Programming 7

the vertex (1
2 ,

1
2 , 0, 0) as well. The inequalities therefore serve the dual purpose of

achieving consistency and tightening the LP relaxation. As it happens, adding
both resolvents yields an integral polytope, but we will see that a consistent
constraint does not in general describe an integral polytope.

A special class of resolution proofs, namely input proofs, derive all clausal
C–G cuts for SC [7].

5 LP-consistency

While resolution can always achieve consistency, it is not a practical method
for the reduction of backtracking. Resolution proofs tend to explode rapidly in
length and complexity. However, the LP relaxation of S provides an additional
tool for this purpose. Specifically, it provides a more useful test for consistency
than whether a partial assignment violates a constraint.

Consistency of S implies that any partial assignment xJ = vJ that is consis-
tent with SJ (i.e., violates no constraint in S) is consistent with S. We want a
type of consistency that ensures that any partial assignment consistent with
SLP is consistent with S. We can achieve this by defining consistency with
respect to the LP relaxation SLP rather than the relaxation SJ . Recall that
classical consistency is defined so that DJ(SJ) = D(S)|J . We therefore define
LP-consistency as follows.

Definition 5. A 0–1 constraint set S is LP-consistent if DJ(SLP) = D(S)|J
for all J ⊆ N .

Note that DJ(SLP) refers to the set of 0–1 assignments to xJ that are consistent
with SLP, since the domains are Dj = {0, 1} for all j. Thus S is LP-consistent
if SLP ∪ {xJ = vJ} is infeasible for any 0–1 partial assignment xJ = vJ that is
inconsistent with S.

Example 4. Consider the 0–1 constraint set S = {4x1 + 4x2 ≥ 1, 2x1 − 4x2 ≥
−3, x ∈ {0, 1}2} (Fig. 1). The partial assignment x1 = 0 is consistent with SLP
but not with S, because both (x1, x2) = (0, 0) and (x1, x2) = (0, 1) violate S. So
S is not LP-consistent.

Two elementary properties of LP-consistency follow.

Proposition 3. A consistent 0–1 constraint set is LP-consistent.

Proof. Consider any 0–1 partial assignment xJ = vJ that is consistent with SLP.
We claim that xJ = vJ is consistent with S, which suffices to show that S is
LP-consistent. Since SLP∪{xJ = vJ} is feasible, xJ = vJ violates no constraints
in S. Now since S is consistent, this means that xJ = vJ is consistent with S,
as claimed. ut

In addition, a 0–1 constraint set that describes the integer hull (the convex hull
of feasible 0–1 points) is LP-consistent.

8 Davarnia and Hooker

x1

x2

Fig. 1: Illustration of Example 4.

Proposition 4. Given 0–1 constraint set S, if SLP describes the integer hull of
D(S), then S is LP-consistent.

Proof. Suppose that S∪{xJ = vJ} is infeasible for a given 0–1 partial assignment
xJ = vJ . Then xJ = vJ describes a face of the unit hypercube that is disjoint
from D(S). This implies that the face is disjoint from the convex hull of D(S),
which is described by SLP. Thus SLP ∪ {xJ = vJ} is infeasible, and it follows
that S is LP-consistent. ut

It is essential to observe that a convex hull model is not necessary to achieve
LP-consistency, a fact that will be exploited in later sections. This can be seen
in an example.

Example 5. Consider the following two constraint sets (Fig. 2), which have the
same feasible set:

S1 = {x1 + x2 ≤ 1, x2 + x3 ≤ 1, x ∈ {0, 1}3}
S2 = {x1 + 2x2 + x3 ≤ 2, x ∈ {0, 1}3}

The LP relaxation S1LP describes the integer hull of D(S1) = D(S2), and so S1 is
LP-consistent by Proposition 4. Yet the constraint set S2 is also LP-consistent,
even though S2LP does not describe the integer hull, but describes a polytope
with fractional extreme points (x1, x2, x3) = (0, 12 , 1), (1, 12 , 0). Interestingly, the
inequality x1 + 2x2 +x3 ≥ 2 in S2 is the sum of the two nontrivial facet-defining
inequalities in S1 and is therefore weaker than either of them from a polyhedral
point of view. Yet it cuts off more infeasible 0–1 points than either of the facet-
defining inequalities and is therefore stronger in this sense. Indeed, the purpose
of achieving LP-consistency is to cut off infeasible 0–1 (partial) assignments, not
to cut off fractional vertices of the LP relaxation.

6 Characterizing LP-Consistency

The following result gives a necessary condition for consistency based on clausal
inequalities.

Consistency for 0–1 Programming 9

x2

x1

x3

Fig. 2: Illustration of Example 5

Proposition 5. If a constraint set S is consistent, then all of its implied clausal
inequalities are in SC.

Proof. Suppose that S is consistent, and let C be any clausal inequality implied
by S. Then the assignment xJ = vJ violates C, where xJ are the variables in
C and vj is 1 when xj is negated in C and 0 otherwise. This means xJ = vJ is
inconsistent with S, which implies by the consistency of S that xJ = vJ violates
an inequality αx ≥ β in S. As a result, C must be implied by αx ≥ β, showing
that C ∈ SC. ut

LP-consistency allows us to derive a stronger argument on the relation be-
tween an LP-consistent set and its implied clausal inequalities, as it provides
both necessary and sufficient conditions. In particular, a 0–1 constraint set S is
LP-consistent if and only if all of its implied clauses are C-G cuts for SLP. This
is due to the following fact.

Proposition 6. Given a 0–1 constraint set S, a 0–1 partial assignment is con-
sistent with SLP if and only if the assignment violates no clausal C-G cut for
SLP.

Proof. It suffices to show that a given 0–1 partial assignment xJ = vJ violates
a clausal C-G for SLP if and only if SLP ∪ {xJ = vJ} is infeasible. Suppose first
that xJ = vJ violates a clausal inequality ax ≥ β that is a C-G cut for SLP,
where SLP is the system Ax ≥ b. Since xJ = vJ violates ax ≥ β, we can write
the inequality as aJxJ ≥ β, where aJvJ ≤ β − 1. Now since ax ≥ β is a C–G
cut, there is a tuple u ≥ 0 of multipliers such that uA = a and β − 1 < ub ≤ β.
We therefore have (uA)JvJ = aJvJ ≤ β − 1 < ub. This implies that xJ = vJ
violates uAx ≥ ub, and so SLP ∪ {xJ = vJ} must be infeasible.

For the converse, suppose that SLP ∪ {xJ = vJ} is infeasible, which means
that the face of the unit hypercube defined by xJ = vJ lies outside the polytope
defined by SLP. Let J+ = {j ∈ J | vj = 0} and J− = {j ∈ J | vj = 1}.

10 Davarnia and Hooker

Then some inequality of the form
∑

j∈J+ xj +
∑

j∈J−(1 − xj) ≥ π̄ for some
π̄ > 0 separates the face just mentioned from the polytope; i.e., xJ = vJ violates
this inequality. Since this inequality is valid for SLP, it is dominated by some
surrogate of Ax ≥ b. That is there exists a tuple u ≥ 0 of multipliers such that
uA ≥ ub is of the form ∑

j∈J+

xj +
∑
j∈J−

(1− xj) ≥ π (1)

where π ≥ π̄, and π ≤ |J | because S is feasible. Now pick any subset Ĵ ⊆ J with
|Ĵ | = dπe − 1, let Ĵ+ = J+ ∩ Ĵ , and let Ĵ− = J− ∩ Ĵ . Take the sum of (1) with
−xj ≥ −1 for j ∈ Ĵ+ and xj ≥ 0 for j ∈ Ĵ−. This yields a clausal inequality
that is a surrogate of Ax ≥ b:∑

j∈J+\Ĵ+

xj +
∑

j∈J−\Ĵ−

(1− xj) ≥ 1 + π − dπe

Rounding up the right-hand side (if necessary) yields a clausal C–G cut violated
by xJ = vJ . Thus xJ = vJ violates a clausal C-G cut for SLP, as claimed. ut

Example 6. Consider again the constraint set S of Example 3. The partial as-
signment (x1, x3) = (0, 0) is inconsistent with SLP and violates a clausal C-G cut,
namely x1 + x3 ≥ 1. The cut is obtained by assigning multipliers 1

4 ,
1
2 ,

1
4 ,

1
4 ,

1
2

to the three constraints of S, x2 ≥ 0, and x3 ≥ 0, respectively. The partial
assignment (x1, x3) = (0, 1) is consistent with SLP and therefore violates no
clausal C-G cut.

Corollary 1. A constraint set S is LP-consistent if and only if all of its implied
clausal inequalities are C-G cuts for SLP.

Proof. Suppose first that S is LP-consistent, and let C be any clausal inequality
implied by S. Then the assignment xJ = vJ violates C, where xJ are the
variables in C and vj is 1 when xj is negated in C and 0 otherwise. This means
xJ = vJ is inconsistent with S, which implies by the LP-consistency of S that
xJ = vJ is inconsistent with SLP. By Proposition 6, xJ = vJ violates some
clausal C-G cut C ′ of SLP. Then C ′ must absorb C, which means C is likewise
a C-G cut of SLP.

Conversely, suppose all clausal inequalities implied by S are C-G cuts for
SLP, and consider any partial assignment xJ = vJ that is consistent with SLP.
By Proposition 6, xJ = vJ violates no clausal C-G cut of SLP. This means that
it violates no clause implied by S, which means that xJ = vJ is consistent with
S, as desired. ut

Example 7. The constraint set S of Example 1 is LP-consistent because its
implied clausal inequalities are all implied by the inequalities in the set S ∪
{x1 + x2 ≥ 1, x1 + x3 ≥ 1}, and these are all C-G cuts for SLP.

Consistency for 0–1 Programming 11

7 LP-Consistency and Backtracking

Like full consistency in CP, full LP-consistency is difficult to achieve. We there-
fore follow the lead of the CP community and consider a weaker form of con-
sistency, namely an analog of k-consistency. While even k-consistency is hard
to achieve in practice, and the CP community focuses on domain consistency
instead, a form of LP-consistency analogous to sequential k-consistency may
offer possibilities to 0–1 programming.

Recall that S is sequentially k-consistent if DJk−1
(SJk−1

) = DJk
(SJk

)|Jk−1
,

and that sequential k-consistency for k = 1, . . . , n suffices to avoid backtracking
when the branching order is x1, . . . , xn. A parallel definition that relates to linear
programming is as follows.

Definition 6. A 0–1 constraint set S is sequentially LP k-consistent if
DJk−1

(SLP) = DJk
(SLP)|Jk−1

.

Equivalently, we can say that S is sequentially LP k-consistent if for every 0–1
partial assignment xJk−1

= vJk−1
that is consistent with SLP, there is a 0–1

assignment xk = vk for which xJk
= vJk

is consistent with SLP. Thus sequential
LP k-consistency is analogous to sequential k-consistency but based on the SLP
relaxation rather than the SJk−1

relaxation.
This form of consistency can also allow us to avoid backtracking, if we are will-

ing to solve appropriate LP problems. Specifically, suppose that at a given node
in the branching tree, prior branching has fixed (x1, . . . , xk−1) = (v1, . . . , vk−1).
For the next branch, we select a value vk ∈ {0, 1} for which the partial assignment
(x1, . . . , xk) = (v1, . . . , vk) is consistent with SLP; that is, for which the LP
problem SLP ∪{(x1, . . . , xk) = (v1, . . . , vk)} is feasible. We then set xk = vk and
continue to the next level of the tree. The following theorem guarantees that the
LP problem will be feasible for at least one value of vk, and that this process
avoids backtracking.

Proposition 7. If S is a feasible 0–1 constraint set over x and the branch-
ing order is x1, . . . , xn, achieving sequential LP k-consistency for k = 1, . . . , n
suffices to solve S without backtracking.

Proof. Since S is feasible, SLP is feasible at the root node of the branching
tree, and so the empty assignment is consistent with SLP. Arguing inductively,
suppose the partial assignment (x1, . . . , xk−1) = (v1, . . . , vk−1) that reflects the
branching decisions down to the node at level k is consistent with SLP. Since
S is sequentially LP k-consistent, there exists a 0–1 value vk of xk for which
the partial assignment (x1, . . . , xk) = (v1, . . . , vk) is consistent with SLP. By
induction, SLP ∪{(x1, . . . , xn) = (v1, . . . , vn)} is feasible at the terminal node of
the tree for some tuple (v1, . . . , vn) of 0–1 values. But in this case, (x1, . . . , xn) =
(v1, . . . , vn) satisfies S, and we have solved the problem without backtracking.

ut

Example 8. Consider the constraint set S of Example 4. S is not sequentially
LP 2-consistent because x1 = 0 is consistent with SLP, but neither (x1, x2) =

12 Davarnia and Hooker

(0, 0) nor (x1, x2) = (0, 1) is consistent with SLP. Also, backtracking is possible,
because if we set x1 = 0 at the root node because x1 = 0 is consistent with SLP,
we cannot find a consistent value for x2 at the child node and must backtrack.
Now suppose we add the clause x1+x2 ≥ 1 to S to obtain a constraint set S ′ that
is sequentially LP 2-consistent (Fig. ??). At the root node we must branch on
x1 = 1, because x1 = 0 is not consistent with S ′LP. At the child node, branching
on x2 = 1 yields an assignment (x1, x2) = (1, 1) that is consistent with SLP and,
in fact, solves S without backtracking.

8 Achieving LP Consistency

We can achieve sequential LP k-consistency by using one step of a modified lift-
and-project method [2]. Given S = {Ax ≥ b, x ∈ {0, 1}n} where 0 ≤ xi ≤ 1 is
included in Ax ≥ b, we generate the nonlinear system

(Ax− b)xk ≥ 0

(Ax− b)(1− xk) ≥ 0

We next linearize the system by replacing each x2k with xk, and each product
xixk with yik. Let the resulting system be Rk(SLP). Adding the constraints in
this system to SLP yields a sequentially LP k-consistent constraint set.

Proposition 8. Given a 0–1 constraint set S, augmenting S with the con-
straints in Rk(SLP) yields a constraint set that is sequentially LP k-consistent.

Proof. For a given 0–1 partial assignment xJ = vJ , suppose that SLP∪{(xJk
) =

(vJk
)} is infeasible for vk = 0, 1. It suffices to show that Rk(SLP)|N ∪ {xJk−1

=
vJk−1

} is infeasible. It follows from Theorem 2.1 in [2] that Rk(SLP)|N describes
the convex hull of the union of D(SLP∪{xk = vk}) over vk = 0, 1. We claim that
xJk−1

= vJk−1
does not satisfy Rk(SLP)|N . Assume to the contrary. Then there

exists a point w = (vJk−1
, ṽk, ṽK , ỹ) that satisfies Rk(SLP), where K = N \ Jk.

This point must be representable as a convex combination of two points of the
form (vJk−1

, 0, v̇K , ẏ) and (vJk−1
, 1, v̈K , ÿ), since the components of vJk−1

are
integral and cannot be represented as the convex combination of other points.
However, by assumption such points do not exist because SLP ∪ {xJk

= vJk
} is

infeasible for vk = 0, 1. This yields the desired contradiction. ut

If desired, Rk(SLP) can be projected onto x, before adding its constraints
to SLP, to obtain a sequentially LP k-consistent system in the space of original
variables. Alternatively, Rk(SLP) can be projected onto xJk−1

to obtain sparse
cuts that are nonetheless sufficient to achieve sequential LP k-consistency. Every
partial assignment xJk−1

= vJk−1
that is inconsistent with SLP violates some

individual cut in Rk(SLP)|Jk−1
.

Example 9. Consider again Example 4, in which

S = {2x1 − 4x2 ≥ −3, 4x1 + 4x2 ≥ 1, x1, x2 ∈ {0, 1}}

Consistency for 0–1 Programming 13

Recall that S is not LP 2-consistent because x1 = 0 is consistent with SLP
and (x1, x2) = (0, v2) is inconsistent with SLP for v2 = 0, 1. We wish to achieve
sequential LP 2-consistency by applying the modified lift-and-project procedure.
First generate the constraints

(2x1 − 4x2 + 3)x2 ≥ 0 x1x2 ≥ 0

(2x1 − 4x2 + 3)(1− x2) ≥ 0 x1(1− x2) ≥ 0

(4x1 + 4x2 − 1)x2 ≥ 0 (1− x1)x2 ≥ 0

(4x1 + 4x2 − 1)(1− x2) ≥ 0 (1− x1)(1− x2) ≥ 0

After linearizing and writing y12 simply as y, we obtain the system R2(SLP):

−x2 + 2y ≥ 0 y ≥ 0

2x1 − 3x2 − 2y + 3 ≥ 0 x1 − y ≥ 0

3x2 + 4y ≥ 0 x2 − y ≥ 0

4x1 + x2 − 4y − 1 ≥ 0 −x1 − x2 + y + 1 ≥ 0

(2)

The third constraint on the left can be omitted because it is implied by x2, y ≥ 0.
Adding the constraints in (2) to SLP yields a sequentially LP 2-consistent set,
and it is clear on inspection that x1 = 0 is inconsistent with (2). If we wish to
obtain a consistent constraint set in the original variables, we can project (2)
onto (x1, x2). This yields a constraint 4x1− x2 ≥ 1 that can be added to SLP to
obtain a sequentially LP 2-consistent set, as illustrated in Fig. 3(a). It is evident
in the figure that x1 = 0 is inconsistent with this set. Finally, we can obtain a
sparse cut that achieves sequential LP 2-consistency by projecting (2) onto x1.
This yields the cut x1 ≥ 1

4 , which likewise excludes x1 = 0.

An advantage of sequential LP-consistency is that it can avoid branching
that traditional cutting planes do not avoid, because it focuses on excluding
inconsistent partial assignments, rather than on tightening the LP relaxation by

x1

x2

x1

x2

Fig. 3: Illustration of Examples 9 and 10.

14 Davarnia and Hooker

cutting off fractional points. This can be illustrated in a very simple context as
follows.

Example 10. Suppose we wish to maximize 3x2−x1 subject to the constraint set
S in the previous example. We first apply a traditional branch-and-cut procedure
that generates separating lift-and-project cuts at the root node (Fig. 4(a)). The
solution of the LP relaxation at the root node is (x1, x2) = (1

2 , 1). Lift and
project yields the cuts x1 − 4x2 ≥ −3 and x1 + 4x2 ≥ 1 (corresponding to the
disjunction x1 = 0 ∨ x1 = 1) as illustrated in Fig. 3(b), and the cut 4x1−x2 ≥ 1
(corresponding to x2 = 0 ∨ x2 = 1) as illustrated in Fig. 3(a). Only the first
cut is generated, because only it cuts off the fractional solution (1

2 , 1). This
results in a new LP solution (x1, x2) = (0, 34). The procedure then branches on
the fractional variable x2. The x2 = 0 branch yields the fractional LP solution
(x1, x2) = (1

2 , 0), and it is necessary to branch on x1. The x2 = 1 branch yields
the integer LP solution (x1, x2) = (1, 1), which solves the problem. The resulting
search tree has 5 nodes.

Suppose now that we achieve sequential LP 2-consistency as described in
Example 9 by generating the inequality 4x1 − x2 ≥ 1, even though it does not
cut off the fractional LP solution (Fig. 4(b)). Since the partial assignment x1 = 0
is inconsistent with the LP relaxation, we immediately branch on x1 = 1, which
yields the integer LP solution (x1, x2) = (1, 1). The problem is solved with only
2 nodes in the search tree, even though we used no traditional separating cuts
at all.

Fig. 4: Illustration of Example 10
.

One could, in principle, avoid backtracking altogether by applying lift-and-
project repeatedly to achieve sequential LP k-consistency for k = 1, . . . , n. This
is impractical, however, because the resulting constraint set explodes in size. An
alternative is to achieve k-consistency for a few small values of k. This can be

Consistency for 0–1 Programming 15

accomplished in three ways. (a) Obtain k-consistency by applying the lift-and-
project step to the set SLP obtained from computing (k − 1)-consistency in the
previous step, where the procedure is modified to account for the y-variables
in SLP. This causes the number of variables to double in each step, but no
projection is required. (b) Project Rk(SLP) onto x before moving to the next
step. The number of variables remains constant, but a time-consuming projection
operation must be carried out. (c) Project Rk(SLP) onto xJk−1

before moving
to the next step. This adds only sparse cuts to the constraint set but requires
more computation to carry out the projection.

These methods become computationally prohibitive in an IP solver as k
increases, unless a heuristic is used to identify generated inequalities that are
likely to play a role in achieving sequential LP k-consistency—much as separation
algorithms are used to identify useful cutting planes. This remains an issue for
future research.

9 Conclusion

We provided a theoretical foundation for a new type of consistency, LP-consistency,
that is particularly suited to 0–1 programming. It is based on the idea that
consistency can, in general, be defined with respect to a type of relaxation.
LP-consistency is obtained by replacing the relaxation used for traditional con-
sistency concepts with the LP relaxation. It brings a novel approach to 0–1
programming by identifying cuts that exclude infeasible partial assignments
rather than fractional solutions. To our knowledge, no such concept has been
proposed in the IP literature, even though it is directly relevant to the amount
of backtracking that occurs. We also showed how a non-facet-defining inequality
can be stronger than a facet-defining inequality in an interesting sense, and how
traditional cutting planes can reduce branching even if no LP relaxation is used,
because they can help achieve consistency.

We also defined sequential LP k-consistency, a weaker form of LP-consistency
that nonetheless reduces backtracking. Sequential LP k-consistency for a given
k can be obtained by one step of the lift-and-project process of integer program-
ming. We showed that achieving even sequential LP 2-consistency can avoid
backtracking that traditional separating cuts allow.

This work points to at least three further research programs. One is to ex-
tend the concepts introduced here to general mixed integer/linear programming
(MILP), which appears to be straightforward. A second is to investigate the
computational usefulness of sequential LP k-consistency for MILP solvers, in
particular by achieving sequential LP k-consistency for small k near the top
of the search tree. A third is to conduct a systematic study of the ability of
traditional cutting planes to achieve consistency, both traditional forms and LP-
consistency, in an MILP problem. This could allow one to make better use of
known cutting planes by generating cuts that do not separate fractional solutions
but enhance the consistency properties of the constraint set.

16 Davarnia and Hooker

References

1. Apt, K.R.: Principles of Constraint Programming. Cambridge University Press,
Cambridge, UK (2003)

2. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for
mixed 0-1 programs. Mathematical Programming 58, 295–324 (1993)

3. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems.
Discrete Mathematics 4, 305–337 (1973)

4. Davis, E.: Constraint propagation with intervals labels. Artificial Intelligence 32,
281–331 (1987)

5. Freuder, E.C.: Synthesizing constraint expressions. Communications of the ACM
21, 958–966 (1978)

6. Freuder, E.C.: A sufficient condition for backtrack-free search. Communications of
the ACM 29, 24–32 (1982)

7. Hooker, J.N.: Input proofs and rank one cutting planes. ORSA Journal on Com-
puting 1, 137–145 (1989)

8. Hooker, J.N.: Integrated Methods for Optimization, 2nd ed. Springer (2012)
9. Hooker, J.N.: Projection, consistency, and George Boole. Constraints 21, 59–76

(2016)
10. Mackworth, A.: Consistency in networks of relations. Artificial Intelligence 8, 99–

118 (1977)
11. Montanari, U.: Networks of constraints: Fundamental properties and applications

to picture processing. Information Science 7, 95–132 (1974)
12. Quine, W.V.: The problem of simplifying truth functions. American Mathematical

Monthly 59, 521–531 (1952)
13. Quine, W.V.: A way to simplify truth functions. American Mathematical Monthly

62, 627–631 (1955)
14. Régin, J.C.: Global constraints: A survey. In: Milano, M., Van Hentenryck, P. (eds.)

Hybrid Optimization: The Ten Years of CPAIOR, pp. 63–134. Springer, New York
(2010)

15. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1983)
16. Van Hentenryck, P.: Constraint Satisfaction in Logic Programming. MIT Press,

Cambridge, MA (1989)

	Consistency for 0–1 Programming

